Abstract

We present the technical design of the art installation Rainbow Station, that projects a 40-m diameter true-color rainbow. The core technology is comprised of a patterned polarization grating that produces the rainbow with the correct shape and correct color order. We achieve an effective grating period as small as 1.55 µm, and obtain high diffraction efficiency over the entire visible spectral range thanks to a multi-layer liquid-crystal implementation. The -1 spectral order is suppressed by circular polarization filtering.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-color holography with a two-stage patterned liquid-crystal element

David S. Doelman, Michael J. Escuti, and Frans Snik
Opt. Mater. Express 9(3) 1246-1256 (2019)

Wavelength-compensated color Fourier diffractive optical elements using a ferroelectric liquid crystal on silicon display and a color-filter wheel

José Luis Martínez, Antonio Martínez-García, and Ignacio Moreno
Appl. Opt. 48(5) 911-918 (2009)

Color image generation of a three-dimensional object with rainbow holography and a one-wavelength laser

Chaochuan Jiang, Cheng Fan, and Lurong Guo
Appl. Opt. 33(11) 2111-2114 (1994)

References

  • View by:
  • |
  • |
  • |

  1. R. L. Lee and A. B. Fraser, The Rainbow Bridge: Rainbows in Art, Myth, and Science (Penn State Press, 2001).
  2. C. Oh and M. J. Escuti, “Achromatic diffraction from polarization gratings with high efficiency,” Opt. Lett. 33, 2287–2289 (2008).
    [Crossref] [PubMed]
  3. C. Packham, M. Escuti, J. Ginn, C. Oh, I. Quijano, and G. Boreman, “Polarization gratings: A novel polarimetric component for astronomical instruments,” Publ. Astron. Soc. Pac. 122, pp. 1471–1482 (2010).
    [Crossref]
  4. L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
    [Crossref]
  5. M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photon. News 27, 22–29 (2016).
    [Crossref]
  6. S. Pancharatnam, “Generalized theory of interference, and its applications. part i. coherent pencils,” Proc. Indian Acad. Sci. Sect. A 44, 247–262 (1956).
    [Crossref]
  7. M. V. Berry, “Quantal Phase Factors Accompanying Adiabatic Changes,” Royal Soc. Lond. Proc. Ser. A 392, 45–57 (1984).
    [Crossref]
  8. R. K. Komanduri, K. F. Lawler, and M. J. Escuti, “Multi-twist retarders: broadband retardation control using self-aligning reactive liquid crystal layers,” Opt. Express 21, 404–420 (2013).
    [Crossref] [PubMed]
  9. M. N. Miskiewicz and M. J. Escuti, “Direct-writing of complex liquid crystal patterns,” Opt. Express 22, 12691–12706 (2014).
    [Crossref] [PubMed]
  10. M. Rodenhuis, F. Snik, G. van Harten, J. Hoeijmakers, and C. U. Keller, “Five-dimensional optical instrumentation: combining polarimetry with time-resolved integral-field spectroscopy,” in Polarization: Measurement, Analysis, and Remote Sensing XI, vol. 9099 of Proc. SPIE(2014), p. 90990L.
  11. F. Snik, G. Otten, M. Kenworthy, M. Miskiewicz, M. Escuti, C. Packham, and J. Codona, “The vector-APP: a broadband apodizing phase plate that yields complementary PSFs,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 of Proc. SPIE(2012), p. 84500M.
    [Crossref]
  12. T. Karalidi, D. M. Stam, and J. W. Hovenier, “Looking for the rainbow on exoplanets covered by liquid and icy water clouds,” Astron. Astrophys. 548, A90 (2012).
    [Crossref]
  13. M. J. Escuti, “Methods of fabricating liquid crystal polarization gratings on substrates and related devices,” US Pat. Appl.60/912,036 (2007).
  14. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Characterization of optically imprinted polarization gratings,” Appl. Opt. 48, 4062–4067 (2009).
    [Crossref] [PubMed]
  15. V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of liquid crystalline materials: physics and applications, vol. 17 (John Wiley & Sons, 2008).
    [Crossref]
  16. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
    [Crossref]

2016 (1)

M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photon. News 27, 22–29 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (1)

2012 (1)

T. Karalidi, D. M. Stam, and J. W. Hovenier, “Looking for the rainbow on exoplanets covered by liquid and icy water clouds,” Astron. Astrophys. 548, A90 (2012).
[Crossref]

2010 (1)

C. Packham, M. Escuti, J. Ginn, C. Oh, I. Quijano, and G. Boreman, “Polarization gratings: A novel polarimetric component for astronomical instruments,” Publ. Astron. Soc. Pac. 122, pp. 1471–1482 (2010).
[Crossref]

2009 (1)

2008 (1)

1984 (2)

M. V. Berry, “Quantal Phase Factors Accompanying Adiabatic Changes,” Royal Soc. Lond. Proc. Ser. A 392, 45–57 (1984).
[Crossref]

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[Crossref]

1956 (1)

S. Pancharatnam, “Generalized theory of interference, and its applications. part i. coherent pencils,” Proc. Indian Acad. Sci. Sect. A 44, 247–262 (1956).
[Crossref]

Berry, M. V.

M. V. Berry, “Quantal Phase Factors Accompanying Adiabatic Changes,” Royal Soc. Lond. Proc. Ser. A 392, 45–57 (1984).
[Crossref]

Boreman, G.

C. Packham, M. Escuti, J. Ginn, C. Oh, I. Quijano, and G. Boreman, “Polarization gratings: A novel polarimetric component for astronomical instruments,” Publ. Astron. Soc. Pac. 122, pp. 1471–1482 (2010).
[Crossref]

Chigrinov, V. G.

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of liquid crystalline materials: physics and applications, vol. 17 (John Wiley & Sons, 2008).
[Crossref]

Codona, J.

F. Snik, G. Otten, M. Kenworthy, M. Miskiewicz, M. Escuti, C. Packham, and J. Codona, “The vector-APP: a broadband apodizing phase plate that yields complementary PSFs,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 of Proc. SPIE(2012), p. 84500M.
[Crossref]

Escuti, M.

C. Packham, M. Escuti, J. Ginn, C. Oh, I. Quijano, and G. Boreman, “Polarization gratings: A novel polarimetric component for astronomical instruments,” Publ. Astron. Soc. Pac. 122, pp. 1471–1482 (2010).
[Crossref]

F. Snik, G. Otten, M. Kenworthy, M. Miskiewicz, M. Escuti, C. Packham, and J. Codona, “The vector-APP: a broadband apodizing phase plate that yields complementary PSFs,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 of Proc. SPIE(2012), p. 84500M.
[Crossref]

Escuti, M. J.

Fraser, A. B.

R. L. Lee and A. B. Fraser, The Rainbow Bridge: Rainbows in Art, Myth, and Science (Penn State Press, 2001).

Ginn, J.

C. Packham, M. Escuti, J. Ginn, C. Oh, I. Quijano, and G. Boreman, “Polarization gratings: A novel polarimetric component for astronomical instruments,” Publ. Astron. Soc. Pac. 122, pp. 1471–1482 (2010).
[Crossref]

Hoeijmakers, J.

M. Rodenhuis, F. Snik, G. van Harten, J. Hoeijmakers, and C. U. Keller, “Five-dimensional optical instrumentation: combining polarimetry with time-resolved integral-field spectroscopy,” in Polarization: Measurement, Analysis, and Remote Sensing XI, vol. 9099 of Proc. SPIE(2014), p. 90990L.

Hovenier, J. W.

T. Karalidi, D. M. Stam, and J. W. Hovenier, “Looking for the rainbow on exoplanets covered by liquid and icy water clouds,” Astron. Astrophys. 548, A90 (2012).
[Crossref]

Karalidi, T.

T. Karalidi, D. M. Stam, and J. W. Hovenier, “Looking for the rainbow on exoplanets covered by liquid and icy water clouds,” Astron. Astrophys. 548, A90 (2012).
[Crossref]

Keller, C. U.

M. Rodenhuis, F. Snik, G. van Harten, J. Hoeijmakers, and C. U. Keller, “Five-dimensional optical instrumentation: combining polarimetry with time-resolved integral-field spectroscopy,” in Polarization: Measurement, Analysis, and Remote Sensing XI, vol. 9099 of Proc. SPIE(2014), p. 90990L.

Kenworthy, M.

F. Snik, G. Otten, M. Kenworthy, M. Miskiewicz, M. Escuti, C. Packham, and J. Codona, “The vector-APP: a broadband apodizing phase plate that yields complementary PSFs,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 of Proc. SPIE(2012), p. 84500M.
[Crossref]

Kim, J.

M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photon. News 27, 22–29 (2016).
[Crossref]

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
[Crossref]

Kimball, B. R.

Komanduri, R. K.

Kozenkov, V. M.

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of liquid crystalline materials: physics and applications, vol. 17 (John Wiley & Sons, 2008).
[Crossref]

Kudenov, M. W.

M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photon. News 27, 22–29 (2016).
[Crossref]

J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2, 958–964 (2015).
[Crossref]

Kwok, H.-S.

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of liquid crystalline materials: physics and applications, vol. 17 (John Wiley & Sons, 2008).
[Crossref]

Lawler, K. F.

Lee, R. L.

R. L. Lee and A. B. Fraser, The Rainbow Bridge: Rainbows in Art, Myth, and Science (Penn State Press, 2001).

Li, Y.

Miskiewicz, M.

F. Snik, G. Otten, M. Kenworthy, M. Miskiewicz, M. Escuti, C. Packham, and J. Codona, “The vector-APP: a broadband apodizing phase plate that yields complementary PSFs,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 of Proc. SPIE(2012), p. 84500M.
[Crossref]

Miskiewicz, M. N.

Nersisyan, S. R.

Nikolova, L.

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[Crossref]

Oh, C.

Otten, G.

F. Snik, G. Otten, M. Kenworthy, M. Miskiewicz, M. Escuti, C. Packham, and J. Codona, “The vector-APP: a broadband apodizing phase plate that yields complementary PSFs,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 of Proc. SPIE(2012), p. 84500M.
[Crossref]

Packham, C.

C. Packham, M. Escuti, J. Ginn, C. Oh, I. Quijano, and G. Boreman, “Polarization gratings: A novel polarimetric component for astronomical instruments,” Publ. Astron. Soc. Pac. 122, pp. 1471–1482 (2010).
[Crossref]

F. Snik, G. Otten, M. Kenworthy, M. Miskiewicz, M. Escuti, C. Packham, and J. Codona, “The vector-APP: a broadband apodizing phase plate that yields complementary PSFs,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 of Proc. SPIE(2012), p. 84500M.
[Crossref]

Pancharatnam, S.

S. Pancharatnam, “Generalized theory of interference, and its applications. part i. coherent pencils,” Proc. Indian Acad. Sci. Sect. A 44, 247–262 (1956).
[Crossref]

Quijano, I.

C. Packham, M. Escuti, J. Ginn, C. Oh, I. Quijano, and G. Boreman, “Polarization gratings: A novel polarimetric component for astronomical instruments,” Publ. Astron. Soc. Pac. 122, pp. 1471–1482 (2010).
[Crossref]

Rodenhuis, M.

M. Rodenhuis, F. Snik, G. van Harten, J. Hoeijmakers, and C. U. Keller, “Five-dimensional optical instrumentation: combining polarimetry with time-resolved integral-field spectroscopy,” in Polarization: Measurement, Analysis, and Remote Sensing XI, vol. 9099 of Proc. SPIE(2014), p. 90990L.

Snik, F.

M. Rodenhuis, F. Snik, G. van Harten, J. Hoeijmakers, and C. U. Keller, “Five-dimensional optical instrumentation: combining polarimetry with time-resolved integral-field spectroscopy,” in Polarization: Measurement, Analysis, and Remote Sensing XI, vol. 9099 of Proc. SPIE(2014), p. 90990L.

F. Snik, G. Otten, M. Kenworthy, M. Miskiewicz, M. Escuti, C. Packham, and J. Codona, “The vector-APP: a broadband apodizing phase plate that yields complementary PSFs,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 of Proc. SPIE(2012), p. 84500M.
[Crossref]

Stam, D. M.

T. Karalidi, D. M. Stam, and J. W. Hovenier, “Looking for the rainbow on exoplanets covered by liquid and icy water clouds,” Astron. Astrophys. 548, A90 (2012).
[Crossref]

Steeves, D. M.

Tabiryan, N. V.

Todorov, T.

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[Crossref]

van Harten, G.

M. Rodenhuis, F. Snik, G. van Harten, J. Hoeijmakers, and C. U. Keller, “Five-dimensional optical instrumentation: combining polarimetry with time-resolved integral-field spectroscopy,” in Polarization: Measurement, Analysis, and Remote Sensing XI, vol. 9099 of Proc. SPIE(2014), p. 90990L.

Appl. Opt. (1)

Astron. Astrophys. (1)

T. Karalidi, D. M. Stam, and J. W. Hovenier, “Looking for the rainbow on exoplanets covered by liquid and icy water clouds,” Astron. Astrophys. 548, A90 (2012).
[Crossref]

Opt. Acta (1)

L. Nikolova and T. Todorov, “Diffraction efficiency and selectivity of polarization holographic recording,” Opt. Acta 31, 579–588 (1984).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Photon. News (1)

M. J. Escuti, J. Kim, and M. W. Kudenov, “Controlling light with geometric-phase holograms,” Opt. Photon. News 27, 22–29 (2016).
[Crossref]

Optica (1)

Proc. Indian Acad. Sci. Sect. A (1)

S. Pancharatnam, “Generalized theory of interference, and its applications. part i. coherent pencils,” Proc. Indian Acad. Sci. Sect. A 44, 247–262 (1956).
[Crossref]

Publ. Astron. Soc. Pac. (1)

C. Packham, M. Escuti, J. Ginn, C. Oh, I. Quijano, and G. Boreman, “Polarization gratings: A novel polarimetric component for astronomical instruments,” Publ. Astron. Soc. Pac. 122, pp. 1471–1482 (2010).
[Crossref]

Royal Soc. Lond. Proc. Ser. A (1)

M. V. Berry, “Quantal Phase Factors Accompanying Adiabatic Changes,” Royal Soc. Lond. Proc. Ser. A 392, 45–57 (1984).
[Crossref]

Other (5)

M. Rodenhuis, F. Snik, G. van Harten, J. Hoeijmakers, and C. U. Keller, “Five-dimensional optical instrumentation: combining polarimetry with time-resolved integral-field spectroscopy,” in Polarization: Measurement, Analysis, and Remote Sensing XI, vol. 9099 of Proc. SPIE(2014), p. 90990L.

F. Snik, G. Otten, M. Kenworthy, M. Miskiewicz, M. Escuti, C. Packham, and J. Codona, “The vector-APP: a broadband apodizing phase plate that yields complementary PSFs,” in Modern Technologies in Space-and Ground-based Telescopes and Instrumentation II, vol. 8450 of Proc. SPIE(2012), p. 84500M.
[Crossref]

M. J. Escuti, “Methods of fabricating liquid crystal polarization gratings on substrates and related devices,” US Pat. Appl.60/912,036 (2007).

R. L. Lee and A. B. Fraser, The Rainbow Bridge: Rainbows in Art, Myth, and Science (Penn State Press, 2001).

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of liquid crystalline materials: physics and applications, vol. 17 (John Wiley & Sons, 2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic representation of the patterned polarization grating used for Rainbow Station. The rings represent lines of constant fast-axis orientation (only two slices of liquid crystal orientations are drawn), and hence geometric phase. The diffraction for only right-handed input polarization is shown for a single direction θ in polar coordinates. For a perfect half-wave retardance, all light will produce an arced rainbow pattern in order +1. Note that there is a discontinuity between the top and bottom parts, as otherwise the lower part would diffract downward. In practice, a small fraction of light will be present in the leakage term (order 0), and, in case of imperfect circular polarization filtering, in order −1.
Fig. 2
Fig. 2 Polarized microscope image of the holograms used for Rainbow Station: (a) the mask, taken at the center of the hologram, with scale bar indicating 200 µm, and (b) the replica, taken near an edge, with scale bar indicating 20 µm. In this particular orientation configuration of the polarizers and the liquid-crystal structure, the grating appears sinusoidal instead of having a continuous phase ramp.
Fig. 3
Fig. 3 Photo of the polarization and diffractive optics that form the heart of the Rainbow Station installation. On top of a glass plate is a stack of, respectively, polarizer foil, quarter-wave retarder foil, and the 3×3 mosaic of polarization gratings. On the top the large fold mirror is used to steer the diffracted beam in the right direction.
Fig. 4
Fig. 4 The rainbow of Rainbow Station as seen in front of the projector tower. Photo credit: Studio Roosegaarde.
Fig. 5
Fig. 5 Measured zero-order transmittance and estimated total first-order transmittance of the installed replica holograms.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ ± ( u , v ) = ± 2 Φ ( u , v ) ,

Metrics