Abstract

There are different possibilities for the applications of gold nanoparticles in various areas of optoelectronics. Here we report the nonlinear optical studies of chemically prepared gold nanoparticle suspensions using femtosecond pulses. The nonlinear refractive indices, nonlinear absorption coefficients, and saturated intensities of the nanoparticles of different sizes are measured at the wavelengths of 400 and 800 nm. We also demonstrate the optical limiting of 800 nm, 60 fs pulses during propagation through these suspensions. The competition of saturable and reverse saturable absorption in the case of 400 nm radiation is analyzed. The intensity-dependent transformation from saturable absorption to reverse saturable absorption indicates that these gold nanoparticles can be useful for eye protection, pulse shaping and passive mode locking.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical limiting, nonlinear refraction and nonlinear absorption of the associates of Cd0.5Zn0.5S quantum dots and dyes

G. S. Boltaev, D. J. Fu, B. R. Sobirov, M. S. Smirnov, O. V. Ovchinnikov, A. I. Zvyagin, and R. A. Ganeev
Opt. Express 26(11) 13865-13875 (2018)

Particle size-dependent giant nonlinear absorption in nanostructured Ni-Ti alloys

John Kiran Anthony, Hee Cheoul Kim, Hwang Woon Lee, S. Kumar Mahapatra, Hae Min Lee, Chang Koo Kim, Kihong Kim, Hanjo Lim, and Fabian Rotermu
Opt. Express 16(15) 11193-11202 (2008)

Enhanced photoacoustics from gold nano-colloidal suspensions under femtosecond laser excitation

Frances Camille P. Masim, Hao-Li Liu, Matteo Porta, Tetsu Yonezawa, Armandas Balčytis, Saulius Juodkazis, Wei-Hung Hsu, and Koji Hatanaka
Opt. Express 24(13) 14781-14792 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Guo and E. Wang, “Synthesis and electrochemical applications of gold nanoparticles,” Anal. Chim. Acta 598(2), 181–192 (2007).
    [Crossref] [PubMed]
  2. W. R. Algar, M. Massey, and U. J. Krull, “The application of quantum dots, gold nanoparticles and molecular swtches to optical nucleic-acid diagnostics,” Trends Analyt. Chem. 28(3), 292–306 (2009).
    [Crossref]
  3. K.-T. Yong, M. T. Swihart, H. Ding, and P. N. Prasad, “preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging,” Plasmonics 4(2), 79–93 (2009).
    [Crossref]
  4. D. Pissuwan, C. H. Cortie, S. M. Valenzuela, and M. B. Cortie, “Functionalised gold nanoparticles for controlling pathogenic bacteria,” Trends Biotechnol. 28(4), 207–213 (2010).
    [Crossref] [PubMed]
  5. E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
    [Crossref] [PubMed]
  6. H. Jans and Q. Huo, “Gold nanoparticle-enabled biological and chemical detection and analysis,” Chem. Soc. Rev. 41(7), 2849–2866 (2012).
    [Crossref] [PubMed]
  7. S. C. Mehendale, S. R. Mishra, K. S. Bindra, M. Laghate, T. S. Dhami, and K. S. Rustagi, “Nonliear refraction in aqueous colloidal gold,” Opt. Commun. 133(1–6), 273–276 (1997).
    [Crossref]
  8. R. A. Ganeev and T. Usmanov, “Nonlinear optical properties of various media,” Quantum Electron. 37(7), 605–622 (2007).
    [Crossref]
  9. D. Wu, J. Peng, Z. Cai, J. Weng, Z. Luo, N. Chen, and H. Xu, “Gold nanoparticles as a saturable absorber for visible 635 nm Q-switched pulse generation,” Opt. Express 23(18), 24071–24076 (2015).
    [Crossref] [PubMed]
  10. L. W. Tutt and A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature 356(6366), 225–226 (1992).
    [Crossref]
  11. N. Venkatram, D. N. Rao, and M. A. Akundi, “Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles,” Opt. Express 13(3), 867–872 (2005).
    [Crossref] [PubMed]
  12. W. Ji, H. J. Du, S. H. Tang, and S. Shi, “Nanosecond reverse satureable absorption in cubanelike transition-metal clusters,” J. Opt. Soc. Am. B 12(5), 876–881 (1995).
    [Crossref]
  13. R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, S. R. Kamalov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D Appl. Phys. 34(11), 1602–1611 (2001).
    [Crossref]
  14. R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, and T. Usmanov, “Nonlinear optical characteristics of C60 and C70 films and solutions,” Opt. Commun. 185(4–6), 473–478 (2000).
    [Crossref]
  15. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14(17), 955–957 (1989).
    [Crossref] [PubMed]
  16. L. W. Tutt and T. Boggess, Prog. “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Quantum Electron. 17(4), 299–338 (1993).
    [Crossref]
  17. G. Ramakrishna, O. Varnavski, J. Kim, D. Lee, and T. Goodson, “Quantum-sized gold clusters as efficient two-photon absorbers,” J. Am. Chem. Soc. 130(15), 5032–5033 (2008).
    [Crossref] [PubMed]
  18. Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Controlled surface-plasmon coupling in SiO2-coated gold nanochains for tunable nonlinear optical properties,” Appl. Phys. Lett. 8(8), 081110 (2006).
    [Crossref]
  19. I. Mirza, D. McCloskey, W. J. Blau, and J. G. Lunney, “Mechanism of large optical nonlinearity in gold nanoparticle films,” Opt. Lett. 43(7), 1455–1458 (2018).
    [Crossref] [PubMed]
  20. L. D. Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
    [Crossref]
  21. H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmin resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
    [Crossref]
  22. K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
    [Crossref] [PubMed]
  23. X. Liu, X. Jia, M. Fischer, Z. Huang, and D. R. Smith, “Enhanced two-photon photochromism in metasurface perfect absorbers,” Nano Lett. 18(10), 6181–6187 (2018).
    [Crossref] [PubMed]
  24. J. T. Seo, Q. Yang, W. J. Kim, J. Heo, S. M. Ma, J. Austin, W. S. Yun, S. S. Jung, S. W. Han, B. Tabibi, and D. Temple, “Optical nonlinearities of Au nanoparticles and Au/Ag coreshells,” Opt. Lett. 34(3), 307–309 (2009).
    [Crossref] [PubMed]
  25. X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” J. Am. Chem. Soc. 129(45), 13939–13948 (2007).
    [Crossref] [PubMed]
  26. K. Dota, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Third-order nonlinear optical response in transparent solids using ultrashort laser pulses,” Appl. Phys. B 107(3), 703–709 (2012).
    [Crossref]
  27. D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express 14(6), 2151–2157 (2006).
    [Crossref] [PubMed]
  28. P. N. Njoki, I. I. S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C.-J. Zhong, “Size correlation of optical and spectroscopic properties for gold nanoparticles,” J. Phys. Chem. C 111(40), 14664–14669 (2007).
    [Crossref]
  29. M. A. Villegas, M. A. Garcia, J. Llopis, and J. M. Fernandez Navarro, “Optical spectroscopy of hybrid sol-gel coatings doped with noble metals,” J. Sol-Gel Sci. Technol. 11(3), 251–265 (1998).
    [Crossref]
  30. X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” J. Am. Chem. Soc. 129(45), 13939–13948 (2007).
    [Crossref] [PubMed]
  31. K. Wang, H. Long, M. Fu, G. Yang, and P.-X. Lu, “Off-resonant third-order optical ninlinearity of Au nanoparticle array by femtosecond Z-scan measurement,” Chin. Phys. Lett. 27(12), 124204 (2010).
    [Crossref]
  32. L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
    [Crossref]
  33. R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, and H. Kuroda, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B 100(3), 571–576 (2010).
    [Crossref]
  34. C. Zheng, J. Huang, L. Lei, W. Chen, H. Wang, and W. Li, “Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages,” Appl. Phys. B 124(1), 17 (2018).
    [Crossref]
  35. R. Karimzadeh, H. Aleali, and N. Mansour, “Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter,” Opt. Commun. 284(9), 2370–2375 (2011).
    [Crossref]
  36. L. Sarkhosh and N. Mansour, “Study of the solution thermal conductivity effect on nonlinear refraction of colloidal gold nanoparticles,” Laser Phys.  25(6), 065404 (2015).
  37. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21(9), 1663–1669 (1982).
    [Crossref] [PubMed]
  38. X. L. Zhang, Z. B. Liu, X. C. Li, Q. Ma, X. D. Chen, J. G. Tian, Y. F. Xu, and Y. S. Chen, “Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion,” Opt. Express 21(6), 7511–7520 (2013).
    [Crossref] [PubMed]
  39. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  40. T. Ghambari and D. Dorranian, “Measurement of third-order nonlinear susceptibility of Au nanoparticles doped PVA film,” Opt. Spectrosc. 119(5), 838–848 (2015).
    [Crossref]
  41. G. Jagannath, B. Eraiah, K. Naga Krishnakanth, and S. Venugopal Rao, “Linear and nonlinear optical properties of gold nanoparticles doped borate glasses,” J. Non-Cryst. Solids 482, 160–169 (2018).
    [Crossref]
  42. M. Gu, H. Bao, X. Gan, N. Stokes, and J. Wu, “Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy,” Light Sci. Appl. 3(1), e126 (2014).
    [Crossref]
  43. G. Hergert, J. Vogelsang, F. Schwarz, D. Wang, H. Kollmann, P. Groß, C. Lienau, E. Runge, and P. Schaaf, “Long-lived electron emission reveals localized plasmon modes in disordered nanosponge antennas,” Light Sci. Appl. 6(10), e17075 (2017).
    [Crossref] [PubMed]
  44. Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2(12), e118 (2013).
    [Crossref]

2018 (4)

C. Zheng, J. Huang, L. Lei, W. Chen, H. Wang, and W. Li, “Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages,” Appl. Phys. B 124(1), 17 (2018).
[Crossref]

X. Liu, X. Jia, M. Fischer, Z. Huang, and D. R. Smith, “Enhanced two-photon photochromism in metasurface perfect absorbers,” Nano Lett. 18(10), 6181–6187 (2018).
[Crossref] [PubMed]

G. Jagannath, B. Eraiah, K. Naga Krishnakanth, and S. Venugopal Rao, “Linear and nonlinear optical properties of gold nanoparticles doped borate glasses,” J. Non-Cryst. Solids 482, 160–169 (2018).
[Crossref]

I. Mirza, D. McCloskey, W. J. Blau, and J. G. Lunney, “Mechanism of large optical nonlinearity in gold nanoparticle films,” Opt. Lett. 43(7), 1455–1458 (2018).
[Crossref] [PubMed]

2017 (1)

G. Hergert, J. Vogelsang, F. Schwarz, D. Wang, H. Kollmann, P. Groß, C. Lienau, E. Runge, and P. Schaaf, “Long-lived electron emission reveals localized plasmon modes in disordered nanosponge antennas,” Light Sci. Appl. 6(10), e17075 (2017).
[Crossref] [PubMed]

2015 (3)

L. Sarkhosh and N. Mansour, “Study of the solution thermal conductivity effect on nonlinear refraction of colloidal gold nanoparticles,” Laser Phys.  25(6), 065404 (2015).

D. Wu, J. Peng, Z. Cai, J. Weng, Z. Luo, N. Chen, and H. Xu, “Gold nanoparticles as a saturable absorber for visible 635 nm Q-switched pulse generation,” Opt. Express 23(18), 24071–24076 (2015).
[Crossref] [PubMed]

T. Ghambari and D. Dorranian, “Measurement of third-order nonlinear susceptibility of Au nanoparticles doped PVA film,” Opt. Spectrosc. 119(5), 838–848 (2015).
[Crossref]

2014 (1)

M. Gu, H. Bao, X. Gan, N. Stokes, and J. Wu, “Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy,” Light Sci. Appl. 3(1), e126 (2014).
[Crossref]

2013 (2)

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2(12), e118 (2013).
[Crossref]

X. L. Zhang, Z. B. Liu, X. C. Li, Q. Ma, X. D. Chen, J. G. Tian, Y. F. Xu, and Y. S. Chen, “Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion,” Opt. Express 21(6), 7511–7520 (2013).
[Crossref] [PubMed]

2012 (3)

K. Dota, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Third-order nonlinear optical response in transparent solids using ultrashort laser pulses,” Appl. Phys. B 107(3), 703–709 (2012).
[Crossref]

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

H. Jans and Q. Huo, “Gold nanoparticle-enabled biological and chemical detection and analysis,” Chem. Soc. Rev. 41(7), 2849–2866 (2012).
[Crossref] [PubMed]

2011 (1)

R. Karimzadeh, H. Aleali, and N. Mansour, “Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter,” Opt. Commun. 284(9), 2370–2375 (2011).
[Crossref]

2010 (3)

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, and H. Kuroda, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B 100(3), 571–576 (2010).
[Crossref]

D. Pissuwan, C. H. Cortie, S. M. Valenzuela, and M. B. Cortie, “Functionalised gold nanoparticles for controlling pathogenic bacteria,” Trends Biotechnol. 28(4), 207–213 (2010).
[Crossref] [PubMed]

K. Wang, H. Long, M. Fu, G. Yang, and P.-X. Lu, “Off-resonant third-order optical ninlinearity of Au nanoparticle array by femtosecond Z-scan measurement,” Chin. Phys. Lett. 27(12), 124204 (2010).
[Crossref]

2009 (3)

W. R. Algar, M. Massey, and U. J. Krull, “The application of quantum dots, gold nanoparticles and molecular swtches to optical nucleic-acid diagnostics,” Trends Analyt. Chem. 28(3), 292–306 (2009).
[Crossref]

K.-T. Yong, M. T. Swihart, H. Ding, and P. N. Prasad, “preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging,” Plasmonics 4(2), 79–93 (2009).
[Crossref]

J. T. Seo, Q. Yang, W. J. Kim, J. Heo, S. M. Ma, J. Austin, W. S. Yun, S. S. Jung, S. W. Han, B. Tabibi, and D. Temple, “Optical nonlinearities of Au nanoparticles and Au/Ag coreshells,” Opt. Lett. 34(3), 307–309 (2009).
[Crossref] [PubMed]

2008 (2)

G. Ramakrishna, O. Varnavski, J. Kim, D. Lee, and T. Goodson, “Quantum-sized gold clusters as efficient two-photon absorbers,” J. Am. Chem. Soc. 130(15), 5032–5033 (2008).
[Crossref] [PubMed]

L. D. Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

2007 (5)

X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” J. Am. Chem. Soc. 129(45), 13939–13948 (2007).
[Crossref] [PubMed]

X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” J. Am. Chem. Soc. 129(45), 13939–13948 (2007).
[Crossref] [PubMed]

P. N. Njoki, I. I. S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C.-J. Zhong, “Size correlation of optical and spectroscopic properties for gold nanoparticles,” J. Phys. Chem. C 111(40), 14664–14669 (2007).
[Crossref]

S. Guo and E. Wang, “Synthesis and electrochemical applications of gold nanoparticles,” Anal. Chim. Acta 598(2), 181–192 (2007).
[Crossref] [PubMed]

R. A. Ganeev and T. Usmanov, “Nonlinear optical properties of various media,” Quantum Electron. 37(7), 605–622 (2007).
[Crossref]

2006 (3)

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Controlled surface-plasmon coupling in SiO2-coated gold nanochains for tunable nonlinear optical properties,” Appl. Phys. Lett. 8(8), 081110 (2006).
[Crossref]

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmin resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte, and A. Tünnermann, “Nonlinear refractive index of fs-laser-written waveguides in fused silica,” Opt. Express 14(6), 2151–2157 (2006).
[Crossref] [PubMed]

2005 (2)

N. Venkatram, D. N. Rao, and M. A. Akundi, “Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles,” Opt. Express 13(3), 867–872 (2005).
[Crossref] [PubMed]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

2001 (1)

R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, S. R. Kamalov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D Appl. Phys. 34(11), 1602–1611 (2001).
[Crossref]

2000 (1)

R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, and T. Usmanov, “Nonlinear optical characteristics of C60 and C70 films and solutions,” Opt. Commun. 185(4–6), 473–478 (2000).
[Crossref]

1998 (1)

M. A. Villegas, M. A. Garcia, J. Llopis, and J. M. Fernandez Navarro, “Optical spectroscopy of hybrid sol-gel coatings doped with noble metals,” J. Sol-Gel Sci. Technol. 11(3), 251–265 (1998).
[Crossref]

1997 (1)

S. C. Mehendale, S. R. Mishra, K. S. Bindra, M. Laghate, T. S. Dhami, and K. S. Rustagi, “Nonliear refraction in aqueous colloidal gold,” Opt. Commun. 133(1–6), 273–276 (1997).
[Crossref]

1995 (1)

1993 (2)

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
[Crossref]

L. W. Tutt and T. Boggess, Prog. “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Quantum Electron. 17(4), 299–338 (1993).
[Crossref]

1992 (1)

L. W. Tutt and A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature 356(6366), 225–226 (1992).
[Crossref]

1990 (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1989 (1)

1982 (1)

Akundi, M. A.

Aleali, H.

R. Karimzadeh, H. Aleali, and N. Mansour, “Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter,” Opt. Commun. 284(9), 2370–2375 (2011).
[Crossref]

Algar, W. R.

W. R. Algar, M. Massey, and U. J. Krull, “The application of quantum dots, gold nanoparticles and molecular swtches to optical nucleic-acid diagnostics,” Trends Analyt. Chem. 28(3), 292–306 (2009).
[Crossref]

Alkilany, A. M.

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

Austin, J.

Bai, Y.

X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” J. Am. Chem. Soc. 129(45), 13939–13948 (2007).
[Crossref] [PubMed]

X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” J. Am. Chem. Soc. 129(45), 13939–13948 (2007).
[Crossref] [PubMed]

Bao, H.

M. Gu, H. Bao, X. Gan, N. Stokes, and J. Wu, “Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy,” Light Sci. Appl. 3(1), e126 (2014).
[Crossref]

Bindra, K. S.

S. C. Mehendale, S. R. Mishra, K. S. Bindra, M. Laghate, T. S. Dhami, and K. S. Rustagi, “Nonliear refraction in aqueous colloidal gold,” Opt. Commun. 133(1–6), 273–276 (1997).
[Crossref]

Blau, W. J.

Blömer, D.

Boggess, T.

L. W. Tutt and T. Boggess, Prog. “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Quantum Electron. 17(4), 299–338 (1993).
[Crossref]

Boggess, T. F.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
[Crossref]

Boltaev, G. S.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, and H. Kuroda, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B 100(3), 571–576 (2010).
[Crossref]

Boni, L. D.

L. D. Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Cai, Z.

Chen, H.

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Controlled surface-plasmon coupling in SiO2-coated gold nanochains for tunable nonlinear optical properties,” Appl. Phys. Lett. 8(8), 081110 (2006).
[Crossref]

Chen, N.

Chen, W.

C. Zheng, J. Huang, L. Lei, W. Chen, H. Wang, and W. Li, “Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages,” Appl. Phys. B 124(1), 17 (2018).
[Crossref]

Chen, X. D.

Chen, Y. S.

Cortie, C. H.

D. Pissuwan, C. H. Cortie, S. M. Valenzuela, and M. B. Cortie, “Functionalised gold nanoparticles for controlling pathogenic bacteria,” Trends Biotechnol. 28(4), 207–213 (2010).
[Crossref] [PubMed]

Cortie, M. B.

D. Pissuwan, C. H. Cortie, S. M. Valenzuela, and M. B. Cortie, “Functionalised gold nanoparticles for controlling pathogenic bacteria,” Trends Biotechnol. 28(4), 207–213 (2010).
[Crossref] [PubMed]

Dhami, T. S.

S. C. Mehendale, S. R. Mishra, K. S. Bindra, M. Laghate, T. S. Dhami, and K. S. Rustagi, “Nonliear refraction in aqueous colloidal gold,” Opt. Commun. 133(1–6), 273–276 (1997).
[Crossref]

Dharmadhikari, A. K.

K. Dota, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Third-order nonlinear optical response in transparent solids using ultrashort laser pulses,” Appl. Phys. B 107(3), 703–709 (2012).
[Crossref]

Dharmadhikari, J. A.

K. Dota, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Third-order nonlinear optical response in transparent solids using ultrashort laser pulses,” Appl. Phys. B 107(3), 703–709 (2012).
[Crossref]

Ding, H.

K.-T. Yong, M. T. Swihart, H. Ding, and P. N. Prasad, “preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging,” Plasmonics 4(2), 79–93 (2009).
[Crossref]

Dorranian, D.

T. Ghambari and D. Dorranian, “Measurement of third-order nonlinear susceptibility of Au nanoparticles doped PVA film,” Opt. Spectrosc. 119(5), 838–848 (2015).
[Crossref]

Dota, K.

K. Dota, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Third-order nonlinear optical response in transparent solids using ultrashort laser pulses,” Appl. Phys. B 107(3), 703–709 (2012).
[Crossref]

Dreaden, E. C.

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

Dreisow, F.

Du, H. J.

Elim, H. I.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmin resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

El-Sayed, M. A.

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

Eraiah, B.

G. Jagannath, B. Eraiah, K. Naga Krishnakanth, and S. Venugopal Rao, “Linear and nonlinear optical properties of gold nanoparticles doped borate glasses,” J. Non-Cryst. Solids 482, 160–169 (2018).
[Crossref]

Fernandez Navarro, J. M.

M. A. Villegas, M. A. Garcia, J. Llopis, and J. M. Fernandez Navarro, “Optical spectroscopy of hybrid sol-gel coatings doped with noble metals,” J. Sol-Gel Sci. Technol. 11(3), 251–265 (1998).
[Crossref]

Fischer, M.

X. Liu, X. Jia, M. Fischer, Z. Huang, and D. R. Smith, “Enhanced two-photon photochromism in metasurface perfect absorbers,” Nano Lett. 18(10), 6181–6187 (2018).
[Crossref] [PubMed]

Fu, M.

K. Wang, H. Long, M. Fu, G. Yang, and P.-X. Lu, “Off-resonant third-order optical ninlinearity of Au nanoparticle array by femtosecond Z-scan measurement,” Chin. Phys. Lett. 27(12), 124204 (2010).
[Crossref]

Gan, X.

M. Gu, H. Bao, X. Gan, N. Stokes, and J. Wu, “Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy,” Light Sci. Appl. 3(1), e126 (2014).
[Crossref]

Ganeev, R. A.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, and H. Kuroda, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B 100(3), 571–576 (2010).
[Crossref]

R. A. Ganeev and T. Usmanov, “Nonlinear optical properties of various media,” Quantum Electron. 37(7), 605–622 (2007).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, S. R. Kamalov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D Appl. Phys. 34(11), 1602–1611 (2001).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, and T. Usmanov, “Nonlinear optical characteristics of C60 and C70 films and solutions,” Opt. Commun. 185(4–6), 473–478 (2000).
[Crossref]

Garcia, M. A.

M. A. Villegas, M. A. Garcia, J. Llopis, and J. M. Fernandez Navarro, “Optical spectroscopy of hybrid sol-gel coatings doped with noble metals,” J. Sol-Gel Sci. Technol. 11(3), 251–265 (1998).
[Crossref]

Ghambari, T.

T. Ghambari and D. Dorranian, “Measurement of third-order nonlinear susceptibility of Au nanoparticles doped PVA film,” Opt. Spectrosc. 119(5), 838–848 (2015).
[Crossref]

Goodson, T.

G. Ramakrishna, O. Varnavski, J. Kim, D. Lee, and T. Goodson, “Quantum-sized gold clusters as efficient two-photon absorbers,” J. Am. Chem. Soc. 130(15), 5032–5033 (2008).
[Crossref] [PubMed]

Groß, P.

G. Hergert, J. Vogelsang, F. Schwarz, D. Wang, H. Kollmann, P. Groß, C. Lienau, E. Runge, and P. Schaaf, “Long-lived electron emission reveals localized plasmon modes in disordered nanosponge antennas,” Light Sci. Appl. 6(10), e17075 (2017).
[Crossref] [PubMed]

Gu, M.

M. Gu, H. Bao, X. Gan, N. Stokes, and J. Wu, “Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy,” Light Sci. Appl. 3(1), e126 (2014).
[Crossref]

Guo, S.

S. Guo and E. Wang, “Synthesis and electrochemical applications of gold nanoparticles,” Anal. Chim. Acta 598(2), 181–192 (2007).
[Crossref] [PubMed]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Han, S. W.

Heo, J.

Hergert, G.

G. Hergert, J. Vogelsang, F. Schwarz, D. Wang, H. Kollmann, P. Groß, C. Lienau, E. Runge, and P. Schaaf, “Long-lived electron emission reveals localized plasmon modes in disordered nanosponge antennas,” Light Sci. Appl. 6(10), e17075 (2017).
[Crossref] [PubMed]

Hernandez, F. E.

L. D. Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Huang, J.

C. Zheng, J. Huang, L. Lei, W. Chen, H. Wang, and W. Li, “Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages,” Appl. Phys. B 124(1), 17 (2018).
[Crossref]

Huang, X.

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

Huang, Z.

X. Liu, X. Jia, M. Fischer, Z. Huang, and D. R. Smith, “Enhanced two-photon photochromism in metasurface perfect absorbers,” Nano Lett. 18(10), 6181–6187 (2018).
[Crossref] [PubMed]

Huo, Q.

H. Jans and Q. Huo, “Gold nanoparticle-enabled biological and chemical detection and analysis,” Chem. Soc. Rev. 41(7), 2849–2866 (2012).
[Crossref] [PubMed]

Jagannath, G.

G. Jagannath, B. Eraiah, K. Naga Krishnakanth, and S. Venugopal Rao, “Linear and nonlinear optical properties of gold nanoparticles doped borate glasses,” J. Non-Cryst. Solids 482, 160–169 (2018).
[Crossref]

Jans, H.

H. Jans and Q. Huo, “Gold nanoparticle-enabled biological and chemical detection and analysis,” Chem. Soc. Rev. 41(7), 2849–2866 (2012).
[Crossref] [PubMed]

Ji, W.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmin resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

W. Ji, H. J. Du, S. H. Tang, and S. Shi, “Nanosecond reverse satureable absorption in cubanelike transition-metal clusters,” J. Opt. Soc. Am. B 12(5), 876–881 (1995).
[Crossref]

Ji, X.

X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” J. Am. Chem. Soc. 129(45), 13939–13948 (2007).
[Crossref] [PubMed]

X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” J. Am. Chem. Soc. 129(45), 13939–13948 (2007).
[Crossref] [PubMed]

Jia, X.

X. Liu, X. Jia, M. Fischer, Z. Huang, and D. R. Smith, “Enhanced two-photon photochromism in metasurface perfect absorbers,” Nano Lett. 18(10), 6181–6187 (2018).
[Crossref] [PubMed]

Jung, S. S.

Kamalov, S. R.

R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, S. R. Kamalov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D Appl. Phys. 34(11), 1602–1611 (2001).
[Crossref]

Karimzadeh, R.

R. Karimzadeh, H. Aleali, and N. Mansour, “Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter,” Opt. Commun. 284(9), 2370–2375 (2011).
[Crossref]

Khan, B.

P. N. Njoki, I. I. S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C.-J. Zhong, “Size correlation of optical and spectroscopic properties for gold nanoparticles,” J. Phys. Chem. C 111(40), 14664–14669 (2007).
[Crossref]

Kim, J.

G. Ramakrishna, O. Varnavski, J. Kim, D. Lee, and T. Goodson, “Quantum-sized gold clusters as efficient two-photon absorbers,” J. Am. Chem. Soc. 130(15), 5032–5033 (2008).
[Crossref] [PubMed]

Kim, W. J.

Knight, L. V.

Kodirov, M. K.

R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, S. R. Kamalov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D Appl. Phys. 34(11), 1602–1611 (2001).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, and T. Usmanov, “Nonlinear optical characteristics of C60 and C70 films and solutions,” Opt. Commun. 185(4–6), 473–478 (2000).
[Crossref]

Kollmann, H.

G. Hergert, J. Vogelsang, F. Schwarz, D. Wang, H. Kollmann, P. Groß, C. Lienau, E. Runge, and P. Schaaf, “Long-lived electron emission reveals localized plasmon modes in disordered nanosponge antennas,” Light Sci. Appl. 6(10), e17075 (2017).
[Crossref] [PubMed]

Kost, A.

L. W. Tutt and A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature 356(6366), 225–226 (1992).
[Crossref]

Krull, U. J.

W. R. Algar, M. Massey, and U. J. Krull, “The application of quantum dots, gold nanoparticles and molecular swtches to optical nucleic-acid diagnostics,” Trends Analyt. Chem. 28(3), 292–306 (2009).
[Crossref]

Kubo, A.

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2(12), e118 (2013).
[Crossref]

Kuroda, H.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, and H. Kuroda, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B 100(3), 571–576 (2010).
[Crossref]

Laghate, M.

S. C. Mehendale, S. R. Mishra, K. S. Bindra, M. Laghate, T. S. Dhami, and K. S. Rustagi, “Nonliear refraction in aqueous colloidal gold,” Opt. Commun. 133(1–6), 273–276 (1997).
[Crossref]

Lee, D.

G. Ramakrishna, O. Varnavski, J. Kim, D. Lee, and T. Goodson, “Quantum-sized gold clusters as efficient two-photon absorbers,” J. Am. Chem. Soc. 130(15), 5032–5033 (2008).
[Crossref] [PubMed]

Lee, J. Y.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmin resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Lee, K. S.

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

Lei, L.

C. Zheng, J. Huang, L. Lei, W. Chen, H. Wang, and W. Li, “Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages,” Appl. Phys. B 124(1), 17 (2018).
[Crossref]

Li, J.

X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” J. Am. Chem. Soc. 129(45), 13939–13948 (2007).
[Crossref] [PubMed]

X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” J. Am. Chem. Soc. 129(45), 13939–13948 (2007).
[Crossref] [PubMed]

Li, W.

C. Zheng, J. Huang, L. Lei, W. Chen, H. Wang, and W. Li, “Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages,” Appl. Phys. B 124(1), 17 (2018).
[Crossref]

Li, X. C.

Lienau, C.

G. Hergert, J. Vogelsang, F. Schwarz, D. Wang, H. Kollmann, P. Groß, C. Lienau, E. Runge, and P. Schaaf, “Long-lived electron emission reveals localized plasmon modes in disordered nanosponge antennas,” Light Sci. Appl. 6(10), e17075 (2017).
[Crossref] [PubMed]

Lim, I. I. S.

P. N. Njoki, I. I. S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C.-J. Zhong, “Size correlation of optical and spectroscopic properties for gold nanoparticles,” J. Phys. Chem. C 111(40), 14664–14669 (2007).
[Crossref]

Liu, X.

X. Liu, X. Jia, M. Fischer, Z. Huang, and D. R. Smith, “Enhanced two-photon photochromism in metasurface perfect absorbers,” Nano Lett. 18(10), 6181–6187 (2018).
[Crossref] [PubMed]

Liu, Z. B.

Llopis, J.

M. A. Villegas, M. A. Garcia, J. Llopis, and J. M. Fernandez Navarro, “Optical spectroscopy of hybrid sol-gel coatings doped with noble metals,” J. Sol-Gel Sci. Technol. 11(3), 251–265 (1998).
[Crossref]

Long, H.

K. Wang, H. Long, M. Fu, G. Yang, and P.-X. Lu, “Off-resonant third-order optical ninlinearity of Au nanoparticle array by femtosecond Z-scan measurement,” Chin. Phys. Lett. 27(12), 124204 (2010).
[Crossref]

Lu, P.-X.

K. Wang, H. Long, M. Fu, G. Yang, and P.-X. Lu, “Off-resonant third-order optical ninlinearity of Au nanoparticle array by femtosecond Z-scan measurement,” Chin. Phys. Lett. 27(12), 124204 (2010).
[Crossref]

Lunney, J. G.

Luo, J.

P. N. Njoki, I. I. S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C.-J. Zhong, “Size correlation of optical and spectroscopic properties for gold nanoparticles,” J. Phys. Chem. C 111(40), 14664–14669 (2007).
[Crossref]

Luo, Z.

Ma, G.

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Controlled surface-plasmon coupling in SiO2-coated gold nanochains for tunable nonlinear optical properties,” Appl. Phys. Lett. 8(8), 081110 (2006).
[Crossref]

Ma, Q.

Ma, S. M.

Mansour, N.

L. Sarkhosh and N. Mansour, “Study of the solution thermal conductivity effect on nonlinear refraction of colloidal gold nanoparticles,” Laser Phys.  25(6), 065404 (2015).

R. Karimzadeh, H. Aleali, and N. Mansour, “Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter,” Opt. Commun. 284(9), 2370–2375 (2011).
[Crossref]

Massey, M.

W. R. Algar, M. Massey, and U. J. Krull, “The application of quantum dots, gold nanoparticles and molecular swtches to optical nucleic-acid diagnostics,” Trends Analyt. Chem. 28(3), 292–306 (2009).
[Crossref]

Mathur, D.

K. Dota, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Third-order nonlinear optical response in transparent solids using ultrashort laser pulses,” Appl. Phys. B 107(3), 703–709 (2012).
[Crossref]

Matsuo, Y.

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2(12), e118 (2013).
[Crossref]

McCloskey, D.

Mehendale, S. C.

S. C. Mehendale, S. R. Mishra, K. S. Bindra, M. Laghate, T. S. Dhami, and K. S. Rustagi, “Nonliear refraction in aqueous colloidal gold,” Opt. Commun. 133(1–6), 273–276 (1997).
[Crossref]

Mi, J.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmin resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Mirza, I.

Misawa, H.

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2(12), e118 (2013).
[Crossref]

Mishra, S.

P. N. Njoki, I. I. S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C.-J. Zhong, “Size correlation of optical and spectroscopic properties for gold nanoparticles,” J. Phys. Chem. C 111(40), 14664–14669 (2007).
[Crossref]

Mishra, S. R.

S. C. Mehendale, S. R. Mishra, K. S. Bindra, M. Laghate, T. S. Dhami, and K. S. Rustagi, “Nonliear refraction in aqueous colloidal gold,” Opt. Commun. 133(1–6), 273–276 (1997).
[Crossref]

Mott, D.

P. N. Njoki, I. I. S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C.-J. Zhong, “Size correlation of optical and spectroscopic properties for gold nanoparticles,” J. Phys. Chem. C 111(40), 14664–14669 (2007).
[Crossref]

Murphy, C. J.

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

Naga Krishnakanth, K.

G. Jagannath, B. Eraiah, K. Naga Krishnakanth, and S. Venugopal Rao, “Linear and nonlinear optical properties of gold nanoparticles doped borate glasses,” J. Non-Cryst. Solids 482, 160–169 (2018).
[Crossref]

Njoki, P. N.

P. N. Njoki, I. I. S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C.-J. Zhong, “Size correlation of optical and spectroscopic properties for gold nanoparticles,” J. Phys. Chem. C 111(40), 14664–14669 (2007).
[Crossref]

Nogami, M.

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Controlled surface-plasmon coupling in SiO2-coated gold nanochains for tunable nonlinear optical properties,” Appl. Phys. Lett. 8(8), 081110 (2006).
[Crossref]

Nolte, S.

Park, H.-Y.

P. N. Njoki, I. I. S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C.-J. Zhong, “Size correlation of optical and spectroscopic properties for gold nanoparticles,” J. Phys. Chem. C 111(40), 14664–14669 (2007).
[Crossref]

Peng, J.

Peng, X.

X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” J. Am. Chem. Soc. 129(45), 13939–13948 (2007).
[Crossref] [PubMed]

X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” J. Am. Chem. Soc. 129(45), 13939–13948 (2007).
[Crossref] [PubMed]

Pissuwan, D.

D. Pissuwan, C. H. Cortie, S. M. Valenzuela, and M. B. Cortie, “Functionalised gold nanoparticles for controlling pathogenic bacteria,” Trends Biotechnol. 28(4), 207–213 (2010).
[Crossref] [PubMed]

Prasad, P. N.

K.-T. Yong, M. T. Swihart, H. Ding, and P. N. Prasad, “preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging,” Plasmonics 4(2), 79–93 (2009).
[Crossref]

Ramakrishna, G.

G. Ramakrishna, O. Varnavski, J. Kim, D. Lee, and T. Goodson, “Quantum-sized gold clusters as efficient two-photon absorbers,” J. Am. Chem. Soc. 130(15), 5032–5033 (2008).
[Crossref] [PubMed]

Rao, D. N.

Runge, E.

G. Hergert, J. Vogelsang, F. Schwarz, D. Wang, H. Kollmann, P. Groß, C. Lienau, E. Runge, and P. Schaaf, “Long-lived electron emission reveals localized plasmon modes in disordered nanosponge antennas,” Light Sci. Appl. 6(10), e17075 (2017).
[Crossref] [PubMed]

Rustagi, K. S.

S. C. Mehendale, S. R. Mishra, K. S. Bindra, M. Laghate, T. S. Dhami, and K. S. Rustagi, “Nonliear refraction in aqueous colloidal gold,” Opt. Commun. 133(1–6), 273–276 (1997).
[Crossref]

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, S. R. Kamalov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D Appl. Phys. 34(11), 1602–1611 (2001).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, and T. Usmanov, “Nonlinear optical characteristics of C60 and C70 films and solutions,” Opt. Commun. 185(4–6), 473–478 (2000).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14(17), 955–957 (1989).
[Crossref] [PubMed]

Sarkhosh, L.

L. Sarkhosh and N. Mansour, “Study of the solution thermal conductivity effect on nonlinear refraction of colloidal gold nanoparticles,” Laser Phys.  25(6), 065404 (2015).

Schaaf, P.

G. Hergert, J. Vogelsang, F. Schwarz, D. Wang, H. Kollmann, P. Groß, C. Lienau, E. Runge, and P. Schaaf, “Long-lived electron emission reveals localized plasmon modes in disordered nanosponge antennas,” Light Sci. Appl. 6(10), e17075 (2017).
[Crossref] [PubMed]

Schreiber, T.

Schwarz, F.

G. Hergert, J. Vogelsang, F. Schwarz, D. Wang, H. Kollmann, P. Groß, C. Lienau, E. Runge, and P. Schaaf, “Long-lived electron emission reveals localized plasmon modes in disordered nanosponge antennas,” Light Sci. Appl. 6(10), e17075 (2017).
[Crossref] [PubMed]

Seo, J. T.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14(17), 955–957 (1989).
[Crossref] [PubMed]

Sheldon, S. J.

Shi, J.

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Controlled surface-plasmon coupling in SiO2-coated gold nanochains for tunable nonlinear optical properties,” Appl. Phys. Lett. 8(8), 081110 (2006).
[Crossref]

Shi, S.

Smith, D. R.

X. Liu, X. Jia, M. Fischer, Z. Huang, and D. R. Smith, “Enhanced two-photon photochromism in metasurface perfect absorbers,” Nano Lett. 18(10), 6181–6187 (2018).
[Crossref] [PubMed]

Song, X.

X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” J. Am. Chem. Soc. 129(45), 13939–13948 (2007).
[Crossref] [PubMed]

X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” J. Am. Chem. Soc. 129(45), 13939–13948 (2007).
[Crossref] [PubMed]

Stokes, N.

M. Gu, H. Bao, X. Gan, N. Stokes, and J. Wu, “Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy,” Light Sci. Appl. 3(1), e126 (2014).
[Crossref]

Sujakumar, R.

P. N. Njoki, I. I. S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C.-J. Zhong, “Size correlation of optical and spectroscopic properties for gold nanoparticles,” J. Phys. Chem. C 111(40), 14664–14669 (2007).
[Crossref]

Sun, Q.

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2(12), e118 (2013).
[Crossref]

Swihart, M. T.

K.-T. Yong, M. T. Swihart, H. Ding, and P. N. Prasad, “preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging,” Plasmonics 4(2), 79–93 (2009).
[Crossref]

Szameit, A.

Tabibi, B.

Tang, S.

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Controlled surface-plasmon coupling in SiO2-coated gold nanochains for tunable nonlinear optical properties,” Appl. Phys. Lett. 8(8), 081110 (2006).
[Crossref]

Tang, S. H.

Temple, D.

Thorne, J. M.

Tian, J. G.

Toro, C.

L. D. Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Tugushev, R. I.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, and H. Kuroda, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B 100(3), 571–576 (2010).
[Crossref]

Tünnermann, A.

Tutt, L. W.

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
[Crossref]

L. W. Tutt and T. Boggess, Prog. “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Quantum Electron. 17(4), 299–338 (1993).
[Crossref]

L. W. Tutt and A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature 356(6366), 225–226 (1992).
[Crossref]

Ueno, K.

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2(12), e118 (2013).
[Crossref]

Usmanov, T.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, and H. Kuroda, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B 100(3), 571–576 (2010).
[Crossref]

R. A. Ganeev and T. Usmanov, “Nonlinear optical properties of various media,” Quantum Electron. 37(7), 605–622 (2007).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, S. R. Kamalov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D Appl. Phys. 34(11), 1602–1611 (2001).
[Crossref]

R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, and T. Usmanov, “Nonlinear optical characteristics of C60 and C70 films and solutions,” Opt. Commun. 185(4–6), 473–478 (2000).
[Crossref]

Valenzuela, S. M.

D. Pissuwan, C. H. Cortie, S. M. Valenzuela, and M. B. Cortie, “Functionalised gold nanoparticles for controlling pathogenic bacteria,” Trends Biotechnol. 28(4), 207–213 (2010).
[Crossref] [PubMed]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14(17), 955–957 (1989).
[Crossref] [PubMed]

Varnavski, O.

G. Ramakrishna, O. Varnavski, J. Kim, D. Lee, and T. Goodson, “Quantum-sized gold clusters as efficient two-photon absorbers,” J. Am. Chem. Soc. 130(15), 5032–5033 (2008).
[Crossref] [PubMed]

Venkatram, N.

Venugopal Rao, S.

G. Jagannath, B. Eraiah, K. Naga Krishnakanth, and S. Venugopal Rao, “Linear and nonlinear optical properties of gold nanoparticles doped borate glasses,” J. Non-Cryst. Solids 482, 160–169 (2018).
[Crossref]

Villegas, M. A.

M. A. Villegas, M. A. Garcia, J. Llopis, and J. M. Fernandez Navarro, “Optical spectroscopy of hybrid sol-gel coatings doped with noble metals,” J. Sol-Gel Sci. Technol. 11(3), 251–265 (1998).
[Crossref]

Vogelsang, J.

G. Hergert, J. Vogelsang, F. Schwarz, D. Wang, H. Kollmann, P. Groß, C. Lienau, E. Runge, and P. Schaaf, “Long-lived electron emission reveals localized plasmon modes in disordered nanosponge antennas,” Light Sci. Appl. 6(10), e17075 (2017).
[Crossref] [PubMed]

Wang, D.

G. Hergert, J. Vogelsang, F. Schwarz, D. Wang, H. Kollmann, P. Groß, C. Lienau, E. Runge, and P. Schaaf, “Long-lived electron emission reveals localized plasmon modes in disordered nanosponge antennas,” Light Sci. Appl. 6(10), e17075 (2017).
[Crossref] [PubMed]

Wang, E.

S. Guo and E. Wang, “Synthesis and electrochemical applications of gold nanoparticles,” Anal. Chim. Acta 598(2), 181–192 (2007).
[Crossref] [PubMed]

Wang, H.

C. Zheng, J. Huang, L. Lei, W. Chen, H. Wang, and W. Li, “Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages,” Appl. Phys. B 124(1), 17 (2018).
[Crossref]

Wang, K.

K. Wang, H. Long, M. Fu, G. Yang, and P.-X. Lu, “Off-resonant third-order optical ninlinearity of Au nanoparticle array by femtosecond Z-scan measurement,” Chin. Phys. Lett. 27(12), 124204 (2010).
[Crossref]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Weng, J.

Wood, E. L.

L. D. Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

Wu, D.

Wu, J.

M. Gu, H. Bao, X. Gan, N. Stokes, and J. Wu, “Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy,” Light Sci. Appl. 3(1), e126 (2014).
[Crossref]

Xu, H.

Xu, Y. F.

Yang, G.

K. Wang, H. Long, M. Fu, G. Yang, and P.-X. Lu, “Off-resonant third-order optical ninlinearity of Au nanoparticle array by femtosecond Z-scan measurement,” Chin. Phys. Lett. 27(12), 124204 (2010).
[Crossref]

Yang, J.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmin resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Yang, Q.

Yang, W.

X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” J. Am. Chem. Soc. 129(45), 13939–13948 (2007).
[Crossref] [PubMed]

X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” J. Am. Chem. Soc. 129(45), 13939–13948 (2007).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Controlled surface-plasmon coupling in SiO2-coated gold nanochains for tunable nonlinear optical properties,” Appl. Phys. Lett. 8(8), 081110 (2006).
[Crossref]

Yong, K.-T.

K.-T. Yong, M. T. Swihart, H. Ding, and P. N. Prasad, “preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging,” Plasmonics 4(2), 79–93 (2009).
[Crossref]

Yu, H.

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2(12), e118 (2013).
[Crossref]

Yun, W. S.

Zhang, X. L.

Zheng, C.

C. Zheng, J. Huang, L. Lei, W. Chen, H. Wang, and W. Li, “Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages,” Appl. Phys. B 124(1), 17 (2018).
[Crossref]

Zhong, C.-J.

P. N. Njoki, I. I. S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C.-J. Zhong, “Size correlation of optical and spectroscopic properties for gold nanoparticles,” J. Phys. Chem. C 111(40), 14664–14669 (2007).
[Crossref]

Anal. Chim. Acta (1)

S. Guo and E. Wang, “Synthesis and electrochemical applications of gold nanoparticles,” Anal. Chim. Acta 598(2), 181–192 (2007).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (3)

K. Dota, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Third-order nonlinear optical response in transparent solids using ultrashort laser pulses,” Appl. Phys. B 107(3), 703–709 (2012).
[Crossref]

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, and H. Kuroda, “Nonlinear optical absorption and refraction in Ru, Pd, and Au nanoparticle suspensions,” Appl. Phys. B 100(3), 571–576 (2010).
[Crossref]

C. Zheng, J. Huang, L. Lei, W. Chen, H. Wang, and W. Li, “Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages,” Appl. Phys. B 124(1), 17 (2018).
[Crossref]

Appl. Phys. Lett. (2)

Y. Yang, M. Nogami, J. Shi, H. Chen, G. Ma, and S. Tang, “Controlled surface-plasmon coupling in SiO2-coated gold nanochains for tunable nonlinear optical properties,” Appl. Phys. Lett. 8(8), 081110 (2006).
[Crossref]

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmin resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Chem. Soc. Rev. (2)

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

H. Jans and Q. Huo, “Gold nanoparticle-enabled biological and chemical detection and analysis,” Chem. Soc. Rev. 41(7), 2849–2866 (2012).
[Crossref] [PubMed]

Chin. Phys. Lett. (1)

K. Wang, H. Long, M. Fu, G. Yang, and P.-X. Lu, “Off-resonant third-order optical ninlinearity of Au nanoparticle array by femtosecond Z-scan measurement,” Chin. Phys. Lett. 27(12), 124204 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Am. Chem. Soc. (3)

X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” J. Am. Chem. Soc. 129(45), 13939–13948 (2007).
[Crossref] [PubMed]

X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, “Size control of gold nanocrystals in citrate reduction: the third role of citrate,” J. Am. Chem. Soc. 129(45), 13939–13948 (2007).
[Crossref] [PubMed]

G. Ramakrishna, O. Varnavski, J. Kim, D. Lee, and T. Goodson, “Quantum-sized gold clusters as efficient two-photon absorbers,” J. Am. Chem. Soc. 130(15), 5032–5033 (2008).
[Crossref] [PubMed]

J. Non-Cryst. Solids (1)

G. Jagannath, B. Eraiah, K. Naga Krishnakanth, and S. Venugopal Rao, “Linear and nonlinear optical properties of gold nanoparticles doped borate glasses,” J. Non-Cryst. Solids 482, 160–169 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109(43), 20331–20338 (2005).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

P. N. Njoki, I. I. S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C.-J. Zhong, “Size correlation of optical and spectroscopic properties for gold nanoparticles,” J. Phys. Chem. C 111(40), 14664–14669 (2007).
[Crossref]

J. Phys. D Appl. Phys. (1)

R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, S. R. Kamalov, and T. Usmanov, “Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals,” J. Phys. D Appl. Phys. 34(11), 1602–1611 (2001).
[Crossref]

J. Sol-Gel Sci. Technol. (1)

M. A. Villegas, M. A. Garcia, J. Llopis, and J. M. Fernandez Navarro, “Optical spectroscopy of hybrid sol-gel coatings doped with noble metals,” J. Sol-Gel Sci. Technol. 11(3), 251–265 (1998).
[Crossref]

Laser Phys (1)

L. Sarkhosh and N. Mansour, “Study of the solution thermal conductivity effect on nonlinear refraction of colloidal gold nanoparticles,” Laser Phys.  25(6), 065404 (2015).

Light Sci. Appl. (3)

M. Gu, H. Bao, X. Gan, N. Stokes, and J. Wu, “Tweezing and manipulating micro- and nanoparticles by optical nonlinear endoscopy,” Light Sci. Appl. 3(1), e126 (2014).
[Crossref]

G. Hergert, J. Vogelsang, F. Schwarz, D. Wang, H. Kollmann, P. Groß, C. Lienau, E. Runge, and P. Schaaf, “Long-lived electron emission reveals localized plasmon modes in disordered nanosponge antennas,” Light Sci. Appl. 6(10), e17075 (2017).
[Crossref] [PubMed]

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2(12), e118 (2013).
[Crossref]

Nano Lett. (1)

X. Liu, X. Jia, M. Fischer, Z. Huang, and D. R. Smith, “Enhanced two-photon photochromism in metasurface perfect absorbers,” Nano Lett. 18(10), 6181–6187 (2018).
[Crossref] [PubMed]

Nature (1)

L. W. Tutt and A. Kost, “Optical limiting performance of C60 and C70 solutions,” Nature 356(6366), 225–226 (1992).
[Crossref]

Opt. Commun. (3)

R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, and T. Usmanov, “Nonlinear optical characteristics of C60 and C70 films and solutions,” Opt. Commun. 185(4–6), 473–478 (2000).
[Crossref]

S. C. Mehendale, S. R. Mishra, K. S. Bindra, M. Laghate, T. S. Dhami, and K. S. Rustagi, “Nonliear refraction in aqueous colloidal gold,” Opt. Commun. 133(1–6), 273–276 (1997).
[Crossref]

R. Karimzadeh, H. Aleali, and N. Mansour, “Thermal nonlinear refraction properties of Ag2S semiconductor nanocrystals with its application as a low power optical limiter,” Opt. Commun. 284(9), 2370–2375 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Spectrosc. (1)

T. Ghambari and D. Dorranian, “Measurement of third-order nonlinear susceptibility of Au nanoparticles doped PVA film,” Opt. Spectrosc. 119(5), 838–848 (2015).
[Crossref]

Plasmonics (2)

L. D. Boni, E. L. Wood, C. Toro, and F. E. Hernandez, “Optical saturable absorption in gold nanoparticles,” Plasmonics 3(4), 171–176 (2008).
[Crossref]

K.-T. Yong, M. T. Swihart, H. Ding, and P. N. Prasad, “preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging,” Plasmonics 4(2), 79–93 (2009).
[Crossref]

Prog. Quantum Electron. (1)

L. W. Tutt and T. F. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Prog. Quantum Electron. 17(4), 299–338 (1993).
[Crossref]

Quantum Electron. (2)

R. A. Ganeev and T. Usmanov, “Nonlinear optical properties of various media,” Quantum Electron. 37(7), 605–622 (2007).
[Crossref]

L. W. Tutt and T. Boggess, Prog. “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials,” Quantum Electron. 17(4), 299–338 (1993).
[Crossref]

Trends Analyt. Chem. (1)

W. R. Algar, M. Massey, and U. J. Krull, “The application of quantum dots, gold nanoparticles and molecular swtches to optical nucleic-acid diagnostics,” Trends Analyt. Chem. 28(3), 292–306 (2009).
[Crossref]

Trends Biotechnol. (1)

D. Pissuwan, C. H. Cortie, S. M. Valenzuela, and M. B. Cortie, “Functionalised gold nanoparticles for controlling pathogenic bacteria,” Trends Biotechnol. 28(4), 207–213 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup for Z-scan measurements.
Fig. 2
Fig. 2 (a) SEM image of (1) 64 nm GN. TEM images of (2) 32, (3) 17, and (4) 13 nm GN. (b) Histograms of corresponding nanoparticles and images of single GN.
Fig. 3
Fig. 3 Absorption spectra of different GN. Inset shows the enlarged area of the maximums of the SPR of different GN.
Fig. 4
Fig. 4 OA Z-scans of suspensions containing different GN using (a) 800 and (b) 400 nm, 40 fs pulses at the intensities of 1.9 × 1011 and 4.5 × 1010 W cm−2 in the focal plane.
Fig. 5
Fig. 5 OA Z-scans of the suspension containing 64 nm GN using 400 nm pulses of different energy. [(a) 38, (b) 131, (c) 318 and (d) 410 nJ]. Solid curves [(a) and (d)] are fitted with experimental data in accordance with the relations of phenomenological model of SA and Z-scan theory.
Fig. 6
Fig. 6 (a) Setup for optical limiting studies. (b) Optical limiting of 800, 60 fs pulses in water and suspension containing 17 nm GN.
Fig. 7
Fig. 7 CA Z-scans of GN suspension using 800 nm, 1 kHz, 200 ps pulses of different energy.
Fig. 8
Fig. 8 CA Z-scans of the nanoparticle suspensions containing (a) 64, (b) 32, (c) 17 and (d) 13 nm GN using 800 nm radiation. The energy of 800 nm, 60 fs pulses was 160 nJ. Fitting curves were calculated using Eqs. (3) and (4).
Fig. 9
Fig. 9 CA Z-scans of the nanoparticle suspensions containing (a) 64, (b) 32, (c) 17 and (d) 13 nm GN using 400 nm radiation. The energy of 400 nm, 60 fs pulses was 38 nJ. Fitting curves were calculated using Eqs. (3) and (4).

Tables (1)

Tables Icon

Table 1 Calculated nonlinear optical characteristics of four GNs.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T 2PA 1 q 2 2
T SA (z)=1+ I 0 I sat (1+ z 2 z 0 2 ) 1
T NRA (z)=1+ 2(ρ x 2 +2x3ρ) ( x 2 +1)( x 2 +9) Δ ϕ 0
T NRA+SA (z)=1+ 4x ( x 2 +1)( x 2 +9) Δ ϕ 0 + I 0 I sat ( x 2 +1)
Δ ω 1/2 = ν F /R

Metrics