Abstract

Tunable polarization-nonsensitive electromagnetically induced transparency (EIT) based on Dirac semimetal films (DSF) at terahertz frequencies is numerically studied in this paper. We first numerically investigate the EIT effect in a DSF-based terahertz metamaterial structure comprising a DSF strip and two DSF L-shaped resonators. To achieve the polarization-nonsensitive EIT effect, we introduce one vertical strip and two more L-shaped resonators to the above structure. The transmission spectra of the new structure show strong polarization-nonsensitive characteristic because of the fourfold symmetry. By analyzing the surface currents and electric field distribution at the resonant frequencies, we demonstrate that an EIT effect arises from the bright–bright mode coupling. Moreover, the polarization-nonsensitive EIT structure exhibits a blue shift with the increase in the Fermi energy of the DSF without having to re-optimize its geometrical parameters. Our study opens a new path for developing terahertz devices such as terahertz switches.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable plasmon-induced transparency in H-shaped Dirac semimetal metamaterial

Huan Chen, Huiyun Zhang, Xiaohan Guo, Shande Liu, and Yuping Zhang
Appl. Opt. 57(4) 752-756 (2018)

Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals

Huan Chen, Huiyun Zhang, Maodong Liu, Yunkun Zhao, Xiaohan Guo, and Yuping Zhang
Opt. Mater. Express 7(9) 3397-3407 (2017)

Tunable terahertz metamaterial absorber based on Dirac semimetal films

Tongling Wang, Maoyong Cao, Huiyun Zhang, and Yuping Zhang
Appl. Opt. 57(32) 9555-9561 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [Crossref] [PubMed]
  2. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [Crossref]
  3. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband Slow Light Metamaterial Based on a Double-Continuum Fano Resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
    [Crossref] [PubMed]
  4. Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
    [Crossref] [PubMed]
  5. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
    [Crossref]
  6. Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353(15), 83–89 (2015).
    [Crossref]
  7. Z. Vafapour, “Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications,” Appl. Opt. 57(4), 722–729 (2018).
    [Crossref] [PubMed]
  8. Z. Guo, H. Jiang, Y. Li, H. Chen, and G. S. Agarwal, “Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material,” Opt. Express 26(2), 627–641 (2018).
    [Crossref] [PubMed]
  9. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
    [Crossref] [PubMed]
  10. A. Keshavarz and Z. Vafapour, “Thermo-optical applications of a novel terahertz semiconductor metamaterial design,” J. Opt. Soc. Am. B 36(1), 35–41 (2019).
    [Crossref]
  11. Z. Shen, T. Xiang, J. Wu, Z. Yu, and H. Yang, “Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial,” J. Magn. Magn. Mater. 476, 69–74 (2019).
    [Crossref]
  12. Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial,” J. Opt. Soc. Am. B 35(5), 1192–1199 (2018).
    [Crossref]
  13. X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
    [Crossref] [PubMed]
  14. A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
    [Crossref]
  15. Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).
    [Crossref]
  16. A. Keshavarz and Z. Vafapour, “Water-based Terahertz Metamaterial for Skin Cancer Detection Application,” IEEE Sens. J. 19, 1519–1524 (2018).
    [Crossref]
  17. W. Zhang, J. Shi, Y. Sun, Y. Li, Z. Zhu, and J. Shi, “Tunable electromagnetic response in fishscale metamaterial,” In Plasmonics III (Vol. 10824, p. 1082417). International Society for Optics and Photonics (2018).
  18. Z. Vafapour, “Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance,” J. Opt. Soc. Am. A 35(3), 417–422 (2018).
    [Crossref] [PubMed]
  19. R. Yahiaoui and T. A. Searles, “Electrical Tuning and Switching Effect in Graphene-Assisted Polarization-Insensitive Terahertz Metadevices,” 2018 IEEE Photonics Conference pp, 1–2 IEEE (2018).
    [Crossref]
  20. D. R. Chowdhury, X. Su, Y. Zeng, X. Chen, A. J. Taylor, and A. Azad, “Excitation of dark plasmonic modes in symmetry broken terahertz metamaterials,” Opt. Express 22(16), 19401–19410 (2014).
    [Crossref] [PubMed]
  21. R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
    [Crossref]
  22. M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
    [Crossref]
  23. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  24. M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow THz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3(9), 1596–1603 (2016).
    [Crossref]
  25. A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface lattice resonances in plasmonic arrays of asymmetric disc dimers,” ACS Photonics 3(4), 634–639 (2016).
    [Crossref]
  26. A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).
    [Crossref]
  27. Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” App. Phys. A 125(1), 22 (2019).
    [Crossref]
  28. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
    [Crossref] [PubMed]
  29. Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
    [Crossref]
  30. R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
    [Crossref]
  31. W. Pan, Y. Yan, Y. Ma, and D. Shen, “A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance,” Opt. Commun. 431(15), 115–119 (2019).
    [Crossref]
  32. Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
    [Crossref] [PubMed]
  33. L. Zhu and L. Dong, “Electromagnetically induced transparency with wide band in all-dielectric microstructure based on Mie resonances,” J. Opt. 16(12), 125105 (2014).
    [Crossref]
  34. J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
    [Crossref] [PubMed]
  35. X. Shi, X. Su, and Y. Yang, “Enhanced tunability of plasmon induced transparency in graphene strips,” J. Appl. Phys. 117(14), 143101 (2015).
    [Crossref]
  36. W. Luo, W. Cai, Y. Xiang, L. Wang, M. Ren, X. Zhang, and J. Xu, “Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system,” Opt. Express 24(6), 5784–5793 (2016).
    [Crossref] [PubMed]
  37. C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).
    [Crossref]
  38. X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).
    [Crossref]
  39. X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
    [Crossref]
  40. X. Zhao, C. Yuan, W. Lv, S. Xu, and J. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic. Tech. L. 27(12), 1321–1324 (2015).
    [Crossref]
  41. J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Dynamically tunable Fano metamaterials through the coupling of graphene grating and square closed ring resonator,” Plasmonics 10(6), 1833–1839 (2015).
    [Crossref]
  42. Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
    [Crossref] [PubMed]
  43. M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).
    [Crossref] [PubMed]
  44. T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2015).
    [Crossref] [PubMed]
  45. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B Condens. Matter Mater. Phys. 83(20), 205101 (2011).
    [Crossref]
  46. C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-Weyl topological semimetals stabilized by point group symmetry,” Phys. Rev. Lett. 108(26), 266802 (2012).
    [Crossref] [PubMed]
  47. S. M. Young, S. Zaheer, J. C. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).
    [Crossref] [PubMed]
  48. Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
    [Crossref] [PubMed]
  49. S. Shen, Y. Liu, W. Liu, Q. Tan, J. Xiong, and W. Zhang, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).
    [Crossref]
  50. H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
    [Crossref]
  51. G. D. Liu, X. Zhai, H. Y. Meng, Q. Lin, Y. Huang, C. J. Zhao, and L. L. Wang, “Dirac semimetals based tunable narrowband absorber at terahertz frequencies,” Opt. Express 26(9), 11471–11480 (2018).
    [Crossref] [PubMed]
  52. O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
    [Crossref]
  53. T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B Condens. Matter Mater. Phys. 87(23), 235121 (2013).
    [Crossref]
  54. F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
    [Crossref]
  55. M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
    [Crossref]

2019 (7)

A. Keshavarz and Z. Vafapour, “Thermo-optical applications of a novel terahertz semiconductor metamaterial design,” J. Opt. Soc. Am. B 36(1), 35–41 (2019).
[Crossref]

Z. Shen, T. Xiang, J. Wu, Z. Yu, and H. Yang, “Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial,” J. Magn. Magn. Mater. 476, 69–74 (2019).
[Crossref]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).
[Crossref]

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” App. Phys. A 125(1), 22 (2019).
[Crossref]

W. Pan, Y. Yan, Y. Ma, and D. Shen, “A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance,” Opt. Commun. 431(15), 115–119 (2019).
[Crossref]

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

2018 (10)

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).
[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

A. Keshavarz and Z. Vafapour, “Water-based Terahertz Metamaterial for Skin Cancer Detection Application,” IEEE Sens. J. 19, 1519–1524 (2018).
[Crossref]

Z. Vafapour, “Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance,” J. Opt. Soc. Am. A 35(3), 417–422 (2018).
[Crossref] [PubMed]

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
[Crossref]

Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial,” J. Opt. Soc. Am. B 35(5), 1192–1199 (2018).
[Crossref]

Z. Vafapour, “Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications,” Appl. Opt. 57(4), 722–729 (2018).
[Crossref] [PubMed]

Z. Guo, H. Jiang, Y. Li, H. Chen, and G. S. Agarwal, “Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material,” Opt. Express 26(2), 627–641 (2018).
[Crossref] [PubMed]

S. Shen, Y. Liu, W. Liu, Q. Tan, J. Xiong, and W. Zhang, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).
[Crossref]

G. D. Liu, X. Zhai, H. Y. Meng, Q. Lin, Y. Huang, C. J. Zhao, and L. L. Wang, “Dirac semimetals based tunable narrowband absorber at terahertz frequencies,” Opt. Express 26(9), 11471–11480 (2018).
[Crossref] [PubMed]

2017 (4)

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
[Crossref] [PubMed]

A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).
[Crossref]

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

2016 (5)

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow THz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3(9), 1596–1603 (2016).
[Crossref]

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface lattice resonances in plasmonic arrays of asymmetric disc dimers,” ACS Photonics 3(4), 634–639 (2016).
[Crossref]

W. Luo, W. Cai, Y. Xiang, L. Wang, M. Ren, X. Zhang, and J. Xu, “Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system,” Opt. Express 24(6), 5784–5793 (2016).
[Crossref] [PubMed]

O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

2015 (7)

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2015).
[Crossref] [PubMed]

X. Zhao, C. Yuan, W. Lv, S. Xu, and J. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic. Tech. L. 27(12), 1321–1324 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Dynamically tunable Fano metamaterials through the coupling of graphene grating and square closed ring resonator,” Plasmonics 10(6), 1833–1839 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

X. Shi, X. Su, and Y. Yang, “Enhanced tunability of plasmon induced transparency in graphene strips,” J. Appl. Phys. 117(14), 143101 (2015).
[Crossref]

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353(15), 83–89 (2015).
[Crossref]

2014 (7)

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

D. R. Chowdhury, X. Su, Y. Zeng, X. Chen, A. J. Taylor, and A. Azad, “Excitation of dark plasmonic modes in symmetry broken terahertz metamaterials,” Opt. Express 22(16), 19401–19410 (2014).
[Crossref] [PubMed]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).
[Crossref] [PubMed]

L. Zhu and L. Dong, “Electromagnetically induced transparency with wide band in all-dielectric microstructure based on Mie resonances,” J. Opt. 16(12), 125105 (2014).
[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

2013 (2)

T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B Condens. Matter Mater. Phys. 87(23), 235121 (2013).
[Crossref]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

2012 (3)

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-Weyl topological semimetals stabilized by point group symmetry,” Phys. Rev. Lett. 108(26), 266802 (2012).
[Crossref] [PubMed]

S. M. Young, S. Zaheer, J. C. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).
[Crossref] [PubMed]

2011 (5)

X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B Condens. Matter Mater. Phys. 83(20), 205101 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband Slow Light Metamaterial Based on a Double-Continuum Fano Resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

2008 (1)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

1997 (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

1991 (1)

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Agarwal, G. S.

Agha, I.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Ali, M. N.

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2015).
[Crossref] [PubMed]

Alidoust, N.

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).
[Crossref] [PubMed]

Alipour, A.

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
[Crossref]

Al-Naib, I.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

Arigong, B.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Dynamically tunable Fano metamaterials through the coupling of graphene grating and square closed ring resonator,” Plasmonics 10(6), 1833–1839 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

Azad, A.

Bai, Y.

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353(15), 83–89 (2015).
[Crossref]

Bansil, A.

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).
[Crossref] [PubMed]

Barnes, W. L.

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface lattice resonances in plasmonic arrays of asymmetric disc dimers,” ACS Photonics 3(4), 634–639 (2016).
[Crossref]

Basov, D. N.

T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B Condens. Matter Mater. Phys. 87(23), 235121 (2013).
[Crossref]

Belopolski, I.

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).
[Crossref] [PubMed]

Bernevig, B. A.

C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-Weyl topological semimetals stabilized by point group symmetry,” Phys. Rev. Lett. 108(26), 266802 (2012).
[Crossref] [PubMed]

Bettiol, A. A.

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Bhattacharya, A.

A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).
[Crossref]

M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow THz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3(9), 1596–1603 (2016).
[Crossref]

Bian, G.

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).
[Crossref] [PubMed]

Boller, K.

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Bu, T.

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353(15), 83–89 (2015).
[Crossref]

Burrow, J. A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Cai, B.

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353(15), 83–89 (2015).
[Crossref]

Cai, W.

Cao, G.

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).
[Crossref]

Cao, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Carbotte, J. P.

T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B Condens. Matter Mater. Phys. 87(23), 235121 (2013).
[Crossref]

Cava, R. J.

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2015).
[Crossref] [PubMed]

Chai, Y.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

Chan, J.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Chang, D. E.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Chang, T.-R.

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).
[Crossref] [PubMed]

Chen, H.

Chen, K.

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353(15), 83–89 (2015).
[Crossref]

Chen, X.

Chen, Y. L.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Chen, Y. Q.

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” App. Phys. A 125(1), 22 (2019).
[Crossref]

Chiam, S. Y.

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Chou, F.

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).
[Crossref] [PubMed]

Chowdhury, D. R.

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

D. R. Chowdhury, X. Su, Y. Zeng, X. Chen, A. J. Taylor, and A. Azad, “Excitation of dark plasmonic modes in symmetry broken terahertz metamaterials,” Opt. Express 22(16), 19401–19410 (2014).
[Crossref] [PubMed]

Cong, L.

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Dai, X.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-Weyl topological semimetals stabilized by point group symmetry,” Phys. Rev. Lett. 108(26), 266802 (2012).
[Crossref] [PubMed]

Ding, J.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Dynamically tunable Fano metamaterials through the coupling of graphene grating and square closed ring resonator,” Plasmonics 10(6), 1833–1839 (2015).
[Crossref]

Dong, J.

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
[Crossref] [PubMed]

Dong, L.

L. Zhu and L. Dong, “Electromagnetically induced transparency with wide band in all-dielectric microstructure based on Mie resonances,” J. Opt. 16(12), 125105 (2014).
[Crossref]

Dong, L. J.

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” App. Phys. A 125(1), 22 (2019).
[Crossref]

Dudin, P.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Erni, D.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Fan, Y.

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
[Crossref] [PubMed]

Fang, C.

C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-Weyl topological semimetals stabilized by point group symmetry,” Phys. Rev. Lett. 108(26), 266802 (2012).
[Crossref] [PubMed]

Fang, Y.

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” App. Phys. A 125(1), 22 (2019).
[Crossref]

Fang, Z.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Farmani, A.

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
[Crossref]

Feng, D. L.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Fu, Q.

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
[Crossref] [PubMed]

Gao, Y.

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Ghahraloud, H.

Gibson, Q.

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2015).
[Crossref] [PubMed]

Gilbert, M. J.

C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-Weyl topological semimetals stabilized by point group symmetry,” Phys. Rev. Lett. 108(26), 266802 (2012).
[Crossref] [PubMed]

Gu, J.

Guo, X.

Guo, Z.

Halpin, A.

A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).
[Crossref]

Han, J.

Harris, S. E.

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Hasan, M. Z.

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).
[Crossref] [PubMed]

He, X.

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).
[Crossref]

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Hill, J. T.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Hoesch, M.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Homes, C. C.

T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B Condens. Matter Mater. Phys. 87(23), 235121 (2013).
[Crossref]

Hu, S.

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).
[Crossref]

Huang, R.

Huang, Y.

Humphrey, A. D.

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface lattice resonances in plasmonic arrays of asymmetric disc dimers,” ACS Photonics 3(4), 634–639 (2016).
[Crossref]

Hussain, Z.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Imamolu, A.

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Jeng, H.-T.

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).
[Crossref] [PubMed]

Jiang, H.

Jiang, J.

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” App. Phys. A 125(1), 22 (2019).
[Crossref]

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).
[Crossref]

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Kane, C. L.

S. M. Young, S. Zaheer, J. C. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).
[Crossref] [PubMed]

Keshavarz, A.

A. Keshavarz and Z. Vafapour, “Thermo-optical applications of a novel terahertz semiconductor metamaterial design,” J. Opt. Soc. Am. B 36(1), 35–41 (2019).
[Crossref]

A. Keshavarz and Z. Vafapour, “Water-based Terahertz Metamaterial for Skin Cancer Detection Application,” IEEE Sens. J. 19, 1519–1524 (2018).
[Crossref]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband Slow Light Metamaterial Based on a Double-Continuum Fano Resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Kim, T.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Kong, B.

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
[Crossref] [PubMed]

Kotov, O. V.

O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

Lee, J. C.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Li, H.

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
[Crossref] [PubMed]

Li, J.

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).
[Crossref]

Li, Y.

Li, Z.

Liang, L.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Liang, T.

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2015).
[Crossref] [PubMed]

Lin, H.

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).
[Crossref] [PubMed]

Lin, Q.

G. D. Liu, X. Zhai, H. Y. Meng, Q. Lin, Y. Huang, C. J. Zhao, and L. L. Wang, “Dirac semimetals based tunable narrowband absorber at terahertz frequencies,” Opt. Express 26(9), 11471–11480 (2018).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Lin, Y.

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Dynamically tunable Fano metamaterials through the coupling of graphene grating and square closed ring resonator,” Plasmonics 10(6), 1833–1839 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

Liu, C.

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).
[Crossref] [PubMed]

Liu, G. D.

Liu, H.

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353(15), 83–89 (2015).
[Crossref]

Liu, L.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Liu, M.

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2015).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, P.

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

Liu, Q.

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).
[Crossref]

Liu, W.

S. Shen, Y. Liu, W. Liu, Q. Tan, J. Xiong, and W. Zhang, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).
[Crossref]

Liu, Y.

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).
[Crossref]

S. Shen, Y. Liu, W. Liu, Q. Tan, J. Xiong, and W. Zhang, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).
[Crossref]

Liu, Z. K.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Lozovik, Y. E.

O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

Lu, G.

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).
[Crossref]

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Lu, M.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

Luo, W.

Lv, W.

X. Zhao, C. Yuan, W. Lv, S. Xu, and J. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic. Tech. L. 27(12), 1321–1324 (2015).
[Crossref]

Ma, Y.

Manjappa, M.

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Mathews, J.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Mayer Alegre, T. P.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Meinzer, N.

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface lattice resonances in plasmonic arrays of asymmetric disc dimers,” ACS Photonics 3(4), 634–639 (2016).
[Crossref]

Mekonen, S. M.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Mele, E. J.

S. M. Young, S. Zaheer, J. C. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).
[Crossref] [PubMed]

Meng, F. Y.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Meng, H. Y.

Mennes, C.

A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).
[Crossref]

Mir, A.

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
[Crossref]

Mo, S.-K.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Neupane, M.

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).
[Crossref] [PubMed]

Nie, G.

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).
[Crossref]

Ong, N. P.

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2015).
[Crossref] [PubMed]

Painter, O.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Pan, W.

W. Pan, Y. Yan, Y. Ma, and D. Shen, “A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance,” Opt. Commun. 431(15), 115–119 (2019).
[Crossref]

Peng, H.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Prabhakaran, D.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Qiao, T.

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
[Crossref] [PubMed]

Rappe, A. M.

S. M. Young, S. Zaheer, J. C. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).
[Crossref] [PubMed]

Ren, H.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Dynamically tunable Fano metamaterials through the coupling of graphene grating and square closed ring resonator,” Plasmonics 10(6), 1833–1839 (2015).
[Crossref]

Ren, M.

Rivas, J. G.

A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).
[Crossref]

M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow THz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3(9), 1596–1603 (2016).
[Crossref]

Rockstuhl, C.

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Sankar, R.

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).
[Crossref] [PubMed]

Sarangan, A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Savrasov, S. Y.

X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B Condens. Matter Mater. Phys. 83(20), 205101 (2011).
[Crossref]

Schaafsma, M. C.

M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow THz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3(9), 1596–1603 (2016).
[Crossref]

Searles, T. A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Shao, J.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Dynamically tunable Fano metamaterials through the coupling of graphene grating and square closed ring resonator,” Plasmonics 10(6), 1833–1839 (2015).
[Crossref]

Sharapov, S. G.

T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B Condens. Matter Mater. Phys. 87(23), 235121 (2013).
[Crossref]

Shen, D.

W. Pan, Y. Yan, Y. Ma, and D. Shen, “A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance,” Opt. Commun. 431(15), 115–119 (2019).
[Crossref]

Shen, S.

S. Shen, Y. Liu, W. Liu, Q. Tan, J. Xiong, and W. Zhang, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).
[Crossref]

Shen, Z.

Z. Shen, T. Xiang, J. Wu, Z. Yu, and H. Yang, “Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial,” J. Magn. Magn. Mater. 476, 69–74 (2019).
[Crossref]

Shen, Z. X.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Shi, X.

X. Shi, X. Su, and Y. Yang, “Enhanced tunability of plasmon induced transparency in graphene strips,” J. Appl. Phys. 117(14), 143101 (2015).
[Crossref]

Shi, Y. L.

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” App. Phys. A 125(1), 22 (2019).
[Crossref]

Shvets, G.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband Slow Light Metamaterial Based on a Double-Continuum Fano Resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Singh, R.

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Srivastava, Y. K.

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

Starkey, T. A.

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface lattice resonances in plasmonic arrays of asymmetric disc dimers,” ACS Photonics 3(4), 634–639 (2016).
[Crossref]

Su, X.

Tan, Q.

S. Shen, Y. Liu, W. Liu, Q. Tan, J. Xiong, and W. Zhang, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).
[Crossref]

Taylor, A. J.

Teo, J. C.

S. M. Young, S. Zaheer, J. C. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).
[Crossref] [PubMed]

Tian, Z.

Timusk, T.

T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B Condens. Matter Mater. Phys. 87(23), 235121 (2013).
[Crossref]

Tonouchi, M.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Turner, A. M.

X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B Condens. Matter Mater. Phys. 83(20), 205101 (2011).
[Crossref]

Vafapour, Z.

van Hoof, N.

A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).
[Crossref]

Vishwanath, A.

X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B Condens. Matter Mater. Phys. 83(20), 205101 (2011).
[Crossref]

Wan, X.

X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B Condens. Matter Mater. Phys. 83(20), 205101 (2011).
[Crossref]

Wang, L.

Wang, L. L.

Wang, M.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Wang, T.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wang, Z. J.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Wei, D.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Weng, H. M.

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Winger, M.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Withayachumnankul, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Wu, C.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband Slow Light Metamaterial Based on a Double-Continuum Fano Resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Wu, F.

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).
[Crossref]

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Wu, J.

Z. Shen, T. Xiang, J. Wu, Z. Yu, and H. Yang, “Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial,” J. Magn. Magn. Mater. 476, 69–74 (2019).
[Crossref]

Wu, K.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Wu, Q.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Wu, Q. Y.

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” App. Phys. A 125(1), 22 (2019).
[Crossref]

Wu, X.

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).
[Crossref]

Wu, X. Z.

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” App. Phys. A 125(1), 22 (2019).
[Crossref]

Xiang, T.

Z. Shen, T. Xiang, J. Wu, Z. Yu, and H. Yang, “Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial,” J. Magn. Magn. Mater. 476, 69–74 (2019).
[Crossref]

Xiang, Y.

Xie, J.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Xiong, J.

S. Shen, Y. Liu, W. Liu, Q. Tan, J. Xiong, and W. Zhang, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).
[Crossref]

Xu, J.

W. Luo, W. Cai, Y. Xiang, L. Wang, M. Ren, X. Zhang, and J. Xu, “Flexible modulation of plasmon-induced transparency in a strongly coupled graphene grating-sheet system,” Opt. Express 24(6), 5784–5793 (2016).
[Crossref] [PubMed]

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353(15), 83–89 (2015).
[Crossref]

Xu, S.

X. Zhao, C. Yuan, W. Lv, S. Xu, and J. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic. Tech. L. 27(12), 1321–1324 (2015).
[Crossref]

Xu, S.-Y.

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).
[Crossref] [PubMed]

Yahiaoui, R.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Yan, X.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Yan, Y.

W. Pan, Y. Yan, Y. Ma, and D. Shen, “A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance,” Opt. Commun. 431(15), 115–119 (2019).
[Crossref]

Yang, C.

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

Yang, H.

Z. Shen, T. Xiang, J. Wu, Z. Yu, and H. Yang, “Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial,” J. Magn. Magn. Mater. 476, 69–74 (2019).
[Crossref]

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).
[Crossref]

Yang, M.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Yang, W.

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).
[Crossref]

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Yang, X.

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).
[Crossref]

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Yang, Y.

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).
[Crossref]

X. Shi, X. Su, and Y. Yang, “Enhanced tunability of plasmon induced transparency in graphene strips,” J. Appl. Phys. 117(14), 143101 (2015).
[Crossref]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Yao, J.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

X. Zhao, C. Yuan, W. Lv, S. Xu, and J. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic. Tech. L. 27(12), 1321–1324 (2015).
[Crossref]

Yao, Y.

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).
[Crossref]

Young, S. M.

S. M. Young, S. Zaheer, J. C. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).
[Crossref] [PubMed]

Yu, Z.

Z. Shen, T. Xiang, J. Wu, Z. Yu, and H. Yang, “Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial,” J. Magn. Magn. Mater. 476, 69–74 (2019).
[Crossref]

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).
[Crossref]

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

Yuan, C.

X. Zhao, C. Yuan, W. Lv, S. Xu, and J. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic. Tech. L. 27(12), 1321–1324 (2015).
[Crossref]

Yue, W.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Zaheer, S.

S. M. Young, S. Zaheer, J. C. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).
[Crossref] [PubMed]

Zeng, Y.

Zhai, X.

Zhan, S.

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).
[Crossref]

Zhang, F.

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
[Crossref] [PubMed]

Zhang, H.

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Dynamically tunable Fano metamaterials through the coupling of graphene grating and square closed ring resonator,” Plasmonics 10(6), 1833–1839 (2015).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

Zhang, M.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Zhang, S.

Zhang, W.

S. Shen, Y. Liu, W. Liu, Q. Tan, J. Xiong, and W. Zhang, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, “Plasmon-induced transparency in twisted Fano terahertz metamaterials,” Opt. Mater. Express 1(3), 391–399 (2011).
[Crossref]

Zhang, X.

Zhang, Y.

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Zhang, Z.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Zhao, C. J.

Zhao, X.

X. Zhao, C. Yuan, W. Lv, S. Xu, and J. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic. Tech. L. 27(12), 1321–1324 (2015).
[Crossref]

Zhao, Y.

Zhou, B.

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Zhou, M.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Dynamically tunable Fano metamaterials through the coupling of graphene grating and square closed ring resonator,” Plasmonics 10(6), 1833–1839 (2015).
[Crossref]

Zhu, L.

L. Zhu and L. Dong, “Electromagnetically induced transparency with wide band in all-dielectric microstructure based on Mie resonances,” J. Opt. 16(12), 125105 (2014).
[Crossref]

Zhu, Y.

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353(15), 83–89 (2015).
[Crossref]

Zhu, Z.

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

ACS Photonics (2)

M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow THz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3(9), 1596–1603 (2016).
[Crossref]

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface lattice resonances in plasmonic arrays of asymmetric disc dimers,” ACS Photonics 3(4), 634–639 (2016).
[Crossref]

App. Phys. A (1)

Y. Q. Chen, L. J. Dong, Y. Fang, X. Z. Wu, Q. Y. Wu, J. Jiang, and Y. L. Shi, “Bistable switching in electromagnetically induced-transparency-like meta-molecule,” App. Phys. A 125(1), 22 (2019).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Cong, C. Rockstuhl, and W. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

M. Manjappa, S. Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
[Crossref]

Biosens. Bioelectron. (1)

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref] [PubMed]

Carbon (2)

X. He, X. Yang, G. Lu, W. Yang, F. Wu, Z. Yu, and J. Jiang, “Implementation of selective controlling electromagnetically induced transparency in terahertz graphene metamaterial,” Carbon 123, 668–675 (2017).
[Crossref]

C. Liu, P. Liu, C. Yang, Y. Lin, and H. Liu, “Analogue of dual-controlled electromagnetically induced transparency based on graphene metamaterial,” Carbon 142, 354–362 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Liu, S. Zhan, G. Cao, J. Li, H. Yang, Q. Liu, S. Hu, G. Nie, Y. Gao, and X. Wu, “Theoretical design of plasmonic refractive index sensor based on the fixed band detection,” IEEE J. Sel. Top. Quantum Electron. 25(2), 1–6 (2019).
[Crossref]

IEEE Photonic. Tech. L. (1)

X. Zhao, C. Yuan, W. Lv, S. Xu, and J. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonic. Tech. L. 27(12), 1321–1324 (2015).
[Crossref]

IEEE Sens. J. (2)

A. Keshavarz and Z. Vafapour, “Water-based Terahertz Metamaterial for Skin Cancer Detection Application,” IEEE Sens. J. 19, 1519–1524 (2018).
[Crossref]

A. Alipour, A. Farmani, and A. Mir, “High sensitivity and tunable nanoscale sensor based on plasmon-induced transparency in plasmonic metasurface,” IEEE Sens. J. 18(17), 7047–7054 (2018).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

J. Appl. Phys. (1)

X. Shi, X. Su, and Y. Yang, “Enhanced tunability of plasmon induced transparency in graphene strips,” J. Appl. Phys. 117(14), 143101 (2015).
[Crossref]

J. Magn. Magn. Mater. (1)

Z. Shen, T. Xiang, J. Wu, Z. Yu, and H. Yang, “Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial,” J. Magn. Magn. Mater. 476, 69–74 (2019).
[Crossref]

J. Opt. (1)

L. Zhu and L. Dong, “Electromagnetically induced transparency with wide band in all-dielectric microstructure based on Mie resonances,” J. Opt. 16(12), 125105 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Mater. Res. Express (1)

S. Shen, Y. Liu, W. Liu, Q. Tan, J. Xiong, and W. Zhang, “Tunable electromagnetically induced reflection with a high Q factor in complementary Dirac semimetal metamaterials,” Mater. Res. Express 5(12), 125804 (2018).
[Crossref]

Nanotechnology (1)

Z. Zhu, X. Yang, J. Gu, J. Jiang, W. Yue, Z. Tian, M. Tonouchi, J. Han, and W. Zhang, “Broadband plasmon induced transparency in terahertz metamaterials,” Nanotechnology 24(21), 214003 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2.,” Nat. Commun. 5(1), 3786 (2014).
[Crossref] [PubMed]

Nat. Mater. (2)

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, “Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2.,” Nat. Mater. 14(3), 280–284 (2015).
[Crossref] [PubMed]

Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, “A stable three-dimensional topological Dirac semimetal Cd3As2,” Nat. Mater. 13(7), 677–681 (2014).
[Crossref] [PubMed]

Nature (1)

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472(7341), 69–73 (2011).
[Crossref] [PubMed]

Opt. Commun. (3)

Y. Bai, K. Chen, H. Liu, T. Bu, B. Cai, J. Xu, and Y. Zhu, “Optically controllable terahertz modulator based on electromagnetically-induced-transparency-like effect,” Opt. Commun. 353(15), 83–89 (2015).
[Crossref]

W. Pan, Y. Yan, Y. Ma, and D. Shen, “A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance,” Opt. Commun. 431(15), 115–119 (2019).
[Crossref]

X. He, Y. Yao, X. Yang, G. Lu, W. Yang, Y. Yang, F. Wu, Z. Yu, and J. Jiang, “Dynamically controlled electromagnetically induced transparency in terahertz graphene metamaterial for modulation and slow light applications,” Opt. Commun. 410, 206–210 (2018).
[Crossref]

Opt. Express (5)

Opt. Mater. Express (2)

Phys. Rev. B (4)

O. V. Kotov and Y. E. Lozovik, “Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films,” Phys. Rev. B 93(23), 235417 (2016).
[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

A. Halpin, N. van Hoof, A. Bhattacharya, C. Mennes, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, “Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity,” Phys. Rev. B Condens. Matter Mater. Phys. 87(23), 235121 (2013).
[Crossref]

X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, “Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates,” Phys. Rev. B Condens. Matter Mater. Phys. 83(20), 205101 (2011).
[Crossref]

Phys. Rev. Lett. (5)

C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, “Multi-Weyl topological semimetals stabilized by point group symmetry,” Phys. Rev. Lett. 108(26), 266802 (2012).
[Crossref] [PubMed]

S. M. Young, S. Zaheer, J. C. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, “Dirac semimetal in three dimensions,” Phys. Rev. Lett. 108(14), 140405 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband Slow Light Metamaterial Based on a Double-Continuum Fano Resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Plasmonics (1)

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Dynamically tunable Fano metamaterials through the coupling of graphene grating and square closed ring resonator,” Plasmonics 10(6), 1833–1839 (2015).
[Crossref]

Sci. Rep. (2)

Y. Fan, T. Qiao, F. Zhang, Q. Fu, J. Dong, B. Kong, and H. Li, “An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency,” Sci. Rep. 7(1), 40441 (2017).
[Crossref] [PubMed]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4(1), 6128 (2015).
[Crossref] [PubMed]

Science (1)

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na3Bi,” Science 343(6173), 864–867 (2014).
[Crossref] [PubMed]

Other (2)

R. Yahiaoui and T. A. Searles, “Electrical Tuning and Switching Effect in Graphene-Assisted Polarization-Insensitive Terahertz Metadevices,” 2018 IEEE Photonics Conference pp, 1–2 IEEE (2018).
[Crossref]

W. Zhang, J. Shi, Y. Sun, Y. Li, Z. Zhu, and J. Shi, “Tunable electromagnetic response in fishscale metamaterial,” In Plasmonics III (Vol. 10824, p. 1082417). International Society for Optics and Photonics (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic of a DSF-based metamaterial geometry comprising a strip and two L-shaped resonators: (a) Side view, and (b) Top view of the unit cell with a period P = 160 µm, a = 33 µm, L = 95 µm, d = 20 µm, and w = 4 µm.
Fig. 2
Fig. 2 Calculated transmission spectra and field distributions of the standalone DSF strip and 2L structure: (a) transmission, (b) surface currents and (c) electric field of the standalone DSF strip structure, and (d) transmission spectra, (e) surface currents and (f) electric field of standalone DSF 2L structure.
Fig. 3
Fig. 3 Calculated transmission spectra, surface currents, and electric field distributions of the EIT structure: (a) transmission, (b) surface currents and electric field distributions at transmission dip A, (c) surface currents and electric field distributions transmission peak B, and (d) surface currents and electric field distributions at transmission dip C.
Fig. 4
Fig. 4 Schematic of the DSF-based polarization-nonsensitive EIT structure comprising DSF cross and four L-shaped resonators, with the same material and size as those shown in Fig. 1.
Fig. 5
Fig. 5 Calculated transmission spectra for cross, 4L, and EIT structurers with Fermi energy of 30 meV.
Fig. 6
Fig. 6 Calculated surface currents and electric field distributions of the standalone DSF cross and 4L structure (a) surface currents and electric field distributions of standalone DSF cross structure at 0.436THz, (b) surface currents and electric field distributions of standalone DSF 4L structure at 0.58THz.
Fig. 7
Fig. 7 Calculated surface currents and electric field distributions of the polarization-nonsensitive EIT structure: (a) surface currents and electric field distributions at 0.43 THz, (b) surface currents and electric field distributions at 0.54 THz, and (c) surface currents and electric field distributions at 0.586 THz.
Fig. 8
Fig. 8 Comparison of the simulated and calculated transmission curves for a Fermi energy of 30 meV.
Fig. 9
Fig. 9 Calculated transmission spectra with respect to DSF cross length l for (a) standalone DSF cross structure, and (b) polarization-nonsensitive EIT structure when the Fermi energy is 30 meV.
Fig. 10
Fig. 10 Calculated transmission spectra with respect to the DSF 4L length a for (a) standalone DSF 4L structure, and (b) polarization-nonsensitive EIT structure when the Fermi energy is 30 meV.
Fig. 11
Fig. 11 Calculated transmission spectra of the polarization-nonsensitive EIT structure with respect to θ when the Fermi energy is 30 meV, where θ is the angle between the polarized electric field and the x-axis of the structure.
Fig. 12
Fig. 12 Calculated electric field distributions of the polarization-nonsensitive EIT structure at 0.54 THz with respect to θ when the Fermi energy is 30 meV, where θ is the angle between the polarized electric field and the x-axis of the structure.
Fig. 13
Fig. 13 Calculated transmission spectra with different Fermi energies of the DSF.

Tables (1)

Tables Icon

Table 1 Fitting parameters of the analytical models

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Re σ ( Ω ) = e 2 g k F 24 π Ω θ ( Ω - 2 )
Im σ ( Ω ) = e 2 g k F 24 π 2 [ 4 Ω ln ( 4 ε c 2 | Ω 2 4 | ) ]
ε =   ε b + i σ ε 0 ω
x ¨ 1 ( t ) + γ 1 x ˙ 1 ( t ) + ω 1 2 x 1 ( t ) + κ 2 x 2 ( t ) = g 1 E m 1
x ¨ 2 ( t ) + γ 2 x ˙ 2 ( t ) + ω 2 2 x 2 ( t ) + κ 2 x 1 ( t ) = g 2 E m 2
x 1 = ( g 2 E m 2 ) κ 2 + ( ω 2 ω 2 2 + i ω γ 2 ) ( g 1 E m 1 ) κ 4 ( ω 2 ω 1 2 + i ω γ 1 ) ( ω 2 ω 2 2 + i ω γ 2 )
x 2 = ( g 1 E m 1 ) κ 2 + ( ω 2 ω 1 2 + i ω γ 1 ) ( g 2 E m 2 ) κ 4 ( ω 2 ω 1 2 + i ω γ 1 ) ( ω 2 ω 2 2 + i ω γ 2 )
P = g 1 x 1 + g 2 x 2
χ = P ε 0 E = K A 2 B ( A ( B + 1 ) κ 2 + A 2 ( ω 2 ω 2 2 ) + B ( ω 2 ω 1 2 ) κ 4 ( ω 2 ω 2 2 + i ω γ 2 ) ( ω 2 ω 1 2 + i ω γ 1 ) + i ω A 2 γ 2 + B γ 1 κ 4 ( ω 2 ω 2 2 + i ω γ 2 ) ( ω 2 ω 1 2 + i ω γ 1 ) )

Metrics