Abstract

We report on a new method for measuring the wavelength dependence of the complex permittivity of a thin gold film of a surface plasmon resonance (SPR) structure comprising a gold-coated SF10 slide with an adhesion film of chromium attached to an SF10 glass prism. The method is based on spectral interferometry and utilizes a setup with a birefringent crystal and the SPR structure in the Kretschmann configuration, in which channeled spectra are recorded and from them, the phase functions of the SPR for air at different angles of incidence are retrieved. The SPR phenomenon is manifested as an abrupt phase change with respect to the reference phase difference for the interference resolved with the SF10 glass prism alone. The phase changes for different angles of incidence are processed in the vicinity of the resonance wavelengths to obtain the real and imaginary parts of the complex permittivity in a wavelength range from 530 to 850 nm or equivalently, the parameters of a modified Drude-Lorentz model. This research, to the best of the authors’ knowledge, is the first demonstration of spectral interferometry-based measurement of the complex permittivity function of a thin metal film, which is important from the point of view of material characterization directly performed in the Kretschmann configuration.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compact interferometer transducer based on surface plasmon phase resonance

Yassine Hadjar, Mikael Renault, Sylvain Blaize, Aurélien Bruyant, Rémi Vincent, and Abdelhamid Hmima
J. Opt. Soc. Am. A 32(5) 771-777 (2015)

Ultrafast pump-probe surface plasmon resonance spectroscopy of thin gold films

A. Devizis, V. Vaicikauskas, and V. Gulbinas
Appl. Opt. 45(11) 2535-2539 (2006)

High-precision measurement of optical constants of ultra-thin coating using surface plasmon resonance spectroscopic ellipsometry in Otto-Bliokh configuration

Guohang Hu, Hongbo He, Anna Sytchkova, Jiaoling Zhao, Jianda Shao, Marialuisa Grilli, and Angela Piegari
Opt. Express 25(12) 13425-13434 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
    [Crossref]
  2. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforschung A23, 2135–2136 (1968).
  3. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. für Physik 216, 398–410 (1968).
    [Crossref]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings(Springer-Verlag, New York, 1988).
  5. M. Manuel, B. Vidal, R. Lopéz, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455–459 (1993).
    [Crossref]
  6. J. Homola, Surface Plasmon Resonance Based Sensors(Springer-Verlag, New York, 2006).
  7. P. Nikitin, A. Beloglazov, V. Kochergin, M. Valeiko, and T. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43–50 (1999).
    [Crossref]
  8. B. Liedberg, C. Nylander, and I. Lundström, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators B 11, 63–72 (1993).
    [Crossref]
  9. J. Dostálek, H. Vaisocherova, and J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B 108, 758–764 (2005).
    [Crossref]
  10. H. R. Gwon and S. H. Lee, “Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration,” Mater. Trans. 51, 1150–1155 (2010).
    [Crossref]
  11. S. H. El-Gohary, M. Choi, Y. L. Kim, and K. M. Byun, “Dispersion curve engineering of TiO2/silver hybrid substrates for enhanced surface plasmon resonance detection,” Sensors 16, 1442 (2016).
    [Crossref]
  12. A. Shalabney and I. Abdulhalim, “Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation,” Opt. Lett. 37, 1175–1177 (2012).
    [Crossref] [PubMed]
  13. P. Hlubina, M. Duliakova, M. Kadulova, and D. Ciprian, “Spectral interferometry-based surface plasmon resonance sensor,” Opt. Commun. 354, 240–245 (2015).
    [Crossref]
  14. S.-G. Huang, K.-P. Chen, and S.-C. Jeng, “Phase sensitive sensor on Tamm plasmon devices,” Opt. Mater. Express 4, 1267–1273 (2017).
    [Crossref]
  15. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications(John Wiley and Sons Ltd., Chichester, 2007).
  16. M. Y. Zhang, Z. Y. Wang, T. N. Zhang, Y. Zhang, R. J. Zhang, X. Chen, Y. Sun, Y. X. Zheng, S. Y. Wang, and L. Y. Chen, “Thickness-dependent free-electron relaxation time of au thin films in near-infrared region,” J. Nanophoton. 516, 033009 (2016).
    [Crossref]
  17. E. T. Hu, Q. Y. Cai, R. J. Zhang, Y. F. Wei, W. C. Zhou, S. Y. Wang, Y. X. Zheng, W. Wei, and L. Y. Chen, “Effective method to study the thickness-dependent dielectric functions of nanometal thin film,” Opt. Lett. 41, 4907–4910 (2016).
    [Crossref] [PubMed]
  18. X. Sun, R. Hong, H. Hou, Z. Fan, and J. Shao, “Thickness dependence of structure and optical properties of silver films deposited by magnetron sputtering,” Thin Solid Films 515, 6962–6966 (2007).
    [Crossref]
  19. G. Hu, H. He, A. Sytchkova, J. Zhao, J. Shao, M. Grilli, and A. Piegari, “High-precision measurement of optical constants of ultra-thin coating using surface plasmon resonance spectroscopic ellipsometry in Otto-Bliokh configuration,” Opt. Express 25, 13425–13434 (2017).
    [Crossref] [PubMed]
  20. Z. M. Qi, M. Wei, H. Matsuda, I. Honma, and H. Zhou, “Broadband surface plasmon resonance spectroscopy for determination of refractive index dispersion of dielectric thin films,” Appl. Phys. Lett. 90, 181112 (2007).
  21. H. Yan, Y. Hong-An, L. Song-Quan, and D. Yin-Feng, “The determination of the thickness and the optical dispersion property of gold film using spectroscopy of a surface plasmon in the frequency domain,” Chin. Phys. B 22, 027301 (2013).
    [Crossref]
  22. R. Chlebus, J. Chylek, D. Ciprian, and P. Hlubina, “Surface plasmon resonance based measurement of the dielectric function of a thin metal film,” Sensors 18, 3693 (2018).
    [Crossref]
  23. P. Hlubina, J. Luňáček, and D. Ciprian, “Spectral interferometric technique to measure ellipsometric phase of a thin-film structure,” Opt. Lett. 34, 2661–2663 (2009).
    [Crossref] [PubMed]
  24. P. Hlubina and D. Ciprian, “Spectral phase shift of surface plasmon resonance in the Kretschmann configuration: theory and experiment,” Plasmonics 12, 1071–1078 (2017).
    [Crossref]
  25. P. Yeh, Optical Waves in Layered Media (J. Wiley and Sons, Inc., New York, 1988).
  26. “Schott technical information, TIE-29: Refractive index and dispersion,” https://www.us.schott.com .
  27. “Schott technical information, TIE-29: Temperature coefficient of the refractive index,” https://www.us.schott.com .
  28. A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys. 40, 7152–7158 (2007).
    [Crossref]
  29. H. Bach and N. Neuroth, eds., The Properties of Optical Glass(Springer-Verlag, Berlin, Heidelberg, 1998).
  30. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
    [Crossref]
  31. Z. Yang, D. Gu, and Y. Gao, “An improved dispersion law of thin metal film and application to the study of surface plasmon resonance phenomenon,” Opt. Commun. 329, 180–183 (2014).
    [Crossref]
  32. P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
    [Crossref]

2018 (1)

R. Chlebus, J. Chylek, D. Ciprian, and P. Hlubina, “Surface plasmon resonance based measurement of the dielectric function of a thin metal film,” Sensors 18, 3693 (2018).
[Crossref]

2017 (3)

2016 (3)

E. T. Hu, Q. Y. Cai, R. J. Zhang, Y. F. Wei, W. C. Zhou, S. Y. Wang, Y. X. Zheng, W. Wei, and L. Y. Chen, “Effective method to study the thickness-dependent dielectric functions of nanometal thin film,” Opt. Lett. 41, 4907–4910 (2016).
[Crossref] [PubMed]

M. Y. Zhang, Z. Y. Wang, T. N. Zhang, Y. Zhang, R. J. Zhang, X. Chen, Y. Sun, Y. X. Zheng, S. Y. Wang, and L. Y. Chen, “Thickness-dependent free-electron relaxation time of au thin films in near-infrared region,” J. Nanophoton. 516, 033009 (2016).
[Crossref]

S. H. El-Gohary, M. Choi, Y. L. Kim, and K. M. Byun, “Dispersion curve engineering of TiO2/silver hybrid substrates for enhanced surface plasmon resonance detection,” Sensors 16, 1442 (2016).
[Crossref]

2015 (1)

P. Hlubina, M. Duliakova, M. Kadulova, and D. Ciprian, “Spectral interferometry-based surface plasmon resonance sensor,” Opt. Commun. 354, 240–245 (2015).
[Crossref]

2014 (1)

Z. Yang, D. Gu, and Y. Gao, “An improved dispersion law of thin metal film and application to the study of surface plasmon resonance phenomenon,” Opt. Commun. 329, 180–183 (2014).
[Crossref]

2013 (1)

H. Yan, Y. Hong-An, L. Song-Quan, and D. Yin-Feng, “The determination of the thickness and the optical dispersion property of gold film using spectroscopy of a surface plasmon in the frequency domain,” Chin. Phys. B 22, 027301 (2013).
[Crossref]

2012 (1)

2010 (1)

H. R. Gwon and S. H. Lee, “Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration,” Mater. Trans. 51, 1150–1155 (2010).
[Crossref]

2009 (1)

2008 (1)

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
[Crossref]

2007 (4)

X. Sun, R. Hong, H. Hou, Z. Fan, and J. Shao, “Thickness dependence of structure and optical properties of silver films deposited by magnetron sputtering,” Thin Solid Films 515, 6962–6966 (2007).
[Crossref]

Z. M. Qi, M. Wei, H. Matsuda, I. Honma, and H. Zhou, “Broadband surface plasmon resonance spectroscopy for determination of refractive index dispersion of dielectric thin films,” Appl. Phys. Lett. 90, 181112 (2007).

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys. 40, 7152–7158 (2007).
[Crossref]

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

2005 (2)

J. Dostálek, H. Vaisocherova, and J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B 108, 758–764 (2005).
[Crossref]

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

1999 (1)

P. Nikitin, A. Beloglazov, V. Kochergin, M. Valeiko, and T. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43–50 (1999).
[Crossref]

1993 (2)

B. Liedberg, C. Nylander, and I. Lundström, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators B 11, 63–72 (1993).
[Crossref]

M. Manuel, B. Vidal, R. Lopéz, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455–459 (1993).
[Crossref]

1968 (2)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforschung A23, 2135–2136 (1968).

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. für Physik 216, 398–410 (1968).
[Crossref]

Abdulhalim, I.

Alegret, S.

M. Manuel, B. Vidal, R. Lopéz, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455–459 (1993).
[Crossref]

Alonso-Chamarro, J.

M. Manuel, B. Vidal, R. Lopéz, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455–459 (1993).
[Crossref]

Bach, H.

H. Bach and N. Neuroth, eds., The Properties of Optical Glass(Springer-Verlag, Berlin, Heidelberg, 1998).

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Beloglazov, A.

P. Nikitin, A. Beloglazov, V. Kochergin, M. Valeiko, and T. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43–50 (1999).
[Crossref]

Byun, K. M.

S. H. El-Gohary, M. Choi, Y. L. Kim, and K. M. Byun, “Dispersion curve engineering of TiO2/silver hybrid substrates for enhanced surface plasmon resonance detection,” Sensors 16, 1442 (2016).
[Crossref]

Cai, Q. Y.

Chen, K.-P.

Chen, L. Y.

E. T. Hu, Q. Y. Cai, R. J. Zhang, Y. F. Wei, W. C. Zhou, S. Y. Wang, Y. X. Zheng, W. Wei, and L. Y. Chen, “Effective method to study the thickness-dependent dielectric functions of nanometal thin film,” Opt. Lett. 41, 4907–4910 (2016).
[Crossref] [PubMed]

M. Y. Zhang, Z. Y. Wang, T. N. Zhang, Y. Zhang, R. J. Zhang, X. Chen, Y. Sun, Y. X. Zheng, S. Y. Wang, and L. Y. Chen, “Thickness-dependent free-electron relaxation time of au thin films in near-infrared region,” J. Nanophoton. 516, 033009 (2016).
[Crossref]

Chen, X.

M. Y. Zhang, Z. Y. Wang, T. N. Zhang, Y. Zhang, R. J. Zhang, X. Chen, Y. Sun, Y. X. Zheng, S. Y. Wang, and L. Y. Chen, “Thickness-dependent free-electron relaxation time of au thin films in near-infrared region,” J. Nanophoton. 516, 033009 (2016).
[Crossref]

Chlebus, R.

R. Chlebus, J. Chylek, D. Ciprian, and P. Hlubina, “Surface plasmon resonance based measurement of the dielectric function of a thin metal film,” Sensors 18, 3693 (2018).
[Crossref]

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
[Crossref]

Choi, M.

S. H. El-Gohary, M. Choi, Y. L. Kim, and K. M. Byun, “Dispersion curve engineering of TiO2/silver hybrid substrates for enhanced surface plasmon resonance detection,” Sensors 16, 1442 (2016).
[Crossref]

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

Chylek, J.

R. Chlebus, J. Chylek, D. Ciprian, and P. Hlubina, “Surface plasmon resonance based measurement of the dielectric function of a thin metal film,” Sensors 18, 3693 (2018).
[Crossref]

Ciprian, D.

R. Chlebus, J. Chylek, D. Ciprian, and P. Hlubina, “Surface plasmon resonance based measurement of the dielectric function of a thin metal film,” Sensors 18, 3693 (2018).
[Crossref]

P. Hlubina and D. Ciprian, “Spectral phase shift of surface plasmon resonance in the Kretschmann configuration: theory and experiment,” Plasmonics 12, 1071–1078 (2017).
[Crossref]

P. Hlubina, M. Duliakova, M. Kadulova, and D. Ciprian, “Spectral interferometry-based surface plasmon resonance sensor,” Opt. Commun. 354, 240–245 (2015).
[Crossref]

P. Hlubina, J. Luňáček, and D. Ciprian, “Spectral interferometric technique to measure ellipsometric phase of a thin-film structure,” Opt. Lett. 34, 2661–2663 (2009).
[Crossref] [PubMed]

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
[Crossref]

de la Chapelle, M. L.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Dostálek, J.

J. Dostálek, H. Vaisocherova, and J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B 108, 758–764 (2005).
[Crossref]

Duliakova, M.

P. Hlubina, M. Duliakova, M. Kadulova, and D. Ciprian, “Spectral interferometry-based surface plasmon resonance sensor,” Opt. Commun. 354, 240–245 (2015).
[Crossref]

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

El-Gohary, S. H.

S. H. El-Gohary, M. Choi, Y. L. Kim, and K. M. Byun, “Dispersion curve engineering of TiO2/silver hybrid substrates for enhanced surface plasmon resonance detection,” Sensors 16, 1442 (2016).
[Crossref]

Fan, Z.

X. Sun, R. Hong, H. Hou, Z. Fan, and J. Shao, “Thickness dependence of structure and optical properties of silver films deposited by magnetron sputtering,” Thin Solid Films 515, 6962–6966 (2007).
[Crossref]

Fujiwara, H.

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications(John Wiley and Sons Ltd., Chichester, 2007).

Gao, Y.

Z. Yang, D. Gu, and Y. Gao, “An improved dispersion law of thin metal film and application to the study of surface plasmon resonance phenomenon,” Opt. Commun. 329, 180–183 (2014).
[Crossref]

Garces, I.

M. Manuel, B. Vidal, R. Lopéz, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455–459 (1993).
[Crossref]

Grilli, M.

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Gu, D.

Z. Yang, D. Gu, and Y. Gao, “An improved dispersion law of thin metal film and application to the study of surface plasmon resonance phenomenon,” Opt. Commun. 329, 180–183 (2014).
[Crossref]

Gwon, H. R.

H. R. Gwon and S. H. Lee, “Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration,” Mater. Trans. 51, 1150–1155 (2010).
[Crossref]

He, H.

Hlubina, P.

R. Chlebus, J. Chylek, D. Ciprian, and P. Hlubina, “Surface plasmon resonance based measurement of the dielectric function of a thin metal film,” Sensors 18, 3693 (2018).
[Crossref]

P. Hlubina and D. Ciprian, “Spectral phase shift of surface plasmon resonance in the Kretschmann configuration: theory and experiment,” Plasmonics 12, 1071–1078 (2017).
[Crossref]

P. Hlubina, M. Duliakova, M. Kadulova, and D. Ciprian, “Spectral interferometry-based surface plasmon resonance sensor,” Opt. Commun. 354, 240–245 (2015).
[Crossref]

P. Hlubina, J. Luňáček, and D. Ciprian, “Spectral interferometric technique to measure ellipsometric phase of a thin-film structure,” Opt. Lett. 34, 2661–2663 (2009).
[Crossref] [PubMed]

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
[Crossref]

Homola, J.

J. Dostálek, H. Vaisocherova, and J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B 108, 758–764 (2005).
[Crossref]

J. Homola, Surface Plasmon Resonance Based Sensors(Springer-Verlag, New York, 2006).

Hong, R.

X. Sun, R. Hong, H. Hou, Z. Fan, and J. Shao, “Thickness dependence of structure and optical properties of silver films deposited by magnetron sputtering,” Thin Solid Films 515, 6962–6966 (2007).
[Crossref]

Hong-An, Y.

H. Yan, Y. Hong-An, L. Song-Quan, and D. Yin-Feng, “The determination of the thickness and the optical dispersion property of gold film using spectroscopy of a surface plasmon in the frequency domain,” Chin. Phys. B 22, 027301 (2013).
[Crossref]

Honma, I.

Z. M. Qi, M. Wei, H. Matsuda, I. Honma, and H. Zhou, “Broadband surface plasmon resonance spectroscopy for determination of refractive index dispersion of dielectric thin films,” Appl. Phys. Lett. 90, 181112 (2007).

Hou, H.

X. Sun, R. Hong, H. Hou, Z. Fan, and J. Shao, “Thickness dependence of structure and optical properties of silver films deposited by magnetron sputtering,” Thin Solid Films 515, 6962–6966 (2007).
[Crossref]

Hu, E. T.

Hu, G.

Huang, S.-G.

Jeng, S.-C.

Kadulova, M.

P. Hlubina, M. Duliakova, M. Kadulova, and D. Ciprian, “Spectral interferometry-based surface plasmon resonance sensor,” Opt. Commun. 354, 240–245 (2015).
[Crossref]

Kim, Y. L.

S. H. El-Gohary, M. Choi, Y. L. Kim, and K. M. Byun, “Dispersion curve engineering of TiO2/silver hybrid substrates for enhanced surface plasmon resonance detection,” Sensors 16, 1442 (2016).
[Crossref]

Kochergin, V.

P. Nikitin, A. Beloglazov, V. Kochergin, M. Valeiko, and T. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43–50 (1999).
[Crossref]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforschung A23, 2135–2136 (1968).

Ksenevich, T.

P. Nikitin, A. Beloglazov, V. Kochergin, M. Valeiko, and T. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43–50 (1999).
[Crossref]

Laroche, T.

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys. 40, 7152–7158 (2007).
[Crossref]

Lee, S. H.

H. R. Gwon and S. H. Lee, “Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration,” Mater. Trans. 51, 1150–1155 (2010).
[Crossref]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundström, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators B 11, 63–72 (1993).
[Crossref]

Lopéz, R.

M. Manuel, B. Vidal, R. Lopéz, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455–459 (1993).
[Crossref]

Lunácek, J.

P. Hlubina, J. Luňáček, and D. Ciprian, “Spectral interferometric technique to measure ellipsometric phase of a thin-film structure,” Opt. Lett. 34, 2661–2663 (2009).
[Crossref] [PubMed]

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
[Crossref]

Lundström, I.

B. Liedberg, C. Nylander, and I. Lundström, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators B 11, 63–72 (1993).
[Crossref]

Macías, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Manuel, M.

M. Manuel, B. Vidal, R. Lopéz, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455–459 (1993).
[Crossref]

Mateo, J.

M. Manuel, B. Vidal, R. Lopéz, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455–459 (1993).
[Crossref]

Matsuda, H.

Z. M. Qi, M. Wei, H. Matsuda, I. Honma, and H. Zhou, “Broadband surface plasmon resonance spectroscopy for determination of refractive index dispersion of dielectric thin films,” Appl. Phys. Lett. 90, 181112 (2007).

Neuroth, N.

H. Bach and N. Neuroth, eds., The Properties of Optical Glass(Springer-Verlag, Berlin, Heidelberg, 1998).

Nikitin, P.

P. Nikitin, A. Beloglazov, V. Kochergin, M. Valeiko, and T. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43–50 (1999).
[Crossref]

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundström, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators B 11, 63–72 (1993).
[Crossref]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. für Physik 216, 398–410 (1968).
[Crossref]

Piegari, A.

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

Qi, Z. M.

Z. M. Qi, M. Wei, H. Matsuda, I. Honma, and H. Zhou, “Broadband surface plasmon resonance spectroscopy for determination of refractive index dispersion of dielectric thin films,” Appl. Phys. Lett. 90, 181112 (2007).

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforschung A23, 2135–2136 (1968).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings(Springer-Verlag, New York, 1988).

Shalabney, A.

Shao, J.

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

Song-Quan, L.

H. Yan, Y. Hong-An, L. Song-Quan, and D. Yin-Feng, “The determination of the thickness and the optical dispersion property of gold film using spectroscopy of a surface plasmon in the frequency domain,” Chin. Phys. B 22, 027301 (2013).
[Crossref]

Sun, X.

X. Sun, R. Hong, H. Hou, Z. Fan, and J. Shao, “Thickness dependence of structure and optical properties of silver films deposited by magnetron sputtering,” Thin Solid Films 515, 6962–6966 (2007).
[Crossref]

Sun, Y.

M. Y. Zhang, Z. Y. Wang, T. N. Zhang, Y. Zhang, R. J. Zhang, X. Chen, Y. Sun, Y. X. Zheng, S. Y. Wang, and L. Y. Chen, “Thickness-dependent free-electron relaxation time of au thin films in near-infrared region,” J. Nanophoton. 516, 033009 (2016).
[Crossref]

Sytchkova, A.

Vaisocherova, H.

J. Dostálek, H. Vaisocherova, and J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B 108, 758–764 (2005).
[Crossref]

Valeiko, M.

P. Nikitin, A. Beloglazov, V. Kochergin, M. Valeiko, and T. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43–50 (1999).
[Crossref]

Vial, A.

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys. 40, 7152–7158 (2007).
[Crossref]

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Vidal, B.

M. Manuel, B. Vidal, R. Lopéz, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455–459 (1993).
[Crossref]

Wang, S. Y.

M. Y. Zhang, Z. Y. Wang, T. N. Zhang, Y. Zhang, R. J. Zhang, X. Chen, Y. Sun, Y. X. Zheng, S. Y. Wang, and L. Y. Chen, “Thickness-dependent free-electron relaxation time of au thin films in near-infrared region,” J. Nanophoton. 516, 033009 (2016).
[Crossref]

E. T. Hu, Q. Y. Cai, R. J. Zhang, Y. F. Wei, W. C. Zhou, S. Y. Wang, Y. X. Zheng, W. Wei, and L. Y. Chen, “Effective method to study the thickness-dependent dielectric functions of nanometal thin film,” Opt. Lett. 41, 4907–4910 (2016).
[Crossref] [PubMed]

Wang, Z. Y.

M. Y. Zhang, Z. Y. Wang, T. N. Zhang, Y. Zhang, R. J. Zhang, X. Chen, Y. Sun, Y. X. Zheng, S. Y. Wang, and L. Y. Chen, “Thickness-dependent free-electron relaxation time of au thin films in near-infrared region,” J. Nanophoton. 516, 033009 (2016).
[Crossref]

Wei, M.

Z. M. Qi, M. Wei, H. Matsuda, I. Honma, and H. Zhou, “Broadband surface plasmon resonance spectroscopy for determination of refractive index dispersion of dielectric thin films,” Appl. Phys. Lett. 90, 181112 (2007).

Wei, W.

Wei, Y. F.

Yan, H.

H. Yan, Y. Hong-An, L. Song-Quan, and D. Yin-Feng, “The determination of the thickness and the optical dispersion property of gold film using spectroscopy of a surface plasmon in the frequency domain,” Chin. Phys. B 22, 027301 (2013).
[Crossref]

Yang, Z.

Z. Yang, D. Gu, and Y. Gao, “An improved dispersion law of thin metal film and application to the study of surface plasmon resonance phenomenon,” Opt. Commun. 329, 180–183 (2014).
[Crossref]

Yeh, P.

P. Yeh, Optical Waves in Layered Media (J. Wiley and Sons, Inc., New York, 1988).

Yin-Feng, D.

H. Yan, Y. Hong-An, L. Song-Quan, and D. Yin-Feng, “The determination of the thickness and the optical dispersion property of gold film using spectroscopy of a surface plasmon in the frequency domain,” Chin. Phys. B 22, 027301 (2013).
[Crossref]

Zhang, M. Y.

M. Y. Zhang, Z. Y. Wang, T. N. Zhang, Y. Zhang, R. J. Zhang, X. Chen, Y. Sun, Y. X. Zheng, S. Y. Wang, and L. Y. Chen, “Thickness-dependent free-electron relaxation time of au thin films in near-infrared region,” J. Nanophoton. 516, 033009 (2016).
[Crossref]

Zhang, R. J.

M. Y. Zhang, Z. Y. Wang, T. N. Zhang, Y. Zhang, R. J. Zhang, X. Chen, Y. Sun, Y. X. Zheng, S. Y. Wang, and L. Y. Chen, “Thickness-dependent free-electron relaxation time of au thin films in near-infrared region,” J. Nanophoton. 516, 033009 (2016).
[Crossref]

E. T. Hu, Q. Y. Cai, R. J. Zhang, Y. F. Wei, W. C. Zhou, S. Y. Wang, Y. X. Zheng, W. Wei, and L. Y. Chen, “Effective method to study the thickness-dependent dielectric functions of nanometal thin film,” Opt. Lett. 41, 4907–4910 (2016).
[Crossref] [PubMed]

Zhang, T. N.

M. Y. Zhang, Z. Y. Wang, T. N. Zhang, Y. Zhang, R. J. Zhang, X. Chen, Y. Sun, Y. X. Zheng, S. Y. Wang, and L. Y. Chen, “Thickness-dependent free-electron relaxation time of au thin films in near-infrared region,” J. Nanophoton. 516, 033009 (2016).
[Crossref]

Zhang, Y.

M. Y. Zhang, Z. Y. Wang, T. N. Zhang, Y. Zhang, R. J. Zhang, X. Chen, Y. Sun, Y. X. Zheng, S. Y. Wang, and L. Y. Chen, “Thickness-dependent free-electron relaxation time of au thin films in near-infrared region,” J. Nanophoton. 516, 033009 (2016).
[Crossref]

Zhao, J.

Zheng, Y. X.

E. T. Hu, Q. Y. Cai, R. J. Zhang, Y. F. Wei, W. C. Zhou, S. Y. Wang, Y. X. Zheng, W. Wei, and L. Y. Chen, “Effective method to study the thickness-dependent dielectric functions of nanometal thin film,” Opt. Lett. 41, 4907–4910 (2016).
[Crossref] [PubMed]

M. Y. Zhang, Z. Y. Wang, T. N. Zhang, Y. Zhang, R. J. Zhang, X. Chen, Y. Sun, Y. X. Zheng, S. Y. Wang, and L. Y. Chen, “Thickness-dependent free-electron relaxation time of au thin films in near-infrared region,” J. Nanophoton. 516, 033009 (2016).
[Crossref]

Zhou, H.

Z. M. Qi, M. Wei, H. Matsuda, I. Honma, and H. Zhou, “Broadband surface plasmon resonance spectroscopy for determination of refractive index dispersion of dielectric thin films,” Appl. Phys. Lett. 90, 181112 (2007).

Zhou, W. C.

Appl. Phys. Lett. (1)

Z. M. Qi, M. Wei, H. Matsuda, I. Honma, and H. Zhou, “Broadband surface plasmon resonance spectroscopy for determination of refractive index dispersion of dielectric thin films,” Appl. Phys. Lett. 90, 181112 (2007).

Chin. Phys. B (1)

H. Yan, Y. Hong-An, L. Song-Quan, and D. Yin-Feng, “The determination of the thickness and the optical dispersion property of gold film using spectroscopy of a surface plasmon in the frequency domain,” Chin. Phys. B 22, 027301 (2013).
[Crossref]

J. Nanophoton. (1)

M. Y. Zhang, Z. Y. Wang, T. N. Zhang, Y. Zhang, R. J. Zhang, X. Chen, Y. Sun, Y. X. Zheng, S. Y. Wang, and L. Y. Chen, “Thickness-dependent free-electron relaxation time of au thin films in near-infrared region,” J. Nanophoton. 516, 033009 (2016).
[Crossref]

J. Phys. D: Appl. Phys. (1)

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D: Appl. Phys. 40, 7152–7158 (2007).
[Crossref]

Mater. Trans. (1)

H. R. Gwon and S. H. Lee, “Spectral and angular responses of surface plasmon resonance based on the Kretschmann prism configuration,” Mater. Trans. 51, 1150–1155 (2010).
[Crossref]

Opt. Commun. (3)

P. Hlubina, M. Duliakova, M. Kadulova, and D. Ciprian, “Spectral interferometry-based surface plasmon resonance sensor,” Opt. Commun. 354, 240–245 (2015).
[Crossref]

Z. Yang, D. Gu, and Y. Gao, “An improved dispersion law of thin metal film and application to the study of surface plasmon resonance phenomenon,” Opt. Commun. 329, 180–183 (2014).
[Crossref]

P. Hlubina, J. Luňáček, D. Ciprian, and R. Chlebus, “Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals,” Opt. Commun. 281, 2349–2354 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. B (1)

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416 (2005).
[Crossref]

Plasmonics (1)

P. Hlubina and D. Ciprian, “Spectral phase shift of surface plasmon resonance in the Kretschmann configuration: theory and experiment,” Plasmonics 12, 1071–1078 (2017).
[Crossref]

Rep. Prog. Phys. (1)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).
[Crossref]

Sens. Actuators B (4)

M. Manuel, B. Vidal, R. Lopéz, S. Alegret, J. Alonso-Chamarro, I. Garces, and J. Mateo, “Determination of probable alcohol yield in musts by means of an SPR optical sensor,” Sens. Actuators B 11, 455–459 (1993).
[Crossref]

P. Nikitin, A. Beloglazov, V. Kochergin, M. Valeiko, and T. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. Actuators B 54, 43–50 (1999).
[Crossref]

B. Liedberg, C. Nylander, and I. Lundström, “Principles of biosensing with an extended coupling matrix and surface plasmon resonance,” Sens. Actuators B 11, 63–72 (1993).
[Crossref]

J. Dostálek, H. Vaisocherova, and J. Homola, “Multichannel surface plasmon resonance biosensor with wavelength division multiplexing,” Sens. Actuators B 108, 758–764 (2005).
[Crossref]

Sensors (2)

S. H. El-Gohary, M. Choi, Y. L. Kim, and K. M. Byun, “Dispersion curve engineering of TiO2/silver hybrid substrates for enhanced surface plasmon resonance detection,” Sensors 16, 1442 (2016).
[Crossref]

R. Chlebus, J. Chylek, D. Ciprian, and P. Hlubina, “Surface plasmon resonance based measurement of the dielectric function of a thin metal film,” Sensors 18, 3693 (2018).
[Crossref]

Thin Solid Films (1)

X. Sun, R. Hong, H. Hou, Z. Fan, and J. Shao, “Thickness dependence of structure and optical properties of silver films deposited by magnetron sputtering,” Thin Solid Films 515, 6962–6966 (2007).
[Crossref]

Z. für Physik (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. für Physik 216, 398–410 (1968).
[Crossref]

Z. Naturforschung (1)

E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforschung A23, 2135–2136 (1968).

Other (7)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings(Springer-Verlag, New York, 1988).

J. Homola, Surface Plasmon Resonance Based Sensors(Springer-Verlag, New York, 2006).

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications(John Wiley and Sons Ltd., Chichester, 2007).

P. Yeh, Optical Waves in Layered Media (J. Wiley and Sons, Inc., New York, 1988).

“Schott technical information, TIE-29: Refractive index and dispersion,” https://www.us.schott.com .

“Schott technical information, TIE-29: Temperature coefficient of the refractive index,” https://www.us.schott.com .

H. Bach and N. Neuroth, eds., The Properties of Optical Glass(Springer-Verlag, Berlin, Heidelberg, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup for measuring the wavelength dependence of the complex permittivity of a thin gold film.
Fig. 2
Fig. 2 Recorded channeled spectra including (with the visibility decrease) and not including the SPR effect (a). The corresponding phase shift δ ( λ ) as a function of wavelength λ (b).
Fig. 3
Fig. 3 Measured phase shift δ ( λ ) as a function of the wavelength λ for different angles of incidence α: 33° to 41° (a), 41.1 to 42.6 (b).
Fig. 4
Fig. 4 Measured phase shift derivative d δ ( λ ) / d λ as a function of the wavelength λ for different angles of incidence α: 33° to 41° (a), 41.1 to 42.6 (b).
Fig. 5
Fig. 5 Measured phase shift δ ( λ ) (a) and its derivative d δ ( λ ) / d λ (b) as a function of the wavelength λ (solid curves) for angle of incidence α = 40 together with the the results of the fit (dashed curves).
Fig. 6
Fig. 6 Complex permittivity of the gold film (crosses) as a function of the wavelength with a fit according to a modified Drude-Lorentz model: a real part (a), an imaginary part (b). Dashed lines are the results of the polarimetry measurements [22] and lower curves correspond to a model permittivity (7) with parameters from [24].
Fig. 7
Fig. 7 Measured phase shift δ ( λ ) (a) and its derivative d δ ( λ ) / d λ (b) as a function of the wavelength λ (solid curves) for angle of incidence α = 40 together with the result of the modeling (dashed curves).

Tables (1)

Tables Icon

Table 1 Parameters of dielectric function of Au retrieved from the measurement.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

r p , s ( λ ) = R p , s ( λ ) exp  [ i φ p , s ( λ ) ] ,
I ref ( λ ) = I 0 ref ( λ ) { 1 + V ref ( λ ) cos  [ ϕ BC ( λ ) + Δ ref ( λ ) ] } ,
I ( λ ) = I 0 ( λ ) { 1 + V ( λ ) cos  [ ϕ BC ( λ ) + Δ ( λ ) ] } ,
δ ( λ ) = Δ ( λ ) Δ ref ( λ ) .
[ U R ( 0 ) U I ( 0 ) ] = [ M 11 M 12 M 21 M 22 ] [ U T ( N + 1 ) U B ( N + 1 ) ] where   M = D 0 1 [ i = 1 N D i P i D i 1 ] D N + 1 .
r = ( U R ( 0 ) U I ( 0 ) ) U B ( N + 1 ) = 0 = M 21 M 11     and      t = ( U T ( N + 1 ) U I ( 0 ) ) U B ( N + 1 ) = 0 = 1 M 11 .
ε Au ( λ ) = 1 1 λ p 2 ( 1 / λ 2 + i / γ p λ ) j = 1 2 A j λ j 2 ( 1 / λ 2 1 / λ j 2 ) + i λ j 2 / γ j λ ,

Metrics