Abstract

The performance of plasmonic titanium nitride (TiN) nanoantennas for the manipulation of fluidic flow and suspended particles in an optofluidic chip is studied. A unified theoretical framework is utilized to model the multidisciplinary problem that comprises optics, thermodynamics, and hydrodynamics. Using multiphysics finite element analysis, we simulate the temperature rise resulting from the photothermal heating of a plasmonic TiN bowtie nanoantenna (BNA) and the accompanying hydrodynamic flow generated in a microfluidic channel. We show that the TiN BNA enables over three times higher electrothermoplasmonic flow velocity in comparison to a gold BNA under similar signal conditions. Our analysis shows that TiN BNAs at near-IR biological transparency wavelengths can be utilized to initiate strong microfluidic flow for directed transport and trapping of target nanoscale objects. This makes TiN an excellent plasmonic material choice for optically controlling heat, fluidic dynamics and heat-induced forces in microfluidic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic nanotweezers: strong influence of adhesion layer and nanostructure orientation on trapping performance

Brian J. Roxworthy and Kimani C. Toussaint
Opt. Express 20(9) 9591-9603 (2012)

Rapid assembly of gold nanoparticle-based microstructures using optically-induced electrokinetics

Wenfeng Liang, Lianqing Liu, Sam Hok-Sum Lai, Yuechao Wang, Gwo-Bin Lee, and Wen Jung Li
Opt. Mater. Express 4(11) 2368-2380 (2014)

Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip

Ali El Eter, Nyha M. Hameed, Fadi I. Baida, Roland Salut, Claudine Filiatre, Dusan Nedeljkovic, Elie Atie, Samuel Bole, and Thierry Grosjean
Opt. Express 22(8) 10072-10080 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. L. Brongersma and V. M. Shalaev, “The Case for Plasmonics,” Science 328(5977), 440–441 (2010).
    [Crossref] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [Crossref] [PubMed]
  3. C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
    [Crossref] [PubMed]
  4. A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
    [Crossref]
  5. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]
  6. M. Geiselmann, R. Marty, J. Renger, F. J. García de Abajo, and R. Quidant, “Deterministic Optical-Near-Field-Assisted Positioning of Nitrogen-Vacancy Centers,” Nano Lett. 14(3), 1520–1525 (2014).
    [Crossref] [PubMed]
  7. F. Bigourdan, F. Marquier, J.-P. Hugonin, and J.-J. Greffet, “Design of highly efficient metallo-dielectric patch antennas for single-photon emission,” Opt. Express 22(3), 2337–2347 (2014).
    [Crossref] [PubMed]
  8. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288 (1986).
    [Crossref] [PubMed]
  9. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
    [Crossref] [PubMed]
  10. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [Crossref] [PubMed]
  11. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  12. J.-S. Huang and Y.-T. Yang, “Origin and Future of Plasmonic Optical Tweezers,” Nanomaterials (Basel) 5(2), 1048–1065 (2015).
    [Crossref] [PubMed]
  13. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
    [Crossref] [PubMed]
  14. K. Wang and K. B. Crozier, “Plasmonic trapping with a gold nanopillar,” ChemPhysChem 13(11), 2639–2648 (2012).
    [Crossref] [PubMed]
  15. D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap,” Nano Lett. 18(6), 3637–3642 (2018).
    [Crossref] [PubMed]
  16. A. A. E. Saleh and J. A. Dionne, “Toward Efficient Optical Trapping of Sub-10-nm Particles with Coaxial Plasmonic Apertures,” Nano Lett. 12(11), 5581–5586 (2012).
    [Crossref] [PubMed]
  17. A. A. E. Saleh, S. Sheikhoelislami, S. Gastelum, and J. A. Dionne, “Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers,” Opt. Express 24(18), 20593–20603 (2016).
    [Crossref] [PubMed]
  18. A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
    [Crossref] [PubMed]
  19. Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
    [Crossref] [PubMed]
  20. Z. Xu, W. Song, and K. B. Crozier, “Direct Particle Tracking Observation and Brownian Dynamics Simulations of a Single Nanoparticle Optically Trapped by a Plasmonic Nanoaperture,” ACS Photonics 5(7), 2850–2859 (2018).
    [Crossref]
  21. J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
    [Crossref] [PubMed]
  22. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
    [Crossref] [PubMed]
  23. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
    [Crossref]
  24. Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13(3), 1023–1028 (2013).
    [Crossref] [PubMed]
  25. G. Baffou and R. Quidant, “Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
    [Crossref]
  26. G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
    [Crossref] [PubMed]
  27. S. Duhr and D. Braun, “Two-dimensional colloidal crystals formed by thermophoresis and convection,” Appl. Phys. Lett. 86(13), 131921 (2005).
    [Crossref]
  28. L. Lin, X. Peng, X. Wei, Z. Mao, C. Xie, and Y. Zheng, “Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells,” ACS Nano 11(3), 3147–3154 (2017).
    [Crossref] [PubMed]
  29. S. Duhr and D. Braun, “Why molecules move along a temperature gradient,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19678–19682 (2006).
    [Crossref] [PubMed]
  30. S. Duhr and D. Braun, “Thermophoretic depletion follows Boltzmann distribution,” Phys. Rev. Lett. 96(16), 168301 (2006).
    [Crossref] [PubMed]
  31. S. Ghosh and A. Ghosh, “Mobile nanotweezers for active colloidal manipulation,” Sci. Robot. 3(14), eaaq0076 (2018).
    [Crossref]
  32. B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5(1), 3173 (2014).
    [Crossref] [PubMed]
  33. J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
    [Crossref] [PubMed]
  34. J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11(1), 53–59 (2016).
    [Crossref] [PubMed]
  35. J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Plasmonics--turning loss into gain,” Science 351(6271), 334–335 (2016).
    [Crossref] [PubMed]
  36. Y. Tsuboi, “Plasmonic optical tweezers: A long arm and a tight grip,” Nat. Nanotechnol. 11(1), 5–6 (2016).
    [Crossref] [PubMed]
  37. J. C. Ndukaife, Y. Xuan, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “High-Resolution Large-Ensemble Nanoparticle Trapping with Multifunctional Thermoplasmonic Nanohole Metasurface,” ACS Nano 12(6), 5376–5384 (2018).
    [Crossref] [PubMed]
  38. J. Garcia-Guirado, R. A. Rica, J. Ortega, J. Medina, V. Sanz, E. Ruiz-Reina, and R. Quidant, “Overcoming Diffusion-Limited Biosensing by Electrothermoplasmonics,” ACS Photonics 5(9), 3673–3679 (2018).
    [Crossref]
  39. L. V. Besteiro, H. Zhang, J. Plain, G. Markovich, Z. Wang, and A. O. Govorov, “Aluminum Nanoparticles with Hot Spots for Plasmon-Induced Circular Dichroism of Chiral Molecules in the UV Spectral Interval,” Adv. Opt. Mater. 5(16), 1700069 (2017).
    [Crossref]
  40. J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
    [Crossref] [PubMed]
  41. G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
    [Crossref] [PubMed]
  42. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
    [Crossref] [PubMed]
  43. M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
    [Crossref] [PubMed]
  44. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
    [Crossref] [PubMed]
  45. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478 (2012).
    [Crossref]
  46. N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22(10), 12238–12247 (2014).
    [Crossref] [PubMed]
  47. U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
    [Crossref] [PubMed]
  48. U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
    [Crossref]
  49. H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776 (2016).
    [Crossref]
  50. H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017).
    [Crossref]
  51. A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “Ac electrokinetics: a review of forces in microelectrode structures,” J. Phys. D Appl. Phys. 31(18), 2338–2353 (1998).
    [Crossref]
  52. D. R. Lide, “CRC Handbook of Chemistry and Physics, 84th Edition, 2003-2004,” Handb. Chem. Phys. 53, 2616 (2003).
  53. J. D. Doering, and C. R. Gibbon, Applied Analysis of the Navier-Stokes Equations (Cambridge University Press, 1995).
  54. S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
    [Crossref] [PubMed]

2018 (7)

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap,” Nano Lett. 18(6), 3637–3642 (2018).
[Crossref] [PubMed]

Z. Xu, W. Song, and K. B. Crozier, “Direct Particle Tracking Observation and Brownian Dynamics Simulations of a Single Nanoparticle Optically Trapped by a Plasmonic Nanoaperture,” ACS Photonics 5(7), 2850–2859 (2018).
[Crossref]

S. Ghosh and A. Ghosh, “Mobile nanotweezers for active colloidal manipulation,” Sci. Robot. 3(14), eaaq0076 (2018).
[Crossref]

J. C. Ndukaife, Y. Xuan, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “High-Resolution Large-Ensemble Nanoparticle Trapping with Multifunctional Thermoplasmonic Nanohole Metasurface,” ACS Nano 12(6), 5376–5384 (2018).
[Crossref] [PubMed]

J. Garcia-Guirado, R. A. Rica, J. Ortega, J. Medina, V. Sanz, E. Ruiz-Reina, and R. Quidant, “Overcoming Diffusion-Limited Biosensing by Electrothermoplasmonics,” ACS Photonics 5(9), 3673–3679 (2018).
[Crossref]

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref] [PubMed]

2017 (3)

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

L. V. Besteiro, H. Zhang, J. Plain, G. Markovich, Z. Wang, and A. O. Govorov, “Aluminum Nanoparticles with Hot Spots for Plasmon-Induced Circular Dichroism of Chiral Molecules in the UV Spectral Interval,” Adv. Opt. Mater. 5(16), 1700069 (2017).
[Crossref]

L. Lin, X. Peng, X. Wei, Z. Mao, C. Xie, and Y. Zheng, “Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells,” ACS Nano 11(3), 3147–3154 (2017).
[Crossref] [PubMed]

2016 (5)

A. A. E. Saleh, S. Sheikhoelislami, S. Gastelum, and J. A. Dionne, “Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers,” Opt. Express 24(18), 20593–20603 (2016).
[Crossref] [PubMed]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776 (2016).
[Crossref]

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11(1), 53–59 (2016).
[Crossref] [PubMed]

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Plasmonics--turning loss into gain,” Science 351(6271), 334–335 (2016).
[Crossref] [PubMed]

Y. Tsuboi, “Plasmonic optical tweezers: A long arm and a tight grip,” Nat. Nanotechnol. 11(1), 5–6 (2016).
[Crossref] [PubMed]

2015 (2)

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

J.-S. Huang and Y.-T. Yang, “Origin and Future of Plasmonic Optical Tweezers,” Nanomaterials (Basel) 5(2), 1048–1065 (2015).
[Crossref] [PubMed]

2014 (8)

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

M. Geiselmann, R. Marty, J. Renger, F. J. García de Abajo, and R. Quidant, “Deterministic Optical-Near-Field-Assisted Positioning of Nitrogen-Vacancy Centers,” Nano Lett. 14(3), 1520–1525 (2014).
[Crossref] [PubMed]

F. Bigourdan, F. Marquier, J.-P. Hugonin, and J.-J. Greffet, “Design of highly efficient metallo-dielectric patch antennas for single-photon emission,” Opt. Express 22(3), 2337–2347 (2014).
[Crossref] [PubMed]

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5(1), 3173 (2014).
[Crossref] [PubMed]

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22(10), 12238–12247 (2014).
[Crossref] [PubMed]

2013 (5)

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13(3), 1023–1028 (2013).
[Crossref] [PubMed]

G. Baffou and R. Quidant, “Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

2012 (6)

A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref] [PubMed]

A. A. E. Saleh and J. A. Dionne, “Toward Efficient Optical Trapping of Sub-10-nm Particles with Coaxial Plasmonic Apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref] [PubMed]

K. Wang and K. B. Crozier, “Plasmonic trapping with a gold nanopillar,” ChemPhysChem 13(11), 2639–2648 (2012).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478 (2012).
[Crossref]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

2011 (3)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

2010 (3)

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

M. L. Brongersma and V. M. Shalaev, “The Case for Plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

2009 (2)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

2006 (3)

S. Duhr and D. Braun, “Why molecules move along a temperature gradient,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19678–19682 (2006).
[Crossref] [PubMed]

S. Duhr and D. Braun, “Thermophoretic depletion follows Boltzmann distribution,” Phys. Rev. Lett. 96(16), 168301 (2006).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

2005 (1)

S. Duhr and D. Braun, “Two-dimensional colloidal crystals formed by thermophoresis and convection,” Appl. Phys. Lett. 86(13), 131921 (2005).
[Crossref]

1998 (1)

A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “Ac electrokinetics: a review of forces in microelectrode structures,” J. Phys. D Appl. Phys. 31(18), 2338–2353 (1998).
[Crossref]

1987 (2)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

1986 (1)

Acimovic, S. S.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Anghinolfi, L.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288 (1986).
[Crossref] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Babicheva, V. E.

Baeuerle, B.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Baffou, G.

G. Baffou and R. Quidant, “Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

Berthelot, J.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Besteiro, L. V.

L. V. Besteiro, H. Zhang, J. Plain, G. Markovich, Z. Wang, and A. O. Govorov, “Aluminum Nanoparticles with Hot Spots for Plasmon-Induced Circular Dichroism of Chiral Molecules in the UV Spectral Interval,” Adv. Opt. Mater. 5(16), 1700069 (2017).
[Crossref]

Bhuiya, A. M.

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5(1), 3173 (2014).
[Crossref] [PubMed]

Bigourdan, F.

Bisio, F.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Bjorkholm, J. E.

Boltasseva, A.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

J. C. Ndukaife, Y. Xuan, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “High-Resolution Large-Ensemble Nanoparticle Trapping with Multifunctional Thermoplasmonic Nanohole Metasurface,” ACS Nano 12(6), 5376–5384 (2018).
[Crossref] [PubMed]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776 (2016).
[Crossref]

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11(1), 53–59 (2016).
[Crossref] [PubMed]

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Plasmonics--turning loss into gain,” Science 351(6271), 334–335 (2016).
[Crossref] [PubMed]

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22(10), 12238–12247 (2014).
[Crossref] [PubMed]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478 (2012).
[Crossref]

Braun, D.

S. Duhr and D. Braun, “Why molecules move along a temperature gradient,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19678–19682 (2006).
[Crossref] [PubMed]

S. Duhr and D. Braun, “Thermophoretic depletion follows Boltzmann distribution,” Phys. Rev. Lett. 96(16), 168301 (2006).
[Crossref] [PubMed]

S. Duhr and D. Braun, “Two-dimensional colloidal crystals formed by thermophoresis and convection,” Appl. Phys. Lett. 86(13), 131921 (2005).
[Crossref]

Brolo, A.

A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Brongersma, M. L.

M. L. Brongersma and V. M. Shalaev, “The Case for Plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

Brown, L.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Canepa, M.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Castellanos, A.

A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “Ac electrokinetics: a review of forces in microelectrode structures,” J. Phys. D Appl. Phys. 31(18), 2338–2353 (1998).
[Crossref]

Chang, W.-S.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Chelladurai, D.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Cheng, B.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Choi, H.-K.

D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap,” Nano Lett. 18(6), 3637–3642 (2018).
[Crossref] [PubMed]

Chu, S.

Coppens, Z. J.

Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13(3), 1023–1028 (2013).
[Crossref] [PubMed]

Crozier, K. B.

Z. Xu, W. Song, and K. B. Crozier, “Direct Particle Tracking Observation and Brownian Dynamics Simulations of a Single Nanoparticle Optically Trapped by a Plasmonic Nanoaperture,” ACS Photonics 5(7), 2850–2859 (2018).
[Crossref]

K. Wang and K. B. Crozier, “Plasmonic trapping with a gold nanopillar,” ChemPhysChem 13(11), 2639–2648 (2012).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

Cui, T.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Dai, H.-L.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Dalton, L. R.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Dao, T. D.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref] [PubMed]

Dionne, J. A.

A. A. E. Saleh, S. Sheikhoelislami, S. Gastelum, and J. A. Dionne, “Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers,” Opt. Express 24(18), 20593–20603 (2016).
[Crossref] [PubMed]

A. A. E. Saleh and J. A. Dionne, “Toward Efficient Optical Trapping of Sub-10-nm Particles with Coaxial Plasmonic Apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref] [PubMed]

Donner, J. S.

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

Duhr, S.

S. Duhr and D. Braun, “Why molecules move along a temperature gradient,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19678–19682 (2006).
[Crossref] [PubMed]

S. Duhr and D. Braun, “Thermophoretic depletion follows Boltzmann distribution,” Phys. Rev. Lett. 96(16), 168301 (2006).
[Crossref] [PubMed]

S. Duhr and D. Braun, “Two-dimensional colloidal crystals formed by thermophoresis and convection,” Appl. Phys. Lett. 86(13), 131921 (2005).
[Crossref]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288 (1986).
[Crossref] [PubMed]

Eftekhari, F.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Elder, D. L.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Ertsgaard, C. T.

D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap,” Nano Lett. 18(6), 3637–3642 (2018).
[Crossref] [PubMed]

Everitt, H. O.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Fedoryshyn, Y.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Ferrera, M.

Foerster, B.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Fujita, K.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref] [PubMed]

García de Abajo, F. J.

M. Geiselmann, R. Marty, J. Renger, F. J. García de Abajo, and R. Quidant, “Deterministic Optical-Near-Field-Assisted Positioning of Nitrogen-Vacancy Centers,” Nano Lett. 14(3), 1520–1525 (2014).
[Crossref] [PubMed]

Garcia-Guirado, J.

J. Garcia-Guirado, R. A. Rica, J. Ortega, J. Medina, V. Sanz, E. Ruiz-Reina, and R. Quidant, “Overcoming Diffusion-Limited Biosensing by Electrothermoplasmonics,” ACS Photonics 5(9), 3673–3679 (2018).
[Crossref]

Gastelum, S.

Geiselmann, M.

M. Geiselmann, R. Marty, J. Renger, F. J. García de Abajo, and R. Quidant, “Deterministic Optical-Near-Field-Assisted Positioning of Nitrogen-Vacancy Centers,” Nano Lett. 14(3), 1520–1525 (2014).
[Crossref] [PubMed]

Ghosh, A.

S. Ghosh and A. Ghosh, “Mobile nanotweezers for active colloidal manipulation,” Sci. Robot. 3(14), eaaq0076 (2018).
[Crossref]

Ghosh, S.

S. Ghosh and A. Ghosh, “Mobile nanotweezers for active colloidal manipulation,” Sci. Robot. 3(14), eaaq0076 (2018).
[Crossref]

Giglia, A.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Girard, C.

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

Gonella, G.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Gordon, R.

D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap,” Nano Lett. 18(6), 3637–3642 (2018).
[Crossref] [PubMed]

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Govorov, A. O.

L. V. Besteiro, H. Zhang, J. Plain, G. Markovich, Z. Wang, and A. O. Govorov, “Aluminum Nanoparticles with Hot Spots for Plasmon-Induced Circular Dichroism of Chiral Molecules in the UV Spectral Interval,” Adv. Opt. Mater. 5(16), 1700069 (2017).
[Crossref]

Green, N. G.

A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “Ac electrokinetics: a review of forces in microelectrode structures,” J. Phys. D Appl. Phys. 31(18), 2338–2353 (1998).
[Crossref]

Greffet, J.-J.

Guler, U.

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776 (2016).
[Crossref]

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

Gurunatha, K. L.

D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap,” Nano Lett. 18(6), 3637–3642 (2018).
[Crossref] [PubMed]

Haffner, C.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Halas, N. J.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Heni, W.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Huang, J.-S.

J.-S. Huang and Y.-T. Yang, “Origin and Future of Plasmonic Optical Tweezers,” Nanomaterials (Basel) 5(2), 1048–1065 (2015).
[Crossref] [PubMed]

Huang, L.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Hugonin, J.-P.

Ishii, S.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref] [PubMed]

Josten, A.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Juan, M. L.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Kamakura, R.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref] [PubMed]

Kildishev, A. V.

J. C. Ndukaife, Y. Xuan, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “High-Resolution Large-Ensemble Nanoparticle Trapping with Multifunctional Thermoplasmonic Nanohole Metasurface,” ACS Nano 12(6), 5376–5384 (2018).
[Crossref] [PubMed]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776 (2016).
[Crossref]

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11(1), 53–59 (2016).
[Crossref] [PubMed]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478 (2012).
[Crossref]

King, N. S.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Kinsey, N.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22(10), 12238–12247 (2014).
[Crossref] [PubMed]

Knight, M. W.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Kotnala, A.

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

Kreuzer, M. P.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Kudyshev, Z.

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

Leuthold, J.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Li, W.

Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13(3), 1023–1028 (2013).
[Crossref] [PubMed]

Lin, L.

L. Lin, X. Peng, X. Wei, Z. Mao, C. Xie, and Y. Zheng, “Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells,” ACS Nano 11(3), 3147–3154 (2017).
[Crossref] [PubMed]

Link, S.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Liu, L.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Maidecchi, G.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Manjavacas, A.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Mao, Z.

L. Lin, X. Peng, X. Wei, Z. Mao, C. Xie, and Y. Zheng, “Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells,” ACS Nano 11(3), 3147–3154 (2017).
[Crossref] [PubMed]

Markovich, G.

L. V. Besteiro, H. Zhang, J. Plain, G. Markovich, Z. Wang, and A. O. Govorov, “Aluminum Nanoparticles with Hot Spots for Plasmon-Induced Circular Dichroism of Chiral Molecules in the UV Spectral Interval,” Adv. Opt. Mater. 5(16), 1700069 (2017).
[Crossref]

Marquier, F.

Martin, O. J. F.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Marty, R.

M. Geiselmann, R. Marty, J. Renger, F. J. García de Abajo, and R. Quidant, “Deterministic Optical-Near-Field-Assisted Positioning of Nitrogen-Vacancy Centers,” Nano Lett. 14(3), 1520–1525 (2014).
[Crossref] [PubMed]

Mattera, L.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

McCloskey, D.

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

Medina, J.

J. Garcia-Guirado, R. A. Rica, J. Ortega, J. Medina, V. Sanz, E. Ruiz-Reina, and R. Quidant, “Overcoming Diffusion-Limited Biosensing by Electrothermoplasmonics,” ACS Photonics 5(9), 3673–3679 (2018).
[Crossref]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Mohr, D. A.

D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap,” Nano Lett. 18(6), 3637–3642 (2018).
[Crossref] [PubMed]

Morgan, H.

A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “Ac electrokinetics: a review of forces in microelectrode structures,” J. Phys. D Appl. Phys. 31(18), 2338–2353 (1998).
[Crossref]

Moroni, R.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Mukherjee, S.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Murai, S.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref] [PubMed]

Nagao, T.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref] [PubMed]

Naik, G. V.

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22(10), 12238–12247 (2014).
[Crossref] [PubMed]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478 (2012).
[Crossref]

Namura, K.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref] [PubMed]

Nannarone, S.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Ndukaife, J. C.

J. C. Ndukaife, Y. Xuan, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “High-Resolution Large-Ensemble Nanoparticle Trapping with Multifunctional Thermoplasmonic Nanohole Metasurface,” ACS Nano 12(6), 5376–5384 (2018).
[Crossref] [PubMed]

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Plasmonics--turning loss into gain,” Science 351(6271), 334–335 (2016).
[Crossref] [PubMed]

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11(1), 53–59 (2016).
[Crossref] [PubMed]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

Ni, X.

Nnanna, A. G. A.

J. C. Ndukaife, Y. Xuan, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “High-Resolution Large-Ensemble Nanoparticle Trapping with Multifunctional Thermoplasmonic Nanohole Metasurface,” ACS Nano 12(6), 5376–5384 (2018).
[Crossref] [PubMed]

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11(1), 53–59 (2016).
[Crossref] [PubMed]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

Nordlander, P.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Oh, S.-H.

D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap,” Nano Lett. 18(6), 3637–3642 (2018).
[Crossref] [PubMed]

Olson, J.

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Ortega, J.

J. Garcia-Guirado, R. A. Rica, J. Ortega, J. Medina, V. Sanz, E. Ruiz-Reina, and R. Quidant, “Overcoming Diffusion-Limited Biosensing by Electrothermoplasmonics,” ACS Photonics 5(9), 3673–3679 (2018).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Pang, Y.

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Peng, X.

L. Lin, X. Peng, X. Wei, Z. Mao, C. Xie, and Y. Zheng, “Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells,” ACS Nano 11(3), 3147–3154 (2017).
[Crossref] [PubMed]

Plain, J.

L. V. Besteiro, H. Zhang, J. Plain, G. Markovich, Z. Wang, and A. O. Govorov, “Aluminum Nanoparticles with Hot Spots for Plasmon-Induced Circular Dichroism of Chiral Molecules in the UV Spectral Interval,” Adv. Opt. Mater. 5(16), 1700069 (2017).
[Crossref]

Proietti Zaccaria, R.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Quidant, R.

J. Garcia-Guirado, R. A. Rica, J. Ortega, J. Medina, V. Sanz, E. Ruiz-Reina, and R. Quidant, “Overcoming Diffusion-Limited Biosensing by Electrothermoplasmonics,” ACS Photonics 5(9), 3673–3679 (2018).
[Crossref]

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

M. Geiselmann, R. Marty, J. Renger, F. J. García de Abajo, and R. Quidant, “Deterministic Optical-Near-Field-Assisted Positioning of Nitrogen-Vacancy Centers,” Nano Lett. 14(3), 1520–1525 (2014).
[Crossref] [PubMed]

G. Baffou and R. Quidant, “Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Ramos, A.

A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “Ac electrokinetics: a review of forces in microelectrode structures,” J. Phys. D Appl. Phys. 31(18), 2338–2353 (1998).
[Crossref]

Reddy, H.

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776 (2016).
[Crossref]

Renger, J.

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

M. Geiselmann, R. Marty, J. Renger, F. J. García de Abajo, and R. Quidant, “Deterministic Optical-Near-Field-Assisted Positioning of Nitrogen-Vacancy Centers,” Nano Lett. 14(3), 1520–1525 (2014).
[Crossref] [PubMed]

Rica, R. A.

J. Garcia-Guirado, R. A. Rica, J. Ortega, J. Medina, V. Sanz, E. Ruiz-Reina, and R. Quidant, “Overcoming Diffusion-Limited Biosensing by Electrothermoplasmonics,” ACS Photonics 5(9), 3673–3679 (2018).
[Crossref]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Roxworthy, B. J.

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5(1), 3173 (2014).
[Crossref] [PubMed]

Ruiz-Reina, E.

J. Garcia-Guirado, R. A. Rica, J. Ortega, J. Medina, V. Sanz, E. Ruiz-Reina, and R. Quidant, “Overcoming Diffusion-Limited Biosensing by Electrothermoplasmonics,” ACS Photonics 5(9), 3673–3679 (2018).
[Crossref]

Saha, S.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Sakamoto, H.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref] [PubMed]

Saleh, A. A. E.

A. A. E. Saleh, S. Sheikhoelislami, S. Gastelum, and J. A. Dionne, “Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers,” Opt. Express 24(18), 20593–20603 (2016).
[Crossref] [PubMed]

A. A. E. Saleh and J. A. Dionne, “Toward Efficient Optical Trapping of Sub-10-nm Particles with Coaxial Plasmonic Apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref] [PubMed]

Sands, T. D.

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Sanz, V.

J. Garcia-Guirado, R. A. Rica, J. Ortega, J. Medina, V. Sanz, E. Ruiz-Reina, and R. Quidant, “Overcoming Diffusion-Limited Biosensing by Electrothermoplasmonics,” ACS Photonics 5(9), 3673–3679 (2018).
[Crossref]

Schonbrun, E.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

Schroeder, J. L.

Shalaev, V. M.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

J. C. Ndukaife, Y. Xuan, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “High-Resolution Large-Ensemble Nanoparticle Trapping with Multifunctional Thermoplasmonic Nanohole Metasurface,” ACS Nano 12(6), 5376–5384 (2018).
[Crossref] [PubMed]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

H. Reddy, U. Guler, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Temperature-dependent optical properties of gold thin films,” Opt. Mater. Express 6(9), 2776 (2016).
[Crossref]

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11(1), 53–59 (2016).
[Crossref] [PubMed]

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Plasmonics--turning loss into gain,” Science 351(6271), 334–335 (2016).
[Crossref] [PubMed]

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

N. Kinsey, M. Ferrera, G. V. Naik, V. E. Babicheva, V. M. Shalaev, and A. Boltasseva, “Experimental demonstration of titanium nitride plasmonic interconnects,” Opt. Express 22(10), 12238–12247 (2014).
[Crossref] [PubMed]

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

M. L. Brongersma and V. M. Shalaev, “The Case for Plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

Sheikhoelislami, S.

Shinde, S. L.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref] [PubMed]

Song, W.

Z. Xu, W. Song, and K. B. Crozier, “Direct Particle Tracking Observation and Brownian Dynamics Simulations of a Single Nanoparticle Optically Trapped by a Plasmonic Nanoaperture,” ACS Photonics 5(7), 2850–2859 (2018).
[Crossref]

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

Suzuki, M.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref] [PubMed]

Tanaka, K.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref] [PubMed]

Toussaint, K. C.

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5(1), 3173 (2014).
[Crossref] [PubMed]

Tsuboi, Y.

Y. Tsuboi, “Plasmonic optical tweezers: A long arm and a tight grip,” Nat. Nanotechnol. 11(1), 5–6 (2016).
[Crossref] [PubMed]

Valentine, J. G.

Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13(3), 1023–1028 (2013).
[Crossref] [PubMed]

Vanka, S. P.

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5(1), 3173 (2014).
[Crossref] [PubMed]

Walker, D. G.

Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13(3), 1023–1028 (2013).
[Crossref] [PubMed]

Wang, K.

K. Wang and K. B. Crozier, “Plasmonic trapping with a gold nanopillar,” ChemPhysChem 13(11), 2639–2648 (2012).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

Wang, Y.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Wang, Z.

L. V. Besteiro, H. Zhang, J. Plain, G. Markovich, Z. Wang, and A. O. Govorov, “Aluminum Nanoparticles with Hot Spots for Plasmon-Induced Circular Dichroism of Chiral Molecules in the UV Spectral Interval,” Adv. Opt. Mater. 5(16), 1700069 (2017).
[Crossref]

Watanabe, T.

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Wei, X.

L. Lin, X. Peng, X. Wei, Z. Mao, C. Xie, and Y. Zheng, “Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells,” ACS Nano 11(3), 3147–3154 (2017).
[Crossref] [PubMed]

Wereley, S. T.

J. C. Ndukaife, Y. Xuan, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “High-Resolution Large-Ensemble Nanoparticle Trapping with Multifunctional Thermoplasmonic Nanohole Metasurface,” ACS Nano 12(6), 5376–5384 (2018).
[Crossref] [PubMed]

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11(1), 53–59 (2016).
[Crossref] [PubMed]

Xie, C.

L. Lin, X. Peng, X. Wei, Z. Mao, C. Xie, and Y. Zheng, “Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells,” ACS Nano 11(3), 3147–3154 (2017).
[Crossref] [PubMed]

Xu, Z.

Z. Xu, W. Song, and K. B. Crozier, “Direct Particle Tracking Observation and Brownian Dynamics Simulations of a Single Nanoparticle Optically Trapped by a Plasmonic Nanoaperture,” ACS Photonics 5(7), 2850–2859 (2018).
[Crossref]

Xuan, Y.

J. C. Ndukaife, Y. Xuan, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “High-Resolution Large-Ensemble Nanoparticle Trapping with Multifunctional Thermoplasmonic Nanohole Metasurface,” ACS Nano 12(6), 5376–5384 (2018).
[Crossref] [PubMed]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

Yang, Y.-T.

J.-S. Huang and Y.-T. Yang, “Origin and Future of Plasmonic Optical Tweezers,” Nanomaterials (Basel) 5(2), 1048–1065 (2015).
[Crossref] [PubMed]

Yoo, D.

D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap,” Nano Lett. 18(6), 3637–3642 (2018).
[Crossref] [PubMed]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Zhang, H.

L. V. Besteiro, H. Zhang, J. Plain, G. Markovich, Z. Wang, and A. O. Govorov, “Aluminum Nanoparticles with Hot Spots for Plasmon-Induced Circular Dichroism of Chiral Molecules in the UV Spectral Interval,” Adv. Opt. Mater. 5(16), 1700069 (2017).
[Crossref]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

Zheng, Y.

L. Lin, X. Peng, X. Wei, Z. Mao, C. Xie, and Y. Zheng, “Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells,” ACS Nano 11(3), 3147–3154 (2017).
[Crossref] [PubMed]

ACS Nano (5)

L. Lin, X. Peng, X. Wei, Z. Mao, C. Xie, and Y. Zheng, “Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells,” ACS Nano 11(3), 3147–3154 (2017).
[Crossref] [PubMed]

J. S. Donner, G. Baffou, D. McCloskey, and R. Quidant, “Plasmon-assisted optofluidics,” ACS Nano 5(7), 5457–5462 (2011).
[Crossref] [PubMed]

J. C. Ndukaife, Y. Xuan, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “High-Resolution Large-Ensemble Nanoparticle Trapping with Multifunctional Thermoplasmonic Nanohole Metasurface,” ACS Nano 12(6), 5376–5384 (2018).
[Crossref] [PubMed]

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.-L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

ACS Photonics (3)

J. Garcia-Guirado, R. A. Rica, J. Ortega, J. Medina, V. Sanz, E. Ruiz-Reina, and R. Quidant, “Overcoming Diffusion-Limited Biosensing by Electrothermoplasmonics,” ACS Photonics 5(9), 3673–3679 (2018).
[Crossref]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-Dependent Optical Properties of Plasmonic Titanium Nitride Thin Films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

Z. Xu, W. Song, and K. B. Crozier, “Direct Particle Tracking Observation and Brownian Dynamics Simulations of a Single Nanoparticle Optically Trapped by a Plasmonic Nanoaperture,” ACS Photonics 5(7), 2850–2859 (2018).
[Crossref]

Adv. Mater. (1)

G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

L. V. Besteiro, H. Zhang, J. Plain, G. Markovich, Z. Wang, and A. O. Govorov, “Aluminum Nanoparticles with Hot Spots for Plasmon-Induced Circular Dichroism of Chiral Molecules in the UV Spectral Interval,” Adv. Opt. Mater. 5(16), 1700069 (2017).
[Crossref]

Appl. Phys. Lett. (1)

S. Duhr and D. Braun, “Two-dimensional colloidal crystals formed by thermophoresis and convection,” Appl. Phys. Lett. 86(13), 131921 (2005).
[Crossref]

ChemPhysChem (1)

K. Wang and K. B. Crozier, “Plasmonic trapping with a gold nanopillar,” ChemPhysChem 13(11), 2639–2648 (2012).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “Ac electrokinetics: a review of forces in microelectrode structures,” J. Phys. D Appl. Phys. 31(18), 2338–2353 (1998).
[Crossref]

Laser Photonics Rev. (1)

G. Baffou and R. Quidant, “Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat,” Laser Photonics Rev. 7(2), 171–187 (2013).
[Crossref]

Mater. Today (1)

U. Guler, V. M. Shalaev, and A. Boltasseva, “Nanoparticle plasmonics: going practical with transition metal nitrides,” Mater. Today 18(4), 227–237 (2015).
[Crossref]

Nano Lett. (9)

U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles,” Nano Lett. 13(12), 6078–6083 (2013).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum Plasmonic Nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[Crossref] [PubMed]

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref] [PubMed]

Z. J. Coppens, W. Li, D. G. Walker, and J. G. Valentine, “Probing and controlling photothermal heat generation in plasmonic nanostructures,” Nano Lett. 13(3), 1023–1028 (2013).
[Crossref] [PubMed]

D. Yoo, K. L. Gurunatha, H.-K. Choi, D. A. Mohr, C. T. Ertsgaard, R. Gordon, and S.-H. Oh, “Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap,” Nano Lett. 18(6), 3637–3642 (2018).
[Crossref] [PubMed]

A. A. E. Saleh and J. A. Dionne, “Toward Efficient Optical Trapping of Sub-10-nm Particles with Coaxial Plasmonic Apertures,” Nano Lett. 12(11), 5581–5586 (2012).
[Crossref] [PubMed]

M. Geiselmann, R. Marty, J. Renger, F. J. García de Abajo, and R. Quidant, “Deterministic Optical-Near-Field-Assisted Positioning of Nitrogen-Vacancy Centers,” Nano Lett. 14(3), 1520–1525 (2014).
[Crossref] [PubMed]

Nanomaterials (Basel) (1)

J.-S. Huang and Y.-T. Yang, “Origin and Future of Plasmonic Optical Tweezers,” Nanomaterials (Basel) 5(2), 1048–1065 (2015).
[Crossref] [PubMed]

Nanoscale (1)

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, K. Fujita, K. Namura, M. Suzuki, S. Murai, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref] [PubMed]

Nat. Commun. (2)

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5(1), 3173 (2014).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotechnol. 11(1), 53–59 (2016).
[Crossref] [PubMed]

J. Berthelot, S. S. Aćimović, M. L. Juan, M. P. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. Nanotechnol. 9(4), 295–299 (2014).
[Crossref] [PubMed]

Y. Tsuboi, “Plasmonic optical tweezers: A long arm and a tight grip,” Nat. Nanotechnol. 11(1), 5–6 (2016).
[Crossref] [PubMed]

Nat. Photonics (3)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

A. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Nat. Phys. (1)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Nature (2)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

C. Haffner, D. Chelladurai, Y. Fedoryshyn, A. Josten, B. Baeuerle, W. Heni, T. Watanabe, T. Cui, B. Cheng, S. Saha, D. L. Elder, L. R. Dalton, A. Boltasseva, V. M. Shalaev, N. Kinsey, and J. Leuthold, “Low-loss plasmon-assisted electro-optic modulator,” Nature 556(7702), 483–486 (2018).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. Rev. Lett. (2)

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

S. Duhr and D. Braun, “Thermophoretic depletion follows Boltzmann distribution,” Phys. Rev. Lett. 96(16), 168301 (2006).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

S. Duhr and D. Braun, “Why molecules move along a temperature gradient,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19678–19682 (2006).
[Crossref] [PubMed]

J. Olson, A. Manjavacas, L. Liu, W.-S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Sci. Robot. (1)

S. Ghosh and A. Ghosh, “Mobile nanotweezers for active colloidal manipulation,” Sci. Robot. 3(14), eaaq0076 (2018).
[Crossref]

Science (4)

J. C. Ndukaife, V. M. Shalaev, and A. Boltasseva, “Plasmonics--turning loss into gain,” Science 351(6271), 334–335 (2016).
[Crossref] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

M. L. Brongersma and V. M. Shalaev, “The Case for Plasmonics,” Science 328(5977), 440–441 (2010).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[Crossref] [PubMed]

Other (2)

D. R. Lide, “CRC Handbook of Chemistry and Physics, 84th Edition, 2003-2004,” Handb. Chem. Phys. 53, 2616 (2003).

J. D. Doering, and C. R. Gibbon, Applied Analysis of the Navier-Stokes Equations (Cambridge University Press, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Geometry of the simulation. A TiN BNA is placed on a TiN film embedded in a thick glass or sapphire substrate and immersed in water. The meshed domains with representative dimensions are shown. A smaller domain was used for the EM simulation, while the heat transfer and fluid dynamics simulations were performed in the larger domain.
Fig. 2
Fig. 2 Near field enhancement and absorption cross section spectrum for TiN BNA and Au BNA. The tip-to-tip spacing between the dimer is 10.7 nm, and the thickness is 120 nm. (a) Distribution of the plasmonic hotspot around the TiN BNA on 120 nm thick TiN film on glass substrate with longitudinal polarization. (b) Distribution of the plasmonic hotspot around the TiN BNA with transverse polarization. (c) Local electric field intensity enhancement as a function of wavelength for TiN BNA and Au BNA. (d) Absorption cross section as a function of wavelength for TiN BNA and Au BNA. BNA is bowtie-nanoantenna.
Fig. 3
Fig. 3 (a) Axial temperature field for TiN BNA on TiN film on a sapphire substrate. (b) Axial temperature field for TiN BNA on TiN film on a glass substrate. The glass substrate enables a better temperature field confinement and a higher temperature rise. The irradiation spot diameter is 1.12 μm. (c) Axial distribution of the temperature rises from the substrate, through the BNA, and into the fluid for TiN BNA on TiN film, and Au BNA on Au film on glass and sapphire substrates. The inset shows the geometry of the system relative to the temperature field. Scale bar is 1000 nm.
Fig. 4
Fig. 4 (a) 2D velocity vector of the induced electrothermoplasmonic (ETP) flow in x-y plane for TiN BNA on TiN film on a glass substrate. (b) 2D velocity vector of the induced electrothermoplasmonic (ETP) flow in x-z plane for TiN BNA on TiN film on a glass substrate. (c) Comparison of the magnitude of the radial velocity of the ETP flow for TiN BNA and Au BNA on a glass substrate. (d) Radial velocity distribution for TiN BNA with transverse and longitudinal polarizations with an applied voltage of 2 V.
Fig. 5
Fig. 5 (a) Temperature rise in the water medium along the x-direction at a distance of 10 μm from the surface of the TiN BNA. (b) Temperature gradient along the x-direction at a distance of 10 μm from the surface of the TiN BNA. The inset shows the x-direction along which the temperature was obtained relative to the BNA for Figs. 5(a) and 5(b). (c) Maximum radial velocity of the ETP flow under laser illumination and an AC voltage of 2 V and 6 V for TiN BNA on glass and sapphire substrates. (d) Variation of the product of maximum temperature gradient and voltage square with the maximum radial velocity of the ETP flow. A linear variation is obtained both for when the TiN BNA (on TiN film) is on a glass or sapphire substrate.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

××E k 0 2 ε(r)E=0,
[κT(r)+ρ c p T(r)u(r)]=q(r),
ρ[u(r)]u(r)+p(r)η 2 u(r)=F,
F etp = 1 2 ε[ (αγ) 1+ (ωτ) 2 ( T E ac ) E ac 1 2 α | E ac | 2 T ],

Metrics