Abstract

We fabricate single-walled carbon nanotube saturable absorbers on a side-polished fiber by a dry transfer technique. We demonstrate that this method allows for the easy and robust implementation of polymer-free carbon nanotube film for an evanescent field interaction in the fiber laser cavity. The high-quality single-walled carbon nanotubes are synthesized by the aerosol CVD method with absorption maximum tuned to an erbium doped fiber laser emission line. The Q-switch and mode-lock regimes as well as the harmonic mode-lock regime with the 79th order are successfully demonstrated with this approach. Critical power for damage threshold is estimated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-fiber mode-locked laser oscillator with pulse energy of 34 nJ using a single-walled carbon nanotube saturable absorber

Hwanseong Jeong, Sun Young Choi, Fabian Rotermund, Yong-Ho Cha, Do-Young Jeong, and Dong-Il Yeom
Opt. Express 22(19) 22667-22672 (2014)

Performance peculiarities of carbon-nanotube-based thin-film saturable absorbers for erbium fiber laser mode-locking

Alexander A. Krylov, Stanislav G. Sazonkin, Natalia R. Arutyunyan, Vyacheslav V. Grebenyukov, Anatoly S. Pozharov, Dmitry A. Dvoretskiy, Elena D. Obraztsova, and Evgeny M. Dianov
J. Opt. Soc. Am. B 33(2) 134-142 (2016)

All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber

Ju Hee Im, Sun Young Choi, Fabian Rotermund, and Dong-Il Yeom
Opt. Express 18(21) 22141-22146 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
    [Crossref]
  2. B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband Graphene Saturable Absorber for Pulsed Fiber Lasers at 1, 1.5, and 2 μm,” IEEE J. Sel. Top. Quantum Electron. 20(5), 411–415 (2014).
    [Crossref]
  3. J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40(16), 3885–3888 (2015).
    [Crossref] [PubMed]
  4. H. Yu, X. Zheng, K. Yin, X. Cheng, and T. Jiang, “Thulium/holmium-doped fiber laser passively mode locked by black phosphorus nanoplatelets-based saturable absorber,” Appl. Opt. 54(34), 10290–10294 (2015).
    [Crossref] [PubMed]
  5. M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
    [Crossref] [PubMed]
  6. Y. Cui, F. Lu, and X. Liu, “MoS2-clad microfibre laser delivering conventional, dispersion-managed and dissipative solitons,” Sci. Rep. 6(1), 30524 (2016).
    [Crossref] [PubMed]
  7. J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24(10), 10575–10589 (2016).
    [Crossref] [PubMed]
  8. S. Yamashita, Y. Saito, and J. H. Choi, Carbon Nanotubes and Graphene for Photonic Applications (Woodhead Publishing Limited, 2013).
  9. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser Mode Locking Using a Saturable Absorber Incorporating Carbon Nanotubes,” J. Lit. Technol. 22(1), 51–56 (2004).
    [Crossref]
  10. Z. Yu, Y. Wang, X. Zhang, X. Dong, J. Tian, and Y. Song, “A 66 fs highly stable single wall carbon nanotube mode locked fiber laser,” Laser Phys. 24(1), 015105 (2014).
    [Crossref]
  11. D. Ma, Y. Cai, C. Zhou, W. Zong, L. Chen, and Z. Zhang, “37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate,” Opt. Lett. 35(17), 2858–2860 (2010).
    [Crossref] [PubMed]
  12. S. P. Su, Y. H. Xu, and C. A. Wilkie, “Thermal degradation of polymer-carbon nanotube composites,” Polym. Nanotub. Compos. Prep. Prop. Appl. 2011, 482–510 (2011).
    [Crossref]
  13. S. Y. Ryu, K.-S. Kim, J. Kim, and S. Kim, “Degradation of optical properties of a film-type single-wall carbon nanotubes saturable absorber (SWNT-SA) with an Er-doped all-fiber laser,” Opt. Express 20(12), 12966–12974 (2012).
    [Crossref] [PubMed]
  14. S. F. Bartolucci, K. E. Supan, J. M. Warrender, C. E. Davis, L. La Beaud, K. Knowles, and J. S. Wiggins, “Laser-induced thermo-oxidative degradation of carbon nanotube/polypropylene nanocomposites,” Compos. Sci. Technol. 105, 166–173 (2014).
    [Crossref]
  15. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
    [Crossref] [PubMed]
  16. A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
    [Crossref]
  17. A. Martinez, K. Fuse, and S. Yamashita, “Enhanced stability of nitrogen-sealed carbon nanotube saturable absorbers under high-intensity irradiation,” Opt. Express 21(4), 4665–4670 (2013).
    [Crossref] [PubMed]
  18. K. Kashiwagi, S. Yamashita, and S. Y. Set, “In-situ monitoring of optical deposition of carbon nanotubes onto fiber end,” Opt. Express 17(7), 5711–5715 (2009).
    [Crossref] [PubMed]
  19. Y.-W. Song, S. Yamashita, E. Einarsson, and S. Maruyama, “All-fiber pulsed lasers passively mode locked by transferable vertically aligned carbon nanotube film,” Opt. Lett. 32(11), 1399–1401 (2007).
    [Crossref] [PubMed]
  20. Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
    [Crossref]
  21. A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivistö, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, “Multifunctional free-standing single-walled carbon nanotube films,” ACS Nano 5(4), 3214–3221 (2011).
    [Crossref] [PubMed]
  22. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009).
    [Crossref] [PubMed]
  23. S. Kobtsev, A. Ivanenko, Y. G. Gladush, B. Nyushkov, A. Kokhanovskiy, A. S. Anisimov, and A. G. Nasibulin, “Ultrafast all-fibre laser mode-locked by polymer-free carbon nanotube film,” Opt. Express 24(25), 28768–28773 (2016).
    [Crossref] [PubMed]
  24. A. Khegai, M. Melkumov, S. Firstov, K. Riumkin, Y. Gladush, S. Alyshev, A. Lobanov, V. Khopin, F. Afanasiev, A. G. Nasibulin, and E. Dianov, “Bismuth-doped fiber laser at 1.32 μm mode-locked by single-walled carbon nanotubes,” Opt. Express 26(18), 23911–23917 (2018).
    [Crossref] [PubMed]
  25. H. Jeong, S. Y. Choi, F. Rotermund, Y.-H. Cha, D.-Y. Jeong, and D.-I. Yeom, “All-fiber mode-locked laser oscillator with pulse energy of 34 nJ using a single-walled carbon nanotube saturable absorber,” Opt. Express 22(19), 22667–22672 (2014).
    [Crossref] [PubMed]
  26. Y.-W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32(2), 148–150 (2007).
    [Crossref] [PubMed]
  27. H. H. Liu, K. K. Chow, S. Yamashita, and S. Y. Set, “Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation,” Opt. Laser Technol. 45(1), 713–716 (2013).
    [Crossref]
  28. J. Ko, H. Jeong, S. Y. Choi, F. Rotermund, D. Il Yeom, and B. Y. Kim, “Single-walled carbon nanotubes on side polished fiber as a universal saturable absorber for various laser output states,” Curr. Appl. Phys. 17(1), 37–40 (2017).
    [Crossref]
  29. S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
    [Crossref]
  30. J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, “Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3topological insulator,” Laser Phys. 24(10), 105111 (2014).
    [Crossref]
  31. C. S. Jun, J. H. Im, S. H. Yoo, S. Y. Choi, F. Rotermund, D. I. Yeom, and B. Y. Kim, “Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes,” Opt. Express 19(20), 19775–19780 (2011).
    [Crossref] [PubMed]
  32. K. Mustonen, P. Laiho, A. Kaskela, T. Susi, A. G. Nasibulin, and E. I. Kauppinen, “Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors,” Appl. Phys. Lett. 107(14), 143113 (2015).
    [Crossref]
  33. A. G. Nasibulin, D. P. Brown, P. Queipo, D. Gonzalez, H. Jiang, and E. I. Kauppinen, “An essential role of CO2 and H2O during single-walled CNT synthesis from carbon monoxide,” Chem. Phys. Lett. 417(1–3), 179–184 (2006).
    [Crossref]
  34. J. H. Im, S. Y. Choi, F. Rotermund, and D.-I. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express 18(21), 22141–22146 (2010).
    [Crossref] [PubMed]
  35. H. Jeong, S. Y. Choi, F. Rotermund, and D.-I. Yeom, “Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber,” Opt. Express 21(22), 27011–27016 (2013).
    [Crossref] [PubMed]
  36. J. Bogusławski, G. Soboń, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber,” Opt. Express 23(22), 29014–29023 (2015).
    [Crossref] [PubMed]
  37. K.-H. Lin, J.-J. Kang, H.-H. Wu, C.-K. Lee, and G.-R. Lin, “Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber,” Opt. Express 17(6), 4806–4814 (2009).
    [Crossref] [PubMed]
  38. C. S. Jun, S. Y. Choi, F. Rotermund, B. Y. Kim, and D.-I. Yeom, “Toward higher-order passive harmonic mode-locking of a soliton fiber laser,” Opt. Lett. 37(11), 1862–1864 (2012).
    [Crossref] [PubMed]
  39. D. S. Chernykh, A. A. Krylov, A. E. Levchenko, V. V. Grebenyukov, N. R. Arutunyan, A. S. Pozharov, E. D. Obraztsova, and E. M. Dianov, “Hybrid mode-locked erbium-doped all-fiber soliton laser with a distributed polarizer,” Appl. Opt. 53(29), 6654–6662 (2014).
    [Crossref] [PubMed]
  40. V. Y. Iakovlev, Y. A. Sklyueva, F. S. Fedorov, D. P. Rupasov, V. A. Kondrashov, A. K. Grebenko, K. G. Mikheev, F. Z. Gilmutdinov, A. S. Anisimov, G. M. Mikheev, and A. G. Nasibulin, “Improvement of optoelectronic properties of single-walled carbon nanotube films by laser treatment,” Diamond Related Materials 88(May), 144–150 (2018).
    [Crossref]
  41. A. Roch, T. Roch, E. R. Talens, B. Kaiser, A. Lasagni, E. Beyer, O. Jost, G. Cuniberti, and A. Leson, “Selective laser treatment and laser patterning of metallic and semiconducting nanotubes in single walled carbon nanotube films,” Diamond Related Materials 45, 70–75 (2014).
    [Crossref]
  42. H. Fumin, Y. Kwok To, T. Pingheng, Z. Shu-Lin, S. Zujin, Z. Xihuang, and G. Zhennan, “Temperature dependence of the Raman spectra of carbon nanotubes,” J. Appl. Phys. 84(7), 4022–4024 (1998).
    [Crossref]
  43. M. He, E. Rikkinen, Z. Zhu, Y. Tian, A. S. Anisimov, H. Jiang, A. G. Nasibulin, E. I. Kauppinen, M. Niemelä, and A. O. I. Krause, “Temperature dependent Raman spectra of carbon nanobuds,” J. Phys. Chem. C 114(32), 13540–13545 (2010).
    [Crossref]

2018 (2)

V. Y. Iakovlev, Y. A. Sklyueva, F. S. Fedorov, D. P. Rupasov, V. A. Kondrashov, A. K. Grebenko, K. G. Mikheev, F. Z. Gilmutdinov, A. S. Anisimov, G. M. Mikheev, and A. G. Nasibulin, “Improvement of optoelectronic properties of single-walled carbon nanotube films by laser treatment,” Diamond Related Materials 88(May), 144–150 (2018).
[Crossref]

A. Khegai, M. Melkumov, S. Firstov, K. Riumkin, Y. Gladush, S. Alyshev, A. Lobanov, V. Khopin, F. Afanasiev, A. G. Nasibulin, and E. Dianov, “Bismuth-doped fiber laser at 1.32 μm mode-locked by single-walled carbon nanotubes,” Opt. Express 26(18), 23911–23917 (2018).
[Crossref] [PubMed]

2017 (1)

J. Ko, H. Jeong, S. Y. Choi, F. Rotermund, D. Il Yeom, and B. Y. Kim, “Single-walled carbon nanotubes on side polished fiber as a universal saturable absorber for various laser output states,” Curr. Appl. Phys. 17(1), 37–40 (2017).
[Crossref]

2016 (3)

2015 (4)

2014 (9)

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
[Crossref] [PubMed]

H. Jeong, S. Y. Choi, F. Rotermund, Y.-H. Cha, D.-Y. Jeong, and D.-I. Yeom, “All-fiber mode-locked laser oscillator with pulse energy of 34 nJ using a single-walled carbon nanotube saturable absorber,” Opt. Express 22(19), 22667–22672 (2014).
[Crossref] [PubMed]

D. S. Chernykh, A. A. Krylov, A. E. Levchenko, V. V. Grebenyukov, N. R. Arutunyan, A. S. Pozharov, E. D. Obraztsova, and E. M. Dianov, “Hybrid mode-locked erbium-doped all-fiber soliton laser with a distributed polarizer,” Appl. Opt. 53(29), 6654–6662 (2014).
[Crossref] [PubMed]

A. Roch, T. Roch, E. R. Talens, B. Kaiser, A. Lasagni, E. Beyer, O. Jost, G. Cuniberti, and A. Leson, “Selective laser treatment and laser patterning of metallic and semiconducting nanotubes in single walled carbon nanotube films,” Diamond Related Materials 45, 70–75 (2014).
[Crossref]

S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
[Crossref]

J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, “Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3topological insulator,” Laser Phys. 24(10), 105111 (2014).
[Crossref]

S. F. Bartolucci, K. E. Supan, J. M. Warrender, C. E. Davis, L. La Beaud, K. Knowles, and J. S. Wiggins, “Laser-induced thermo-oxidative degradation of carbon nanotube/polypropylene nanocomposites,” Compos. Sci. Technol. 105, 166–173 (2014).
[Crossref]

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband Graphene Saturable Absorber for Pulsed Fiber Lasers at 1, 1.5, and 2 μm,” IEEE J. Sel. Top. Quantum Electron. 20(5), 411–415 (2014).
[Crossref]

Z. Yu, Y. Wang, X. Zhang, X. Dong, J. Tian, and Y. Song, “A 66 fs highly stable single wall carbon nanotube mode locked fiber laser,” Laser Phys. 24(1), 015105 (2014).
[Crossref]

2013 (4)

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

H. H. Liu, K. K. Chow, S. Yamashita, and S. Y. Set, “Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation,” Opt. Laser Technol. 45(1), 713–716 (2013).
[Crossref]

A. Martinez, K. Fuse, and S. Yamashita, “Enhanced stability of nitrogen-sealed carbon nanotube saturable absorbers under high-intensity irradiation,” Opt. Express 21(4), 4665–4670 (2013).
[Crossref] [PubMed]

H. Jeong, S. Y. Choi, F. Rotermund, and D.-I. Yeom, “Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber,” Opt. Express 21(22), 27011–27016 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (3)

2010 (3)

2009 (3)

2008 (1)

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[Crossref]

2007 (2)

2006 (1)

A. G. Nasibulin, D. P. Brown, P. Queipo, D. Gonzalez, H. Jiang, and E. I. Kauppinen, “An essential role of CO2 and H2O during single-walled CNT synthesis from carbon monoxide,” Chem. Phys. Lett. 417(1–3), 179–184 (2006).
[Crossref]

2004 (1)

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser Mode Locking Using a Saturable Absorber Incorporating Carbon Nanotubes,” J. Lit. Technol. 22(1), 51–56 (2004).
[Crossref]

1998 (1)

H. Fumin, Y. Kwok To, T. Pingheng, Z. Shu-Lin, S. Zujin, Z. Xihuang, and G. Zhennan, “Temperature dependence of the Raman spectra of carbon nanotubes,” J. Appl. Phys. 84(7), 4022–4024 (1998).
[Crossref]

Abramski, K. M.

Afanasiev, F.

Aitchison, B.

A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivistö, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, “Multifunctional free-standing single-walled carbon nanotube films,” ACS Nano 5(4), 3214–3221 (2011).
[Crossref] [PubMed]

S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009).
[Crossref] [PubMed]

Alyshev, S.

Anisimov, A. S.

V. Y. Iakovlev, Y. A. Sklyueva, F. S. Fedorov, D. P. Rupasov, V. A. Kondrashov, A. K. Grebenko, K. G. Mikheev, F. Z. Gilmutdinov, A. S. Anisimov, G. M. Mikheev, and A. G. Nasibulin, “Improvement of optoelectronic properties of single-walled carbon nanotube films by laser treatment,” Diamond Related Materials 88(May), 144–150 (2018).
[Crossref]

S. Kobtsev, A. Ivanenko, Y. G. Gladush, B. Nyushkov, A. Kokhanovskiy, A. S. Anisimov, and A. G. Nasibulin, “Ultrafast all-fibre laser mode-locked by polymer-free carbon nanotube film,” Opt. Express 24(25), 28768–28773 (2016).
[Crossref] [PubMed]

A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivistö, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, “Multifunctional free-standing single-walled carbon nanotube films,” ACS Nano 5(4), 3214–3221 (2011).
[Crossref] [PubMed]

M. He, E. Rikkinen, Z. Zhu, Y. Tian, A. S. Anisimov, H. Jiang, A. G. Nasibulin, E. I. Kauppinen, M. Niemelä, and A. O. I. Krause, “Temperature dependent Raman spectra of carbon nanobuds,” J. Phys. Chem. C 114(32), 13540–13545 (2010).
[Crossref]

Arutunyan, N. R.

Bartolucci, S. F.

S. F. Bartolucci, K. E. Supan, J. M. Warrender, C. E. Davis, L. La Beaud, K. Knowles, and J. S. Wiggins, “Laser-induced thermo-oxidative degradation of carbon nanotube/polypropylene nanocomposites,” Compos. Sci. Technol. 105, 166–173 (2014).
[Crossref]

Beyer, E.

A. Roch, T. Roch, E. R. Talens, B. Kaiser, A. Lasagni, E. Beyer, O. Jost, G. Cuniberti, and A. Leson, “Selective laser treatment and laser patterning of metallic and semiconducting nanotubes in single walled carbon nanotube films,” Diamond Related Materials 45, 70–75 (2014).
[Crossref]

Boguslawski, J.

J. Bogusławski, G. Soboń, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber,” Opt. Express 23(22), 29014–29023 (2015).
[Crossref] [PubMed]

J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, “Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3topological insulator,” Laser Phys. 24(10), 105111 (2014).
[Crossref]

Brown, D. P.

A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivistö, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, “Multifunctional free-standing single-walled carbon nanotube films,” ACS Nano 5(4), 3214–3221 (2011).
[Crossref] [PubMed]

S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009).
[Crossref] [PubMed]

A. G. Nasibulin, D. P. Brown, P. Queipo, D. Gonzalez, H. Jiang, and E. I. Kauppinen, “An essential role of CO2 and H2O during single-walled CNT synthesis from carbon monoxide,” Chem. Phys. Lett. 417(1–3), 179–184 (2006).
[Crossref]

Cai, Y.

Cha, Y.-H.

Chen, K. P.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

Chen, L.

Chen, T.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

Cheng, X.

Chernykh, D. S.

Choi, S. Y.

J. Ko, H. Jeong, S. Y. Choi, F. Rotermund, D. Il Yeom, and B. Y. Kim, “Single-walled carbon nanotubes on side polished fiber as a universal saturable absorber for various laser output states,” Curr. Appl. Phys. 17(1), 37–40 (2017).
[Crossref]

H. Jeong, S. Y. Choi, F. Rotermund, Y.-H. Cha, D.-Y. Jeong, and D.-I. Yeom, “All-fiber mode-locked laser oscillator with pulse energy of 34 nJ using a single-walled carbon nanotube saturable absorber,” Opt. Express 22(19), 22667–22672 (2014).
[Crossref] [PubMed]

S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
[Crossref]

H. Jeong, S. Y. Choi, F. Rotermund, and D.-I. Yeom, “Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber,” Opt. Express 21(22), 27011–27016 (2013).
[Crossref] [PubMed]

C. S. Jun, S. Y. Choi, F. Rotermund, B. Y. Kim, and D.-I. Yeom, “Toward higher-order passive harmonic mode-locking of a soliton fiber laser,” Opt. Lett. 37(11), 1862–1864 (2012).
[Crossref] [PubMed]

C. S. Jun, J. H. Im, S. H. Yoo, S. Y. Choi, F. Rotermund, D. I. Yeom, and B. Y. Kim, “Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes,” Opt. Express 19(20), 19775–19780 (2011).
[Crossref] [PubMed]

J. H. Im, S. Y. Choi, F. Rotermund, and D.-I. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express 18(21), 22141–22146 (2010).
[Crossref] [PubMed]

Chow, K. K.

H. H. Liu, K. K. Chow, S. Yamashita, and S. Y. Set, “Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation,” Opt. Laser Technol. 45(1), 713–716 (2013).
[Crossref]

Cui, Y.

Y. Cui, F. Lu, and X. Liu, “MoS2-clad microfibre laser delivering conventional, dispersion-managed and dissipative solitons,” Sci. Rep. 6(1), 30524 (2016).
[Crossref] [PubMed]

Cuniberti, G.

A. Roch, T. Roch, E. R. Talens, B. Kaiser, A. Lasagni, E. Beyer, O. Jost, G. Cuniberti, and A. Leson, “Selective laser treatment and laser patterning of metallic and semiconducting nanotubes in single walled carbon nanotube films,” Diamond Related Materials 45, 70–75 (2014).
[Crossref]

Davis, C. E.

S. F. Bartolucci, K. E. Supan, J. M. Warrender, C. E. Davis, L. La Beaud, K. Knowles, and J. S. Wiggins, “Laser-induced thermo-oxidative degradation of carbon nanotube/polypropylene nanocomposites,” Compos. Sci. Technol. 105, 166–173 (2014).
[Crossref]

Dianov, E.

Dianov, E. M.

Dong, X.

Z. Yu, Y. Wang, X. Zhang, X. Dong, J. Tian, and Y. Song, “A 66 fs highly stable single wall carbon nanotube mode locked fiber laser,” Laser Phys. 24(1), 015105 (2014).
[Crossref]

Einarsson, E.

Fedorov, F. S.

V. Y. Iakovlev, Y. A. Sklyueva, F. S. Fedorov, D. P. Rupasov, V. A. Kondrashov, A. K. Grebenko, K. G. Mikheev, F. Z. Gilmutdinov, A. S. Anisimov, G. M. Mikheev, and A. G. Nasibulin, “Improvement of optoelectronic properties of single-walled carbon nanotube films by laser treatment,” Diamond Related Materials 88(May), 144–150 (2018).
[Crossref]

Firstov, S.

Fu, B.

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband Graphene Saturable Absorber for Pulsed Fiber Lasers at 1, 1.5, and 2 μm,” IEEE J. Sel. Top. Quantum Electron. 20(5), 411–415 (2014).
[Crossref]

Fumin, H.

H. Fumin, Y. Kwok To, T. Pingheng, Z. Shu-Lin, S. Zujin, Z. Xihuang, and G. Zhennan, “Temperature dependence of the Raman spectra of carbon nanotubes,” J. Appl. Phys. 84(7), 4022–4024 (1998).
[Crossref]

Fuse, K.

Gilmutdinov, F. Z.

V. Y. Iakovlev, Y. A. Sklyueva, F. S. Fedorov, D. P. Rupasov, V. A. Kondrashov, A. K. Grebenko, K. G. Mikheev, F. Z. Gilmutdinov, A. S. Anisimov, G. M. Mikheev, and A. G. Nasibulin, “Improvement of optoelectronic properties of single-walled carbon nanotube films by laser treatment,” Diamond Related Materials 88(May), 144–150 (2018).
[Crossref]

Gladush, Y.

Gladush, Y. G.

Goh, C. S.

Gonzalez, D.

A. G. Nasibulin, D. P. Brown, P. Queipo, D. Gonzalez, H. Jiang, and E. I. Kauppinen, “An essential role of CO2 and H2O during single-walled CNT synthesis from carbon monoxide,” Chem. Phys. Lett. 417(1–3), 179–184 (2006).
[Crossref]

Grebenko, A. K.

V. Y. Iakovlev, Y. A. Sklyueva, F. S. Fedorov, D. P. Rupasov, V. A. Kondrashov, A. K. Grebenko, K. G. Mikheev, F. Z. Gilmutdinov, A. S. Anisimov, G. M. Mikheev, and A. G. Nasibulin, “Improvement of optoelectronic properties of single-walled carbon nanotube films by laser treatment,” Diamond Related Materials 88(May), 144–150 (2018).
[Crossref]

Grebenyukov, V. V.

Hakulinen, T.

Härkönen, A.

He, M.

M. He, E. Rikkinen, Z. Zhu, Y. Tian, A. S. Anisimov, H. Jiang, A. G. Nasibulin, E. I. Kauppinen, M. Niemelä, and A. O. I. Krause, “Temperature dependent Raman spectra of carbon nanobuds,” J. Phys. Chem. C 114(32), 13540–13545 (2010).
[Crossref]

Hong, B. H.

S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
[Crossref]

Hua, Y.

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband Graphene Saturable Absorber for Pulsed Fiber Lasers at 1, 1.5, and 2 μm,” IEEE J. Sel. Top. Quantum Electron. 20(5), 411–415 (2014).
[Crossref]

Iakovlev, V. Y.

V. Y. Iakovlev, Y. A. Sklyueva, F. S. Fedorov, D. P. Rupasov, V. A. Kondrashov, A. K. Grebenko, K. G. Mikheev, F. Z. Gilmutdinov, A. S. Anisimov, G. M. Mikheev, and A. G. Nasibulin, “Improvement of optoelectronic properties of single-walled carbon nanotube films by laser treatment,” Diamond Related Materials 88(May), 144–150 (2018).
[Crossref]

Il Yeom, D.

J. Ko, H. Jeong, S. Y. Choi, F. Rotermund, D. Il Yeom, and B. Y. Kim, “Single-walled carbon nanotubes on side polished fiber as a universal saturable absorber for various laser output states,” Curr. Appl. Phys. 17(1), 37–40 (2017).
[Crossref]

Im, J. H.

Ivanenko, A.

Jablonski, M.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser Mode Locking Using a Saturable Absorber Incorporating Carbon Nanotubes,” J. Lit. Technol. 22(1), 51–56 (2004).
[Crossref]

Jagiello, J.

J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, “Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3topological insulator,” Laser Phys. 24(10), 105111 (2014).
[Crossref]

Jeong, D.-Y.

Jeong, H.

J. Ko, H. Jeong, S. Y. Choi, F. Rotermund, D. Il Yeom, and B. Y. Kim, “Single-walled carbon nanotubes on side polished fiber as a universal saturable absorber for various laser output states,” Curr. Appl. Phys. 17(1), 37–40 (2017).
[Crossref]

H. Jeong, S. Y. Choi, F. Rotermund, Y.-H. Cha, D.-Y. Jeong, and D.-I. Yeom, “All-fiber mode-locked laser oscillator with pulse energy of 34 nJ using a single-walled carbon nanotube saturable absorber,” Opt. Express 22(19), 22667–22672 (2014).
[Crossref] [PubMed]

S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
[Crossref]

H. Jeong, S. Y. Choi, F. Rotermund, and D.-I. Yeom, “Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber,” Opt. Express 21(22), 27011–27016 (2013).
[Crossref] [PubMed]

Jhon, Y. M.

Jiang, H.

M. He, E. Rikkinen, Z. Zhu, Y. Tian, A. S. Anisimov, H. Jiang, A. G. Nasibulin, E. I. Kauppinen, M. Niemelä, and A. O. I. Krause, “Temperature dependent Raman spectra of carbon nanobuds,” J. Phys. Chem. C 114(32), 13540–13545 (2010).
[Crossref]

A. G. Nasibulin, D. P. Brown, P. Queipo, D. Gonzalez, H. Jiang, and E. I. Kauppinen, “An essential role of CO2 and H2O during single-walled CNT synthesis from carbon monoxide,” Chem. Phys. Lett. 417(1–3), 179–184 (2006).
[Crossref]

Jiang, T.

Jost, O.

A. Roch, T. Roch, E. R. Talens, B. Kaiser, A. Lasagni, E. Beyer, O. Jost, G. Cuniberti, and A. Leson, “Selective laser treatment and laser patterning of metallic and semiconducting nanotubes in single walled carbon nanotube films,” Diamond Related Materials 45, 70–75 (2014).
[Crossref]

Jun, C. S.

Jung, M.

Kaiser, B.

A. Roch, T. Roch, E. R. Talens, B. Kaiser, A. Lasagni, E. Beyer, O. Jost, G. Cuniberti, and A. Leson, “Selective laser treatment and laser patterning of metallic and semiconducting nanotubes in single walled carbon nanotube films,” Diamond Related Materials 45, 70–75 (2014).
[Crossref]

Kang, J.-J.

Kashiwagi, K.

Kaskela, A.

K. Mustonen, P. Laiho, A. Kaskela, T. Susi, A. G. Nasibulin, and E. I. Kauppinen, “Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors,” Appl. Phys. Lett. 107(14), 143113 (2015).
[Crossref]

A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivistö, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, “Multifunctional free-standing single-walled carbon nanotube films,” ACS Nano 5(4), 3214–3221 (2011).
[Crossref] [PubMed]

S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009).
[Crossref] [PubMed]

Kauppinen, E. I.

K. Mustonen, P. Laiho, A. Kaskela, T. Susi, A. G. Nasibulin, and E. I. Kauppinen, “Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors,” Appl. Phys. Lett. 107(14), 143113 (2015).
[Crossref]

A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivistö, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, “Multifunctional free-standing single-walled carbon nanotube films,” ACS Nano 5(4), 3214–3221 (2011).
[Crossref] [PubMed]

M. He, E. Rikkinen, Z. Zhu, Y. Tian, A. S. Anisimov, H. Jiang, A. G. Nasibulin, E. I. Kauppinen, M. Niemelä, and A. O. I. Krause, “Temperature dependent Raman spectra of carbon nanobuds,” J. Phys. Chem. C 114(32), 13540–13545 (2010).
[Crossref]

S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009).
[Crossref] [PubMed]

A. G. Nasibulin, D. P. Brown, P. Queipo, D. Gonzalez, H. Jiang, and E. I. Kauppinen, “An essential role of CO2 and H2O during single-walled CNT synthesis from carbon monoxide,” Chem. Phys. Lett. 417(1–3), 179–184 (2006).
[Crossref]

Kauppinen, M.

A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivistö, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, “Multifunctional free-standing single-walled carbon nanotube films,” ACS Nano 5(4), 3214–3221 (2011).
[Crossref] [PubMed]

Khegai, A.

Khopin, V.

Kim, B. Y.

Kim, J.

Kim, K.-S.

Kim, S.

Kivistö, S.

A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivistö, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, “Multifunctional free-standing single-walled carbon nanotube films,” ACS Nano 5(4), 3214–3221 (2011).
[Crossref] [PubMed]

S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009).
[Crossref] [PubMed]

Knowles, K.

S. F. Bartolucci, K. E. Supan, J. M. Warrender, C. E. Davis, L. La Beaud, K. Knowles, and J. S. Wiggins, “Laser-induced thermo-oxidative degradation of carbon nanotube/polypropylene nanocomposites,” Compos. Sci. Technol. 105, 166–173 (2014).
[Crossref]

Ko, J.

J. Ko, H. Jeong, S. Y. Choi, F. Rotermund, D. Il Yeom, and B. Y. Kim, “Single-walled carbon nanotubes on side polished fiber as a universal saturable absorber for various laser output states,” Curr. Appl. Phys. 17(1), 37–40 (2017).
[Crossref]

Kobtsev, S.

Kokhanovskiy, A.

Kondrashov, V. A.

V. Y. Iakovlev, Y. A. Sklyueva, F. S. Fedorov, D. P. Rupasov, V. A. Kondrashov, A. K. Grebenko, K. G. Mikheev, F. Z. Gilmutdinov, A. S. Anisimov, G. M. Mikheev, and A. G. Nasibulin, “Improvement of optoelectronic properties of single-walled carbon nanotube films by laser treatment,” Diamond Related Materials 88(May), 144–150 (2018).
[Crossref]

Koo, J.

Kowalczyk, M.

Krause, A. O. I.

M. He, E. Rikkinen, Z. Zhu, Y. Tian, A. S. Anisimov, H. Jiang, A. G. Nasibulin, E. I. Kauppinen, M. Niemelä, and A. O. I. Krause, “Temperature dependent Raman spectra of carbon nanobuds,” J. Phys. Chem. C 114(32), 13540–13545 (2010).
[Crossref]

Krylov, A. A.

Kwok To, Y.

H. Fumin, Y. Kwok To, T. Pingheng, Z. Shu-Lin, S. Zujin, Z. Xihuang, and G. Zhennan, “Temperature dependence of the Raman spectra of carbon nanotubes,” J. Appl. Phys. 84(7), 4022–4024 (1998).
[Crossref]

La Beaud, L.

S. F. Bartolucci, K. E. Supan, J. M. Warrender, C. E. Davis, L. La Beaud, K. Knowles, and J. S. Wiggins, “Laser-induced thermo-oxidative degradation of carbon nanotube/polypropylene nanocomposites,” Compos. Sci. Technol. 105, 166–173 (2014).
[Crossref]

Laiho, P.

K. Mustonen, P. Laiho, A. Kaskela, T. Susi, A. G. Nasibulin, and E. I. Kauppinen, “Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors,” Appl. Phys. Lett. 107(14), 143113 (2015).
[Crossref]

Lasagni, A.

A. Roch, T. Roch, E. R. Talens, B. Kaiser, A. Lasagni, E. Beyer, O. Jost, G. Cuniberti, and A. Leson, “Selective laser treatment and laser patterning of metallic and semiconducting nanotubes in single walled carbon nanotube films,” Diamond Related Materials 45, 70–75 (2014).
[Crossref]

Lee, C.-K.

Lee, J.

Lee, J. H.

Lee, K.

Lee, S.

Leson, A.

A. Roch, T. Roch, E. R. Talens, B. Kaiser, A. Lasagni, E. Beyer, O. Jost, G. Cuniberti, and A. Leson, “Selective laser treatment and laser patterning of metallic and semiconducting nanotubes in single walled carbon nanotube films,” Diamond Related Materials 45, 70–75 (2014).
[Crossref]

Levchenko, A. E.

Li, M.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

Lin, G.-R.

Lin, K.-H.

Lipinska, L.

J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, “Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3topological insulator,” Laser Phys. 24(10), 105111 (2014).
[Crossref]

Liu, H. H.

H. H. Liu, K. K. Chow, S. Yamashita, and S. Y. Set, “Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation,” Opt. Laser Technol. 45(1), 713–716 (2013).
[Crossref]

Liu, X.

Y. Cui, F. Lu, and X. Liu, “MoS2-clad microfibre laser delivering conventional, dispersion-managed and dissipative solitons,” Sci. Rep. 6(1), 30524 (2016).
[Crossref] [PubMed]

Lobanov, A.

Lu, F.

Y. Cui, F. Lu, and X. Liu, “MoS2-clad microfibre laser delivering conventional, dispersion-managed and dissipative solitons,” Sci. Rep. 6(1), 30524 (2016).
[Crossref] [PubMed]

Lu, Y.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

Ma, D.

Macherzynski, W.

J. Sotor, G. Sobon, M. Kowalczyk, W. Macherzynski, P. Paletko, and K. M. Abramski, “Ultrafast thulium-doped fiber laser mode locked with black phosphorus,” Opt. Lett. 40(16), 3885–3888 (2015).
[Crossref] [PubMed]

J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, “Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3topological insulator,” Laser Phys. 24(10), 105111 (2014).
[Crossref]

Mars, K.

Martinez, A.

Maruyama, S.

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[Crossref]

Y.-W. Song, S. Yamashita, E. Einarsson, and S. Maruyama, “All-fiber pulsed lasers passively mode locked by transferable vertically aligned carbon nanotube film,” Opt. Lett. 32(11), 1399–1401 (2007).
[Crossref] [PubMed]

Melkumov, M.

Mikheev, G. M.

V. Y. Iakovlev, Y. A. Sklyueva, F. S. Fedorov, D. P. Rupasov, V. A. Kondrashov, A. K. Grebenko, K. G. Mikheev, F. Z. Gilmutdinov, A. S. Anisimov, G. M. Mikheev, and A. G. Nasibulin, “Improvement of optoelectronic properties of single-walled carbon nanotube films by laser treatment,” Diamond Related Materials 88(May), 144–150 (2018).
[Crossref]

Mikheev, K. G.

V. Y. Iakovlev, Y. A. Sklyueva, F. S. Fedorov, D. P. Rupasov, V. A. Kondrashov, A. K. Grebenko, K. G. Mikheev, F. Z. Gilmutdinov, A. S. Anisimov, G. M. Mikheev, and A. G. Nasibulin, “Improvement of optoelectronic properties of single-walled carbon nanotube films by laser treatment,” Diamond Related Materials 88(May), 144–150 (2018).
[Crossref]

Mikula, A.

Mustonen, K.

K. Mustonen, P. Laiho, A. Kaskela, T. Susi, A. G. Nasibulin, and E. I. Kauppinen, “Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors,” Appl. Phys. Lett. 107(14), 143113 (2015).
[Crossref]

A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivistö, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, “Multifunctional free-standing single-walled carbon nanotube films,” ACS Nano 5(4), 3214–3221 (2011).
[Crossref] [PubMed]

Nasibulin, A. G.

A. Khegai, M. Melkumov, S. Firstov, K. Riumkin, Y. Gladush, S. Alyshev, A. Lobanov, V. Khopin, F. Afanasiev, A. G. Nasibulin, and E. Dianov, “Bismuth-doped fiber laser at 1.32 μm mode-locked by single-walled carbon nanotubes,” Opt. Express 26(18), 23911–23917 (2018).
[Crossref] [PubMed]

V. Y. Iakovlev, Y. A. Sklyueva, F. S. Fedorov, D. P. Rupasov, V. A. Kondrashov, A. K. Grebenko, K. G. Mikheev, F. Z. Gilmutdinov, A. S. Anisimov, G. M. Mikheev, and A. G. Nasibulin, “Improvement of optoelectronic properties of single-walled carbon nanotube films by laser treatment,” Diamond Related Materials 88(May), 144–150 (2018).
[Crossref]

S. Kobtsev, A. Ivanenko, Y. G. Gladush, B. Nyushkov, A. Kokhanovskiy, A. S. Anisimov, and A. G. Nasibulin, “Ultrafast all-fibre laser mode-locked by polymer-free carbon nanotube film,” Opt. Express 24(25), 28768–28773 (2016).
[Crossref] [PubMed]

K. Mustonen, P. Laiho, A. Kaskela, T. Susi, A. G. Nasibulin, and E. I. Kauppinen, “Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors,” Appl. Phys. Lett. 107(14), 143113 (2015).
[Crossref]

A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivistö, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, “Multifunctional free-standing single-walled carbon nanotube films,” ACS Nano 5(4), 3214–3221 (2011).
[Crossref] [PubMed]

M. He, E. Rikkinen, Z. Zhu, Y. Tian, A. S. Anisimov, H. Jiang, A. G. Nasibulin, E. I. Kauppinen, M. Niemelä, and A. O. I. Krause, “Temperature dependent Raman spectra of carbon nanobuds,” J. Phys. Chem. C 114(32), 13540–13545 (2010).
[Crossref]

S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009).
[Crossref] [PubMed]

A. G. Nasibulin, D. P. Brown, P. Queipo, D. Gonzalez, H. Jiang, and E. I. Kauppinen, “An essential role of CO2 and H2O during single-walled CNT synthesis from carbon monoxide,” Chem. Phys. Lett. 417(1–3), 179–184 (2006).
[Crossref]

Niemelä, M.

M. He, E. Rikkinen, Z. Zhu, Y. Tian, A. S. Anisimov, H. Jiang, A. G. Nasibulin, E. I. Kauppinen, M. Niemelä, and A. O. I. Krause, “Temperature dependent Raman spectra of carbon nanobuds,” J. Phys. Chem. C 114(32), 13540–13545 (2010).
[Crossref]

Nyushkov, B.

Obraztsova, E. D.

Okhotnikov, O. G.

A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivistö, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, “Multifunctional free-standing single-walled carbon nanotube films,” ACS Nano 5(4), 3214–3221 (2011).
[Crossref] [PubMed]

S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009).
[Crossref] [PubMed]

Paletko, P.

Park, J.

Pingheng, T.

H. Fumin, Y. Kwok To, T. Pingheng, Z. Shu-Lin, S. Zujin, Z. Xihuang, and G. Zhennan, “Temperature dependence of the Raman spectra of carbon nanotubes,” J. Appl. Phys. 84(7), 4022–4024 (1998).
[Crossref]

Pozharov, A. S.

Pudas, M.

A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivistö, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, “Multifunctional free-standing single-walled carbon nanotube films,” ACS Nano 5(4), 3214–3221 (2011).
[Crossref] [PubMed]

Queipo, P.

A. G. Nasibulin, D. P. Brown, P. Queipo, D. Gonzalez, H. Jiang, and E. I. Kauppinen, “An essential role of CO2 and H2O during single-walled CNT synthesis from carbon monoxide,” Chem. Phys. Lett. 417(1–3), 179–184 (2006).
[Crossref]

Rackauskas, S.

A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivistö, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, “Multifunctional free-standing single-walled carbon nanotube films,” ACS Nano 5(4), 3214–3221 (2011).
[Crossref] [PubMed]

Rikkinen, E.

M. He, E. Rikkinen, Z. Zhu, Y. Tian, A. S. Anisimov, H. Jiang, A. G. Nasibulin, E. I. Kauppinen, M. Niemelä, and A. O. I. Krause, “Temperature dependent Raman spectra of carbon nanobuds,” J. Phys. Chem. C 114(32), 13540–13545 (2010).
[Crossref]

Riumkin, K.

Roch, A.

A. Roch, T. Roch, E. R. Talens, B. Kaiser, A. Lasagni, E. Beyer, O. Jost, G. Cuniberti, and A. Leson, “Selective laser treatment and laser patterning of metallic and semiconducting nanotubes in single walled carbon nanotube films,” Diamond Related Materials 45, 70–75 (2014).
[Crossref]

Roch, T.

A. Roch, T. Roch, E. R. Talens, B. Kaiser, A. Lasagni, E. Beyer, O. Jost, G. Cuniberti, and A. Leson, “Selective laser treatment and laser patterning of metallic and semiconducting nanotubes in single walled carbon nanotube films,” Diamond Related Materials 45, 70–75 (2014).
[Crossref]

Rotermund, F.

J. Ko, H. Jeong, S. Y. Choi, F. Rotermund, D. Il Yeom, and B. Y. Kim, “Single-walled carbon nanotubes on side polished fiber as a universal saturable absorber for various laser output states,” Curr. Appl. Phys. 17(1), 37–40 (2017).
[Crossref]

S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
[Crossref]

H. Jeong, S. Y. Choi, F. Rotermund, Y.-H. Cha, D.-Y. Jeong, and D.-I. Yeom, “All-fiber mode-locked laser oscillator with pulse energy of 34 nJ using a single-walled carbon nanotube saturable absorber,” Opt. Express 22(19), 22667–22672 (2014).
[Crossref] [PubMed]

H. Jeong, S. Y. Choi, F. Rotermund, and D.-I. Yeom, “Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber,” Opt. Express 21(22), 27011–27016 (2013).
[Crossref] [PubMed]

C. S. Jun, S. Y. Choi, F. Rotermund, B. Y. Kim, and D.-I. Yeom, “Toward higher-order passive harmonic mode-locking of a soliton fiber laser,” Opt. Lett. 37(11), 1862–1864 (2012).
[Crossref] [PubMed]

C. S. Jun, J. H. Im, S. H. Yoo, S. Y. Choi, F. Rotermund, D. I. Yeom, and B. Y. Kim, “Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes,” Opt. Express 19(20), 19775–19780 (2011).
[Crossref] [PubMed]

J. H. Im, S. Y. Choi, F. Rotermund, and D.-I. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express 18(21), 22141–22146 (2010).
[Crossref] [PubMed]

Ruiz, V.

A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivistö, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, “Multifunctional free-standing single-walled carbon nanotube films,” ACS Nano 5(4), 3214–3221 (2011).
[Crossref] [PubMed]

Rupasov, D. P.

V. Y. Iakovlev, Y. A. Sklyueva, F. S. Fedorov, D. P. Rupasov, V. A. Kondrashov, A. K. Grebenko, K. G. Mikheev, F. Z. Gilmutdinov, A. S. Anisimov, G. M. Mikheev, and A. G. Nasibulin, “Improvement of optoelectronic properties of single-walled carbon nanotube films by laser treatment,” Diamond Related Materials 88(May), 144–150 (2018).
[Crossref]

Ryu, S. Y.

Set, S. Y.

H. H. Liu, K. K. Chow, S. Yamashita, and S. Y. Set, “Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation,” Opt. Laser Technol. 45(1), 713–716 (2013).
[Crossref]

K. Kashiwagi, S. Yamashita, and S. Y. Set, “In-situ monitoring of optical deposition of carbon nanotubes onto fiber end,” Opt. Express 17(7), 5711–5715 (2009).
[Crossref] [PubMed]

Y.-W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32(2), 148–150 (2007).
[Crossref] [PubMed]

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser Mode Locking Using a Saturable Absorber Incorporating Carbon Nanotubes,” J. Lit. Technol. 22(1), 51–56 (2004).
[Crossref]

Shu-Lin, Z.

H. Fumin, Y. Kwok To, T. Pingheng, Z. Shu-Lin, S. Zujin, Z. Xihuang, and G. Zhennan, “Temperature dependence of the Raman spectra of carbon nanotubes,” J. Appl. Phys. 84(7), 4022–4024 (1998).
[Crossref]

Sklyueva, Y. A.

V. Y. Iakovlev, Y. A. Sklyueva, F. S. Fedorov, D. P. Rupasov, V. A. Kondrashov, A. K. Grebenko, K. G. Mikheev, F. Z. Gilmutdinov, A. S. Anisimov, G. M. Mikheev, and A. G. Nasibulin, “Improvement of optoelectronic properties of single-walled carbon nanotube films by laser treatment,” Diamond Related Materials 88(May), 144–150 (2018).
[Crossref]

Sobon, G.

Song, Y.

Z. Yu, Y. Wang, X. Zhang, X. Dong, J. Tian, and Y. Song, “A 66 fs highly stable single wall carbon nanotube mode locked fiber laser,” Laser Phys. 24(1), 015105 (2014).
[Crossref]

Song, Y. W.

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[Crossref]

Song, Y.-W.

Sotor, J.

Sun, Z.

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband Graphene Saturable Absorber for Pulsed Fiber Lasers at 1, 1.5, and 2 μm,” IEEE J. Sel. Top. Quantum Electron. 20(5), 411–415 (2014).
[Crossref]

Supan, K. E.

S. F. Bartolucci, K. E. Supan, J. M. Warrender, C. E. Davis, L. La Beaud, K. Knowles, and J. S. Wiggins, “Laser-induced thermo-oxidative degradation of carbon nanotube/polypropylene nanocomposites,” Compos. Sci. Technol. 105, 166–173 (2014).
[Crossref]

Susi, T.

K. Mustonen, P. Laiho, A. Kaskela, T. Susi, A. G. Nasibulin, and E. I. Kauppinen, “Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors,” Appl. Phys. Lett. 107(14), 143113 (2015).
[Crossref]

Talens, E. R.

A. Roch, T. Roch, E. R. Talens, B. Kaiser, A. Lasagni, E. Beyer, O. Jost, G. Cuniberti, and A. Leson, “Selective laser treatment and laser patterning of metallic and semiconducting nanotubes in single walled carbon nanotube films,” Diamond Related Materials 45, 70–75 (2014).
[Crossref]

Tanaka, Y.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser Mode Locking Using a Saturable Absorber Incorporating Carbon Nanotubes,” J. Lit. Technol. 22(1), 51–56 (2004).
[Crossref]

Tarka, J.

J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, “Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3topological insulator,” Laser Phys. 24(10), 105111 (2014).
[Crossref]

Tian, J.

Z. Yu, Y. Wang, X. Zhang, X. Dong, J. Tian, and Y. Song, “A 66 fs highly stable single wall carbon nanotube mode locked fiber laser,” Laser Phys. 24(1), 015105 (2014).
[Crossref]

Tian, Y.

M. He, E. Rikkinen, Z. Zhu, Y. Tian, A. S. Anisimov, H. Jiang, A. G. Nasibulin, E. I. Kauppinen, M. Niemelä, and A. O. I. Krause, “Temperature dependent Raman spectra of carbon nanobuds,” J. Phys. Chem. C 114(32), 13540–13545 (2010).
[Crossref]

Timmermans, M. Y.

A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivistö, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, “Multifunctional free-standing single-walled carbon nanotube films,” ACS Nano 5(4), 3214–3221 (2011).
[Crossref] [PubMed]

Wang, Q.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

Wang, Y.

Z. Yu, Y. Wang, X. Zhang, X. Dong, J. Tian, and Y. Song, “A 66 fs highly stable single wall carbon nanotube mode locked fiber laser,” Laser Phys. 24(1), 015105 (2014).
[Crossref]

Warrender, J. M.

S. F. Bartolucci, K. E. Supan, J. M. Warrender, C. E. Davis, L. La Beaud, K. Knowles, and J. S. Wiggins, “Laser-induced thermo-oxidative degradation of carbon nanotube/polypropylene nanocomposites,” Compos. Sci. Technol. 105, 166–173 (2014).
[Crossref]

Wiggins, J. S.

S. F. Bartolucci, K. E. Supan, J. M. Warrender, C. E. Davis, L. La Beaud, K. Knowles, and J. S. Wiggins, “Laser-induced thermo-oxidative degradation of carbon nanotube/polypropylene nanocomposites,” Compos. Sci. Technol. 105, 166–173 (2014).
[Crossref]

Wu, H.-H.

Xiao, X.

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband Graphene Saturable Absorber for Pulsed Fiber Lasers at 1, 1.5, and 2 μm,” IEEE J. Sel. Top. Quantum Electron. 20(5), 411–415 (2014).
[Crossref]

Xihuang, Z.

H. Fumin, Y. Kwok To, T. Pingheng, Z. Shu-Lin, S. Zujin, Z. Xihuang, and G. Zhennan, “Temperature dependence of the Raman spectra of carbon nanotubes,” J. Appl. Phys. 84(7), 4022–4024 (1998).
[Crossref]

Yaguchi, H.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser Mode Locking Using a Saturable Absorber Incorporating Carbon Nanotubes,” J. Lit. Technol. 22(1), 51–56 (2004).
[Crossref]

Yamashita, S.

H. H. Liu, K. K. Chow, S. Yamashita, and S. Y. Set, “Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation,” Opt. Laser Technol. 45(1), 713–716 (2013).
[Crossref]

A. Martinez, K. Fuse, and S. Yamashita, “Enhanced stability of nitrogen-sealed carbon nanotube saturable absorbers under high-intensity irradiation,” Opt. Express 21(4), 4665–4670 (2013).
[Crossref] [PubMed]

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
[Crossref]

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
[Crossref] [PubMed]

K. Kashiwagi, S. Yamashita, and S. Y. Set, “In-situ monitoring of optical deposition of carbon nanotubes onto fiber end,” Opt. Express 17(7), 5711–5715 (2009).
[Crossref] [PubMed]

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[Crossref]

Y.-W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett. 32(2), 148–150 (2007).
[Crossref] [PubMed]

Y.-W. Song, S. Yamashita, E. Einarsson, and S. Maruyama, “All-fiber pulsed lasers passively mode locked by transferable vertically aligned carbon nanotube film,” Opt. Lett. 32(11), 1399–1401 (2007).
[Crossref] [PubMed]

Yang, C.

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband Graphene Saturable Absorber for Pulsed Fiber Lasers at 1, 1.5, and 2 μm,” IEEE J. Sel. Top. Quantum Electron. 20(5), 411–415 (2014).
[Crossref]

Yeom, D. I.

Yeom, D.-I.

Yin, K.

Yoo, S. H.

Yu, H.

Yu, Z.

Z. Yu, Y. Wang, X. Zhang, X. Dong, J. Tian, and Y. Song, “A 66 fs highly stable single wall carbon nanotube mode locked fiber laser,” Laser Phys. 24(1), 015105 (2014).
[Crossref]

Zhang, B.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

Zhang, X.

Z. Yu, Y. Wang, X. Zhang, X. Dong, J. Tian, and Y. Song, “A 66 fs highly stable single wall carbon nanotube mode locked fiber laser,” Laser Phys. 24(1), 015105 (2014).
[Crossref]

Zhang, Z.

Zheng, X.

Zhennan, G.

H. Fumin, Y. Kwok To, T. Pingheng, Z. Shu-Lin, S. Zujin, Z. Xihuang, and G. Zhennan, “Temperature dependence of the Raman spectra of carbon nanotubes,” J. Appl. Phys. 84(7), 4022–4024 (1998).
[Crossref]

Zhou, C.

Zhu, H.

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband Graphene Saturable Absorber for Pulsed Fiber Lasers at 1, 1.5, and 2 μm,” IEEE J. Sel. Top. Quantum Electron. 20(5), 411–415 (2014).
[Crossref]

Zhu, Z.

M. He, E. Rikkinen, Z. Zhu, Y. Tian, A. S. Anisimov, H. Jiang, A. G. Nasibulin, E. I. Kauppinen, M. Niemelä, and A. O. I. Krause, “Temperature dependent Raman spectra of carbon nanobuds,” J. Phys. Chem. C 114(32), 13540–13545 (2010).
[Crossref]

Zong, W.

Zujin, S.

H. Fumin, Y. Kwok To, T. Pingheng, Z. Shu-Lin, S. Zujin, Z. Xihuang, and G. Zhennan, “Temperature dependence of the Raman spectra of carbon nanotubes,” J. Appl. Phys. 84(7), 4022–4024 (1998).
[Crossref]

Zybala, R.

ACS Nano (1)

A. G. Nasibulin, A. Kaskela, K. Mustonen, A. S. Anisimov, V. Ruiz, S. Kivistö, S. Rackauskas, M. Y. Timmermans, M. Pudas, B. Aitchison, M. Kauppinen, D. P. Brown, O. G. Okhotnikov, and E. I. Kauppinen, “Multifunctional free-standing single-walled carbon nanotube films,” ACS Nano 5(4), 3214–3221 (2011).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett. 102(13), 131117 (2013).
[Crossref]

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett. 101(4), 041118 (2012).
[Crossref]

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92(2), 021115 (2008).
[Crossref]

K. Mustonen, P. Laiho, A. Kaskela, T. Susi, A. G. Nasibulin, and E. I. Kauppinen, “Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors,” Appl. Phys. Lett. 107(14), 143113 (2015).
[Crossref]

Chem. Phys. Lett. (1)

A. G. Nasibulin, D. P. Brown, P. Queipo, D. Gonzalez, H. Jiang, and E. I. Kauppinen, “An essential role of CO2 and H2O during single-walled CNT synthesis from carbon monoxide,” Chem. Phys. Lett. 417(1–3), 179–184 (2006).
[Crossref]

Compos. Sci. Technol. (1)

S. F. Bartolucci, K. E. Supan, J. M. Warrender, C. E. Davis, L. La Beaud, K. Knowles, and J. S. Wiggins, “Laser-induced thermo-oxidative degradation of carbon nanotube/polypropylene nanocomposites,” Compos. Sci. Technol. 105, 166–173 (2014).
[Crossref]

Curr. Appl. Phys. (1)

J. Ko, H. Jeong, S. Y. Choi, F. Rotermund, D. Il Yeom, and B. Y. Kim, “Single-walled carbon nanotubes on side polished fiber as a universal saturable absorber for various laser output states,” Curr. Appl. Phys. 17(1), 37–40 (2017).
[Crossref]

Diamond Related Materials (2)

V. Y. Iakovlev, Y. A. Sklyueva, F. S. Fedorov, D. P. Rupasov, V. A. Kondrashov, A. K. Grebenko, K. G. Mikheev, F. Z. Gilmutdinov, A. S. Anisimov, G. M. Mikheev, and A. G. Nasibulin, “Improvement of optoelectronic properties of single-walled carbon nanotube films by laser treatment,” Diamond Related Materials 88(May), 144–150 (2018).
[Crossref]

A. Roch, T. Roch, E. R. Talens, B. Kaiser, A. Lasagni, E. Beyer, O. Jost, G. Cuniberti, and A. Leson, “Selective laser treatment and laser patterning of metallic and semiconducting nanotubes in single walled carbon nanotube films,” Diamond Related Materials 45, 70–75 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband Graphene Saturable Absorber for Pulsed Fiber Lasers at 1, 1.5, and 2 μm,” IEEE J. Sel. Top. Quantum Electron. 20(5), 411–415 (2014).
[Crossref]

J. Appl. Phys. (1)

H. Fumin, Y. Kwok To, T. Pingheng, Z. Shu-Lin, S. Zujin, Z. Xihuang, and G. Zhennan, “Temperature dependence of the Raman spectra of carbon nanotubes,” J. Appl. Phys. 84(7), 4022–4024 (1998).
[Crossref]

J. Lit. Technol. (1)

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser Mode Locking Using a Saturable Absorber Incorporating Carbon Nanotubes,” J. Lit. Technol. 22(1), 51–56 (2004).
[Crossref]

J. Phys. Chem. C (1)

M. He, E. Rikkinen, Z. Zhu, Y. Tian, A. S. Anisimov, H. Jiang, A. G. Nasibulin, E. I. Kauppinen, M. Niemelä, and A. O. I. Krause, “Temperature dependent Raman spectra of carbon nanobuds,” J. Phys. Chem. C 114(32), 13540–13545 (2010).
[Crossref]

Laser Phys. (2)

Z. Yu, Y. Wang, X. Zhang, X. Dong, J. Tian, and Y. Song, “A 66 fs highly stable single wall carbon nanotube mode locked fiber laser,” Laser Phys. 24(1), 015105 (2014).
[Crossref]

J. Boguslawski, J. Sotor, G. Sobon, J. Tarka, J. Jagiello, W. Macherzynski, L. Lipinska, and K. M. Abramski, “Mode-locked Er-doped fiber laser based on liquid phase exfoliated Sb2Te3topological insulator,” Laser Phys. 24(10), 105111 (2014).
[Crossref]

Laser Phys. Lett. (1)

S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, “All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber,” Laser Phys. Lett. 11(1), 015101 (2014).
[Crossref]

Opt. Express (15)

S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009).
[Crossref] [PubMed]

K.-H. Lin, J.-J. Kang, H.-H. Wu, C.-K. Lee, and G.-R. Lin, “Manipulation of operation states by polarization control in an erbium-doped fiber laser with a hybrid saturable absorber,” Opt. Express 17(6), 4806–4814 (2009).
[Crossref] [PubMed]

K. Kashiwagi, S. Yamashita, and S. Y. Set, “In-situ monitoring of optical deposition of carbon nanotubes onto fiber end,” Opt. Express 17(7), 5711–5715 (2009).
[Crossref] [PubMed]

J. H. Im, S. Y. Choi, F. Rotermund, and D.-I. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express 18(21), 22141–22146 (2010).
[Crossref] [PubMed]

A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19(7), 6155–6163 (2011).
[Crossref] [PubMed]

C. S. Jun, J. H. Im, S. H. Yoo, S. Y. Choi, F. Rotermund, D. I. Yeom, and B. Y. Kim, “Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes,” Opt. Express 19(20), 19775–19780 (2011).
[Crossref] [PubMed]

S. Y. Ryu, K.-S. Kim, J. Kim, and S. Kim, “Degradation of optical properties of a film-type single-wall carbon nanotubes saturable absorber (SWNT-SA) with an Er-doped all-fiber laser,” Opt. Express 20(12), 12966–12974 (2012).
[Crossref] [PubMed]

A. Martinez, K. Fuse, and S. Yamashita, “Enhanced stability of nitrogen-sealed carbon nanotube saturable absorbers under high-intensity irradiation,” Opt. Express 21(4), 4665–4670 (2013).
[Crossref] [PubMed]

H. Jeong, S. Y. Choi, F. Rotermund, and D.-I. Yeom, “Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber,” Opt. Express 21(22), 27011–27016 (2013).
[Crossref] [PubMed]

M. Jung, J. Lee, J. Koo, J. Park, Y.-W. Song, K. Lee, S. Lee, and J. H. Lee, “A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator,” Opt. Express 22(7), 7865–7874 (2014).
[Crossref] [PubMed]

H. Jeong, S. Y. Choi, F. Rotermund, Y.-H. Cha, D.-Y. Jeong, and D.-I. Yeom, “All-fiber mode-locked laser oscillator with pulse energy of 34 nJ using a single-walled carbon nanotube saturable absorber,” Opt. Express 22(19), 22667–22672 (2014).
[Crossref] [PubMed]

J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24(10), 10575–10589 (2016).
[Crossref] [PubMed]

S. Kobtsev, A. Ivanenko, Y. G. Gladush, B. Nyushkov, A. Kokhanovskiy, A. S. Anisimov, and A. G. Nasibulin, “Ultrafast all-fibre laser mode-locked by polymer-free carbon nanotube film,” Opt. Express 24(25), 28768–28773 (2016).
[Crossref] [PubMed]

A. Khegai, M. Melkumov, S. Firstov, K. Riumkin, Y. Gladush, S. Alyshev, A. Lobanov, V. Khopin, F. Afanasiev, A. G. Nasibulin, and E. Dianov, “Bismuth-doped fiber laser at 1.32 μm mode-locked by single-walled carbon nanotubes,” Opt. Express 26(18), 23911–23917 (2018).
[Crossref] [PubMed]

J. Bogusławski, G. Soboń, R. Zybała, K. Mars, A. Mikuła, K. M. Abramski, and J. Sotor, “Investigation on pulse shaping in fiber laser hybrid mode-locked by Sb2Te3 saturable absorber,” Opt. Express 23(22), 29014–29023 (2015).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

H. H. Liu, K. K. Chow, S. Yamashita, and S. Y. Set, “Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation,” Opt. Laser Technol. 45(1), 713–716 (2013).
[Crossref]

Opt. Lett. (5)

Sci. Rep. (1)

Y. Cui, F. Lu, and X. Liu, “MoS2-clad microfibre laser delivering conventional, dispersion-managed and dissipative solitons,” Sci. Rep. 6(1), 30524 (2016).
[Crossref] [PubMed]

Other (2)

S. P. Su, Y. H. Xu, and C. A. Wilkie, “Thermal degradation of polymer-carbon nanotube composites,” Polym. Nanotub. Compos. Prep. Prop. Appl. 2011, 482–510 (2011).
[Crossref]

S. Yamashita, Y. Saito, and J. H. Choi, Carbon Nanotubes and Graphene for Photonic Applications (Woodhead Publishing Limited, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Spectrum of aerosol CVD grown SWCNTs, where S11 and S22 transitions correspond to semiconducting SWCNTs and M11 transition to metallic one. (b) Raman spectrum of the SWCNTs measured with a 532 nm laser. Inset: Scanning electron microscope image of the SWCNT film.
Fig. 2
Fig. 2 Schematic view of the SWCNT deposition onto the D-shape fiber using the dry transfer technique: (a) a filter with the collected SWCNTs approaches and being pressed to the D-shape fiber, (b) SWCNTs deposited onto the D-shape fiber.
Fig. 3
Fig. 3 Experimental setup for measurements of (a) the polarization depended losses (PDL) of the SWCNT-SA on a D-shape fiber with a rotating polarizer, (b) the sample nonlinear transmittance.
Fig. 4
Fig. 4 Transmittance of the sample shown (a) in polar coordinates, which minimum and maximum values correspond to in-plane and out-of-plane polarizations, respectively; (b) versus the input power for the in-plane and out-of-plane polarizations.
Fig. 5
Fig. 5 All fiber laser scheme with a SWCNT-SA on the D-shape fiber in the ring resonator.
Fig. 6
Fig. 6 Experimental results obtained for the single-soliton mode-lock pulse regime: (a) autocorrelation trace and its theoretical fit with the pulse width of 372 fs; (b) pulse train; (c) pulse spectrum with the full width at half maximum of 7.4 nm. Bottom panel represents radiofrequency spectrum at fundamental repetition rate (d), 71st harmonic (e) and wide span of 2 GHz.
Fig. 7
Fig. 7 Q-switched pulse generation: (a) the pulse train with the FWHM of 1.27μs and repetition rate of 175 kHz, (b) the pulse spectrum with the FWHM of 0.19 nm.
Fig. 8
Fig. 8 Harmonic mode-lock pulse generation for lower orders: (a) pulse trains of the 1st, 5th, 16th and 27th orders. (b) Repetition rate, output power and harmonic order dependence from the pump power with calculated slope efficiency of 7.95 MHz/mW, (c) Optical spectra of HML pulses from the 1st to the 27th orders, (d) Spectral FWHM dependence on the harmonic order.
Fig. 9
Fig. 9 Harmonic mode-lock pulse generation for higher orders: (a) Repetition rate, harmonic order, output power dependence on the pump power with the slope efficiency in the range of 1.90 ÷ 4.66 MHz/mW, (b) the 79th harmonic order optical spectrum with the FWHM of 3.32 nm, (c) radiofrequency spectrum for the 79th order of HML with 2 GHz span and (d) same with 80 MHz span and 100 Hz RBW.
Fig. 10
Fig. 10 (a) The experimental setup for the heating temperature measurement of the SWCNT-SA on the SPF. Inset shows photo of the SPF with SWCNTs in the Raman spectrometer microscope and a position of the laser spot. Red arrow indicates the direction of pump laser light propagation. (b) Temperature of the SWCNTs depending on the laser power through the SPF.

Metrics