Abstract

This work theoretically proposed dual terahertz (THz) slow light plateaus by tuning the destructive interference between a toroidal magnetic momentum and magnetic dipole momentum. The metasurfaces are in a sandwich structure. A metallic cut-wire is patterned on one side of polyimide thin-film, and a rectangular split-ring resonator (SRR) on the other side with asymmetric layout. By translating the SRR along the cut-wire from the top terminal to the bottom terminal of the cut-wire, dual slow light plateaus are found in the transparency window at a certain range of displacement. A maximum of 40.4 ps group delay is achieved as the displacement achieves 9 μm. The numerical mapping of electromagnetic field indicates that the electrical dipole on metallic cut-wire results in a localized toroidal magnetic momentum, while the inductive-capacitor oscillation of SRR results in a magnetic dipole momentum. These two momentums have opposite directions, which will repel each other at certain displacement, creating the transparency windows. Furthermore, an electrical coupling takes place in between the bilayer metasurface so that the slow light achieves a maximum, with the aforementioned two mechanisms working in coincidence.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules

Xiaobo Zheng, Zhenyu Zhao, Wangzhou Shi, and Wei Peng
Opt. Mater. Express 7(3) 1035-1047 (2017)

Localized slow light phenomenon in symmetry broken terahertz metamolecule made of conductively coupled dark resonators

Zhenyu Zhao, Xiaobo Zheng, Wei Peng, Hongwei Zhao, Jianbing Zhang, Zhijian Luo, and Wangzhou Shi
Opt. Mater. Express 7(6) 1950-1961 (2017)

Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial

Zhenyu Zhao, Zhiqiang Song, Wangzhou Shi, and Wei Peng
Opt. Mater. Express 6(7) 2190-2200 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, “Frozen light,” Sci. Am. 285(1), 66–73 (2001).
    [Crossref] [PubMed]
  2. L. V. Hau, “Frozen Light-Slowing a beam of light to a halt may pave the way for new optical communications technology, tabletop black holes and quantum computers,” Sci. Am. 3, 44–51 (2003).
  3. K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nat. Electron. 1(12), 622–635 (2018).
    [Crossref]
  4. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
    [PubMed]
  5. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [PubMed]
  6. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
    [PubMed]
  7. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
    [PubMed]
  8. M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
    [PubMed]
  9. H. Merbold, A. Bitzer, and T. Feurer, “Near-field investigation of induced transparency in similarly oriented double split-ring resonators,” Opt. Lett. 36(9), 1683–1685 (2011).
    [Crossref] [PubMed]
  10. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  11. S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
    [Crossref] [PubMed]
  12. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
    [Crossref] [PubMed]
  13. M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
    [Crossref] [PubMed]
  14. Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
    [Crossref]
  15. X. Zheng, Z. Zhao, W. Shi, and W. Peng, “Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules,” Opt. Mater. Express 7(3), 1035–1047 (2017).
    [Crossref]
  16. Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, Z. Luo, and W. Shi, “Localized terahertz electromagnetically-induced transparency-like phenomenon in a conductively coupled trimer metamolecule,” Opt. Express 25(20), 24410–24424 (2017).
    [Crossref] [PubMed]
  17. Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetric broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mater. Express 7(6), 1950–1961 (2017).
    [Crossref]
  18. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).
  19. S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
    [Crossref]
  20. R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
    [Crossref]
  21. M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).
  22. M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
    [Crossref]
  23. R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
    [Crossref]
  24. M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photo switching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
    [PubMed]
  25. T. C.-W. Tan, Y. K. Srivastava, M. Manjappa, E. Plum, and R. Singh, “Lattice induced strong coupling and line narrowing of split resonances in metamaterials,” Appl. Phys. Lett. 112(20), 201111 (2018).
    [Crossref]
  26. Z. Zhao, Y. Chen, Z. Gu, and W. Shi, “Maximization of terahertz slow light by tuning the spoof localized surface plasmon induced transparency,” Opt. Mater. Express 8(8), 2345–2354 (2018).
    [Crossref]
  27. F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
    [Crossref] [PubMed]
  28. F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
    [PubMed]
  29. B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, and P. Wu, “High performance terahertz sensing at exceptional points in a bilayer structure,” Adv. Theory. Simul. 1(1), 1800070 (2018).
  30. Z. Wu and Y. Zheng, “Moiré metamaterials and metasurface,” Adv. Opt. Mater. 6(3), 1701057 (2018).
  31. Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
    [Crossref]
  32. M. T. Reiten, D. Roy Chowdhury, J. Zhou, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials,” Appl. Phys. Lett. 98(13), 131105 (2011).
    [Crossref]
  33. Y. Ye, X. Li, F. Zhuang, and S.-W. Chang, “Homogeneous circular polarizers using a bilayered chiral metamaterial,” Appl. Phys. Lett. 99(3), 031111 (2011).
    [Crossref]
  34. J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
    [Crossref]
  35. L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
    [Crossref]
  36. J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T.-J. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett. 103(7), 071906 (2013).
    [Crossref]
  37. H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
    [Crossref]
  38. W. Tan, C. Zhang, C. Li, X. Zhou, X. Jia, Z. Feng, J. Su, and B. Jin, “Selective coherent perfect absorption of subradiant mode in ultrathin bi-layer metamaterials via antisymmetric excitation,” Appl. Phys. Lett. 110(18), 181111 (2017).
    [Crossref]
  39. Y. Xu, Q. Shi, Z. Zhu, and J. Shi, “Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial,” Opt. Express 22(21), 25679–25688 (2014).
    [Crossref] [PubMed]
  40. J.-H. Park, A. Kodigala, A. Ndao, and B. Kanté, “Hybridized metamaterial platform for nano-scale sensing,” Opt. Express 25(13), 15590–15598 (2017).
    [Crossref] [PubMed]
  41. T. Liu, L. Huang, W. Hong, Y. Ling, J. Luan, Y. Sun, and W. Sun, “Coupling-based Huygens’ meta-atom utilizing bilayer complementary plasmonic structure for light manipulation,” Opt. Express 25(14), 16332–16346 (2017).
    [Crossref] [PubMed]
  42. J. Zhao, Y. Fu, Z. Liu, and J. Zhou, “Optical chirality breaking in a bilayered chiral metamaterial,” Opt. Express 25(19), 23051–23059 (2017).
    [Crossref] [PubMed]
  43. L.-H. Du, J. Li, Q. Liu, J.-H. Zhao, and L.-G. Zhu, “High-Q Fano-like resonance based on a symmetric dimer structure and its terahertz sensing application,” Opt. Mater. Express 7(4), 1335–1342 (2017).
    [Crossref]
  44. K. Song, Z. Su, S. Silva, C. Fowler, C. Ding, R. Ji, Y. Liu, X. Zhao, and J. Zhou, “Broadband and high-efficiency transmissive type nondispersive polarization conversion meta-device,” Opt. Mater. Express 8(8), 2430–2438 (2018).
    [Crossref]
  45. Z.-G. Dong, H. Liu, M.-X. Xu, T. Li, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, “Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency,” Opt. Express 18(21), 22412–22417 (2010).
    [Crossref] [PubMed]
  46. J. David, Griffiths, Introduction to electrodynamics (4th ed. Pearson: Prentice Hall, 2013).
  47. F. Ulaby, Fundamentals of applied electromagnetics (5th ed. Pearson: Prentice Hall, 2007).
  48. X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2010).

2018 (6)

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nat. Electron. 1(12), 622–635 (2018).
[Crossref]

T. C.-W. Tan, Y. K. Srivastava, M. Manjappa, E. Plum, and R. Singh, “Lattice induced strong coupling and line narrowing of split resonances in metamaterials,” Appl. Phys. Lett. 112(20), 201111 (2018).
[Crossref]

B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, and P. Wu, “High performance terahertz sensing at exceptional points in a bilayer structure,” Adv. Theory. Simul. 1(1), 1800070 (2018).

Z. Wu and Y. Zheng, “Moiré metamaterials and metasurface,” Adv. Opt. Mater. 6(3), 1701057 (2018).

Z. Zhao, Y. Chen, Z. Gu, and W. Shi, “Maximization of terahertz slow light by tuning the spoof localized surface plasmon induced transparency,” Opt. Mater. Express 8(8), 2345–2354 (2018).
[Crossref]

K. Song, Z. Su, S. Silva, C. Fowler, C. Ding, R. Ji, Y. Liu, X. Zhao, and J. Zhou, “Broadband and high-efficiency transmissive type nondispersive polarization conversion meta-device,” Opt. Mater. Express 8(8), 2430–2438 (2018).
[Crossref]

2017 (10)

X. Zheng, Z. Zhao, W. Shi, and W. Peng, “Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules,” Opt. Mater. Express 7(3), 1035–1047 (2017).
[Crossref]

L.-H. Du, J. Li, Q. Liu, J.-H. Zhao, and L.-G. Zhu, “High-Q Fano-like resonance based on a symmetric dimer structure and its terahertz sensing application,” Opt. Mater. Express 7(4), 1335–1342 (2017).
[Crossref]

Z. Zhao, X. Zheng, W. Peng, H. Zhao, J. Zhang, Z. Luo, and W. Shi, “Localized slow light phenomenon in symmetric broken terahertz metamolecule made of conductively coupled dark resonators,” Opt. Mater. Express 7(6), 1950–1961 (2017).
[Crossref]

J.-H. Park, A. Kodigala, A. Ndao, and B. Kanté, “Hybridized metamaterial platform for nano-scale sensing,” Opt. Express 25(13), 15590–15598 (2017).
[Crossref] [PubMed]

T. Liu, L. Huang, W. Hong, Y. Ling, J. Luan, Y. Sun, and W. Sun, “Coupling-based Huygens’ meta-atom utilizing bilayer complementary plasmonic structure for light manipulation,” Opt. Express 25(14), 16332–16346 (2017).
[Crossref] [PubMed]

J. Zhao, Y. Fu, Z. Liu, and J. Zhou, “Optical chirality breaking in a bilayered chiral metamaterial,” Opt. Express 25(19), 23051–23059 (2017).
[Crossref] [PubMed]

Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, Z. Luo, and W. Shi, “Localized terahertz electromagnetically-induced transparency-like phenomenon in a conductively coupled trimer metamolecule,” Opt. Express 25(20), 24410–24424 (2017).
[Crossref] [PubMed]

W. Tan, C. Zhang, C. Li, X. Zhou, X. Jia, Z. Feng, J. Su, and B. Jin, “Selective coherent perfect absorption of subradiant mode in ultrathin bi-layer metamaterials via antisymmetric excitation,” Appl. Phys. Lett. 110(18), 181111 (2017).
[Crossref]

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photo switching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[PubMed]

2016 (3)

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[PubMed]

Z. Zhao, Z. Song, W. Shi, and W. Peng, “Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial,” Opt. Mater. Express 6(7), 2190–2200 (2016).
[Crossref]

2015 (3)

M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
[Crossref] [PubMed]

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[PubMed]

2014 (2)

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

Y. Xu, Q. Shi, Z. Zhu, and J. Shi, “Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial,” Opt. Express 22(21), 25679–25688 (2014).
[Crossref] [PubMed]

2013 (5)

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T.-J. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett. 103(7), 071906 (2013).
[Crossref]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

2011 (6)

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[PubMed]

M. T. Reiten, D. Roy Chowdhury, J. Zhou, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials,” Appl. Phys. Lett. 98(13), 131105 (2011).
[Crossref]

Y. Ye, X. Li, F. Zhuang, and S.-W. Chang, “Homogeneous circular polarizers using a bilayered chiral metamaterial,” Appl. Phys. Lett. 99(3), 031111 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

H. Merbold, A. Bitzer, and T. Feurer, “Near-field investigation of induced transparency in similarly oriented double split-ring resonators,” Opt. Lett. 36(9), 1683–1685 (2011).
[Crossref] [PubMed]

2010 (4)

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2010).

Z.-G. Dong, H. Liu, M.-X. Xu, T. Li, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, “Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency,” Opt. Express 18(21), 22412–22417 (2010).
[Crossref] [PubMed]

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

2009 (3)

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[PubMed]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

2008 (2)

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[PubMed]

2003 (1)

L. V. Hau, “Frozen Light-Slowing a beam of light to a halt may pave the way for new optical communications technology, tabletop black holes and quantum computers,” Sci. Am. 3, 44–51 (2003).

2001 (1)

L. V. Hau, “Frozen light,” Sci. Am. 285(1), 66–73 (2001).
[Crossref] [PubMed]

Al-Naib, I.

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photo switching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[PubMed]

Al-Naib, I. A. I.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Alù, A.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[PubMed]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Azad, A. K.

M. T. Reiten, D. Roy Chowdhury, J. Zhou, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials,” Appl. Phys. Lett. 98(13), 131105 (2011).
[Crossref]

Bettiol, A. A.

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

Bitzer, A.

Cao, J.-X.

Cao, W.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Chang, S.-W.

Y. Ye, X. Li, F. Zhuang, and S.-W. Chang, “Homogeneous circular polarizers using a bilayered chiral metamaterial,” Appl. Phys. Lett. 99(3), 031111 (2011).
[Crossref]

Chen, J.

B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, and P. Wu, “High performance terahertz sensing at exceptional points in a bilayer structure,” Adv. Theory. Simul. 1(1), 1800070 (2018).

Chen, Y.

Cheng, Y.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Chiam, S.-Y.

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

Chowdhury, D. R.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Chum, C. C.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[PubMed]

Cong, L.

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photo switching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[PubMed]

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).

Cui, T.-J.

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T.-J. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett. 103(7), 071906 (2013).
[Crossref]

Deng, J.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[PubMed]

Ding, C.

Ding, L.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[PubMed]

Dong, Z.-G.

Du, L.-H.

Duan, J.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[PubMed]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Estakhri, N. M.

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[PubMed]

Feng, Z.

W. Tan, C. Zhang, C. Li, X. Zhou, X. Jia, Z. Feng, J. Su, and B. Jin, “Selective coherent perfect absorption of subradiant mode in ultrathin bi-layer metamaterials via antisymmetric excitation,” Appl. Phys. Lett. 110(18), 181111 (2017).
[Crossref]

Feng Ma, H.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Feurer, T.

Fowler, C.

Fu, Y.

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[PubMed]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Gong, R.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Gu, J.

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2010).

Gu, Z.

Han, J.

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2010).

Hau, L. V.

L. V. Hau, “Frozen Light-Slowing a beam of light to a halt may pave the way for new optical communications technology, tabletop black holes and quantum computers,” Sci. Am. 3, 44–51 (2003).

L. V. Hau, “Frozen light,” Sci. Am. 285(1), 66–73 (2001).
[Crossref] [PubMed]

He, M.

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2010).

He, S.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Hong, M.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[PubMed]

Hong, W.

Huang, L.

Huang, R.

Jenkins, S. D.

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

Ji, R.

Jia, X.

W. Tan, C. Zhang, C. Li, X. Zhou, X. Jia, Z. Feng, J. Su, and B. Jin, “Selective coherent perfect absorption of subradiant mode in ultrathin bi-layer metamaterials via antisymmetric excitation,” Appl. Phys. Lett. 110(18), 181111 (2017).
[Crossref]

Jiang, Y.

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

Jin, B.

B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, and P. Wu, “High performance terahertz sensing at exceptional points in a bilayer structure,” Adv. Theory. Simul. 1(1), 1800070 (2018).

W. Tan, C. Zhang, C. Li, X. Zhou, X. Jia, Z. Feng, J. Su, and B. Jin, “Selective coherent perfect absorption of subradiant mode in ultrathin bi-layer metamaterials via antisymmetric excitation,” Appl. Phys. Lett. 110(18), 181111 (2017).
[Crossref]

Jun Cui, T.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Kanté, B.

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[PubMed]

Kim, S. M.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[PubMed]

Kodigala, A.

Koschny, T.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[PubMed]

Kung, P.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[PubMed]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Lederer, F.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

Li, C.

W. Tan, C. Zhang, C. Li, X. Zhou, X. Jia, Z. Feng, J. Su, and B. Jin, “Selective coherent perfect absorption of subradiant mode in ultrathin bi-layer metamaterials via antisymmetric excitation,” Appl. Phys. Lett. 110(18), 181111 (2017).
[Crossref]

Li, J.

L.-H. Du, J. Li, Q. Liu, J.-H. Zhao, and L.-G. Zhu, “High-Q Fano-like resonance based on a symmetric dimer structure and its terahertz sensing application,” Opt. Mater. Express 7(4), 1335–1342 (2017).
[Crossref]

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

Li, T.

Li, X.

Y. Ye, X. Li, F. Zhuang, and S.-W. Chang, “Homogeneous circular polarizers using a bilayered chiral metamaterial,” Appl. Phys. Lett. 99(3), 031111 (2011).
[Crossref]

Li, Y.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[PubMed]

Li, Z.

Ling, Y.

Liu, H.

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[PubMed]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Liu, Q.

Liu, R.

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T.-J. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett. 103(7), 071906 (2013).
[Crossref]

Liu, T.

Liu, X.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2010).

Liu, Y.

Liu, Z.

Luan, J.

Luo, Z.

Lv, T.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Ma, H.

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T.-J. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett. 103(7), 071906 (2013).
[Crossref]

Ma, Y.

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2010).

Manjappa, M.

T. C.-W. Tan, Y. K. Srivastava, M. Manjappa, E. Plum, and R. Singh, “Lattice induced strong coupling and line narrowing of split resonances in metamaterials,” Appl. Phys. Lett. 112(20), 201111 (2018).
[Crossref]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photo switching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[PubMed]

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).

Mei, S.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[PubMed]

Merbold, H.

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Mittleman, D. M.

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nat. Electron. 1(12), 622–635 (2018).
[Crossref]

Monticone, F.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[PubMed]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

Morandotti, R.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Na, B.

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T.-J. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett. 103(7), 071906 (2013).
[Crossref]

Nagatsuma, T.

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nat. Electron. 1(12), 622–635 (2018).
[Crossref]

Ndao, A.

O’Hara, J. F.

M. T. Reiten, D. Roy Chowdhury, J. Zhou, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials,” Appl. Phys. Lett. 98(13), 131105 (2011).
[Crossref]

Ozaki, T.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[PubMed]

Park, J.-H.

Parvinnezhad Hokmabadi, M.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[PubMed]

Peng, W.

Philip, E.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[PubMed]

Plum, E.

T. C.-W. Tan, Y. K. Srivastava, M. Manjappa, E. Plum, and R. Singh, “Lattice induced strong coupling and line narrowing of split resonances in metamaterials,” Appl. Phys. Lett. 112(20), 201111 (2018).
[Crossref]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[PubMed]

Qin, F.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[PubMed]

Qiu, C.-W.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[PubMed]

Reiten, M. T.

M. T. Reiten, D. Roy Chowdhury, J. Zhou, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials,” Appl. Phys. Lett. 98(13), 131105 (2011).
[Crossref]

Rivera, E.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[PubMed]

Rockstuhl, C.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

Roy Chowdhury, D.

M. T. Reiten, D. Roy Chowdhury, J. Zhou, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials,” Appl. Phys. Lett. 98(13), 131105 (2011).
[Crossref]

Ruostekoski, J.

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

Sengupta, K.

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nat. Electron. 1(12), 622–635 (2018).
[Crossref]

Shi, H.

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

Shi, J.

Y. Xu, Q. Shi, Z. Zhu, and J. Shi, “Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial,” Opt. Express 22(21), 25679–25688 (2014).
[Crossref] [PubMed]

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T.-J. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett. 103(7), 071906 (2013).
[Crossref]

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Shi, Q.

Shi, W.

Shvets, G.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[PubMed]

Silva, S.

Singh, R.

T. C.-W. Tan, Y. K. Srivastava, M. Manjappa, E. Plum, and R. Singh, “Lattice induced strong coupling and line narrowing of split resonances in metamaterials,” Appl. Phys. Lett. 112(20), 201111 (2018).
[Crossref]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photo switching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[PubMed]

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2010).

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

Song, K.

Song, Y.

Song, Z.

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Soukoulis, C. M.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[PubMed]

Srivastava, Y. K.

T. C.-W. Tan, Y. K. Srivastava, M. Manjappa, E. Plum, and R. Singh, “Lattice induced strong coupling and line narrowing of split resonances in metamaterials,” Appl. Phys. Lett. 112(20), 201111 (2018).
[Crossref]

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photo switching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[PubMed]

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

Su, J.

W. Tan, C. Zhang, C. Li, X. Zhou, X. Jia, Z. Feng, J. Su, and B. Jin, “Selective coherent perfect absorption of subradiant mode in ultrathin bi-layer metamaterials via antisymmetric excitation,” Appl. Phys. Lett. 110(18), 181111 (2017).
[Crossref]

Su, Z.

Sun, W.

Sun, Y.

Tan, T. C.-W.

T. C.-W. Tan, Y. K. Srivastava, M. Manjappa, E. Plum, and R. Singh, “Lattice induced strong coupling and line narrowing of split resonances in metamaterials,” Appl. Phys. Lett. 112(20), 201111 (2018).
[Crossref]

Tan, W.

B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, and P. Wu, “High performance terahertz sensing at exceptional points in a bilayer structure,” Adv. Theory. Simul. 1(1), 1800070 (2018).

W. Tan, C. Zhang, C. Li, X. Zhou, X. Jia, Z. Feng, J. Su, and B. Jin, “Selective coherent perfect absorption of subradiant mode in ultrathin bi-layer metamaterials via antisymmetric excitation,” Appl. Phys. Lett. 110(18), 181111 (2017).
[Crossref]

Tassin, P.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[PubMed]

Taylor, A. J.

M. T. Reiten, D. Roy Chowdhury, J. Zhou, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials,” Appl. Phys. Lett. 98(13), 131105 (2011).
[Crossref]

Teng, J.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[PubMed]

Tian, Z.

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2010).

Wan, M.

Wang, S.-M.

Wang, Y.

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T.-J. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett. 103(7), 071906 (2013).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[PubMed]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Wu, C.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[PubMed]

Wu, J.

B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, and P. Wu, “High performance terahertz sensing at exceptional points in a bilayer structure,” Adv. Theory. Simul. 1(1), 1800070 (2018).

Wu, L.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Wu, P.

B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, and P. Wu, “High performance terahertz sensing at exceptional points in a bilayer structure,” Adv. Theory. Simul. 1(1), 1800070 (2018).

Wu, Z.

Z. Wu and Y. Zheng, “Moiré metamaterials and metasurface,” Adv. Opt. Mater. 6(3), 1701057 (2018).

Xu, M.-X.

Xu, Y.

Y. Xu, Q. Shi, Z. Zhu, and J. Shi, “Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial,” Opt. Express 22(21), 25679–25688 (2014).
[Crossref] [PubMed]

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T.-J. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett. 103(7), 071906 (2013).
[Crossref]

Yahiaoui, R.

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

Yang, Y.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Yang, Z.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Ye, Y.

Y. Ye, X. Li, F. Zhuang, and S.-W. Chang, “Homogeneous circular polarizers using a bilayered chiral metamaterial,” Appl. Phys. Lett. 99(3), 031111 (2011).
[Crossref]

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

Yu, S.

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Yuan, X.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Zhang, A.

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

Zhang, C.

B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, and P. Wu, “High performance terahertz sensing at exceptional points in a bilayer structure,” Adv. Theory. Simul. 1(1), 1800070 (2018).

W. Tan, C. Zhang, C. Li, X. Zhou, X. Jia, Z. Feng, J. Su, and B. Jin, “Selective coherent perfect absorption of subradiant mode in ultrathin bi-layer metamaterials via antisymmetric excitation,” Appl. Phys. Lett. 110(18), 181111 (2017).
[Crossref]

Zhang, J.

Zhang, L.

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[PubMed]

M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
[Crossref] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[PubMed]

Zhang, S.

B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, and P. Wu, “High performance terahertz sensing at exceptional points in a bilayer structure,” Adv. Theory. Simul. 1(1), 1800070 (2018).

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[PubMed]

Zhang, W.

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2010).

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).

Zhang, X.

Zhao, H.

Zhao, J.

Zhao, J.-H.

Zhao, M.

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Zhao, X.

Zhao, Z.

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[PubMed]

Zheng, S.

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

Zheng, X.

Zheng, Y.

Z. Wu and Y. Zheng, “Moiré metamaterials and metasurface,” Adv. Opt. Mater. 6(3), 1701057 (2018).

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

Zhou, F.

Zhou, J.

Zhou, X.

W. Tan, C. Zhang, C. Li, X. Zhou, X. Jia, Z. Feng, J. Su, and B. Jin, “Selective coherent perfect absorption of subradiant mode in ultrathin bi-layer metamaterials via antisymmetric excitation,” Appl. Phys. Lett. 110(18), 181111 (2017).
[Crossref]

Zhu, J.

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2010).

Zhu, L.-G.

Zhu, S.-N.

Zhu, Z.

Y. Xu, Q. Shi, Z. Zhu, and J. Shi, “Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial,” Opt. Express 22(21), 25679–25688 (2014).
[Crossref] [PubMed]

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T.-J. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett. 103(7), 071906 (2013).
[Crossref]

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

Zhuang, F.

Y. Ye, X. Li, F. Zhuang, and S.-W. Chang, “Homogeneous circular polarizers using a bilayered chiral metamaterial,” Appl. Phys. Lett. 99(3), 031111 (2011).
[Crossref]

Adv. Mater. (1)

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photo switching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[PubMed]

Adv. Opt. Mater. (1)

Z. Wu and Y. Zheng, “Moiré metamaterials and metasurface,” Adv. Opt. Mater. 6(3), 1701057 (2018).

Adv. Theory. Simul. (1)

B. Jin, W. Tan, C. Zhang, J. Wu, J. Chen, S. Zhang, and P. Wu, “High performance terahertz sensing at exceptional points in a bilayer structure,” Adv. Theory. Simul. 1(1), 1800070 (2018).

Appl. Phys. Lett. (13)

R. Yahiaoui, M. Manjappa, Y. K. Srivastava, and R. Singh, “Active control and switching of broadband electromagnetically induced transparency in symmetric metadevices,” Appl. Phys. Lett. 111(2), 021101 (2017).
[Crossref]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99(20), 201107 (2011).
[Crossref]

M. Manjappa, S.-Y. Chiam, L. Cong, A. A. Bettiol, W. Zhang, and R. Singh, “Tailoring the slow light behavior in terahertz metasurfaces,” Appl. Phys. Lett. 106(18), 181101 (2015).

T. C.-W. Tan, Y. K. Srivastava, M. Manjappa, E. Plum, and R. Singh, “Lattice induced strong coupling and line narrowing of split resonances in metamaterials,” Appl. Phys. Lett. 112(20), 201111 (2018).
[Crossref]

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96(20), 203501 (2010).
[Crossref]

M. T. Reiten, D. Roy Chowdhury, J. Zhou, A. J. Taylor, J. F. O’Hara, and A. K. Azad, “Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials,” Appl. Phys. Lett. 98(13), 131105 (2011).
[Crossref]

Y. Ye, X. Li, F. Zhuang, and S.-W. Chang, “Homogeneous circular polarizers using a bilayered chiral metamaterial,” Appl. Phys. Lett. 99(3), 031111 (2011).
[Crossref]

J. Shi, X. Liu, S. Yu, T. Lv, Z. Zhu, H. Feng Ma, and T. Jun Cui, “Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial,” Appl. Phys. Lett. 102(19), 191905 (2013).
[Crossref]

L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J. Duan, and X. Yuan, “Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials,” Appl. Phys. Lett. 103(2), 021903 (2013).
[Crossref]

J. Shi, R. Liu, B. Na, Y. Xu, Z. Zhu, Y. Wang, H. Ma, and T.-J. Cui, “Engineering electromagnetic responses of bilayered metamaterials based on Fano resonances,” Appl. Phys. Lett. 103(7), 071906 (2013).
[Crossref]

H. Shi, A. Zhang, S. Zheng, J. Li, and Y. Jiang, “Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators,” Appl. Phys. Lett. 104(3), 034102 (2014).
[Crossref]

W. Tan, C. Zhang, C. Li, X. Zhou, X. Jia, Z. Feng, J. Su, and B. Jin, “Selective coherent perfect absorption of subradiant mode in ultrathin bi-layer metamaterials via antisymmetric excitation,” Appl. Phys. Lett. 110(18), 181111 (2017).
[Crossref]

X. Liu, J. Gu, R. Singh, Y. Ma, J. Zhu, Z. Tian, M. He, J. Han, and W. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2010).

Nano Lett. (1)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Nat. Electron. (1)

K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nat. Electron. 1(12), 622–635 (2018).
[Crossref]

Opt. Express (8)

Z.-G. Dong, H. Liu, M.-X. Xu, T. Li, S.-M. Wang, J.-X. Cao, S.-N. Zhu, and X. Zhang, “Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency,” Opt. Express 18(21), 22412–22417 (2010).
[Crossref] [PubMed]

Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, and W. Zhang, “Manipulating the plasmon-induced transparency in terahertz metamaterials,” Opt. Express 19(9), 8912–8919 (2011).
[Crossref] [PubMed]

Y. Xu, Q. Shi, Z. Zhu, and J. Shi, “Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial,” Opt. Express 22(21), 25679–25688 (2014).
[Crossref] [PubMed]

M. Wan, Y. Song, L. Zhang, and F. Zhou, “Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings,” Opt. Express 23(21), 27361–27368 (2015).
[Crossref] [PubMed]

J.-H. Park, A. Kodigala, A. Ndao, and B. Kanté, “Hybridized metamaterial platform for nano-scale sensing,” Opt. Express 25(13), 15590–15598 (2017).
[Crossref] [PubMed]

T. Liu, L. Huang, W. Hong, Y. Ling, J. Luan, Y. Sun, and W. Sun, “Coupling-based Huygens’ meta-atom utilizing bilayer complementary plasmonic structure for light manipulation,” Opt. Express 25(14), 16332–16346 (2017).
[Crossref] [PubMed]

J. Zhao, Y. Fu, Z. Liu, and J. Zhou, “Optical chirality breaking in a bilayered chiral metamaterial,” Opt. Express 25(19), 23051–23059 (2017).
[Crossref] [PubMed]

Z. Zhao, X. Zheng, W. Peng, J. Zhang, H. Zhao, Z. Luo, and W. Shi, “Localized terahertz electromagnetically-induced transparency-like phenomenon in a conductively coupled trimer metamolecule,” Opt. Express 25(20), 24410–24424 (2017).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (6)

Phys. Rev. B (2)

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79(8), 085111 (2009).

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 80(15), 153103 (2009).
[Crossref]

Phys. Rev. Lett. (6)

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102(5), 053901 (2009).
[PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[PubMed]

F. Monticone, N. M. Estakhri, and A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013).
[Crossref] [PubMed]

S. D. Jenkins and J. Ruostekoski, “Metamaterial transparency induced by cooperative electromagnetic interactions,” Phys. Rev. Lett. 111(14), 147401 (2013).
[Crossref] [PubMed]

Sci. Adv. (1)

F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, “Hybrid bilayer plasmonic metasurface efficiently manipulates visible light,” Sci. Adv. 2(1), e1501168 (2016).
[PubMed]

Sci. Am. (2)

L. V. Hau, “Frozen light,” Sci. Am. 285(1), 66–73 (2001).
[Crossref] [PubMed]

L. V. Hau, “Frozen Light-Slowing a beam of light to a halt may pave the way for new optical communications technology, tabletop black holes and quantum computers,” Sci. Am. 3, 44–51 (2003).

Sci. Rep. (1)

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5, 15735 (2015).
[PubMed]

Other (2)

J. David, Griffiths, Introduction to electrodynamics (4th ed. Pearson: Prentice Hall, 2013).

F. Ulaby, Fundamentals of applied electromagnetics (5th ed. Pearson: Prentice Hall, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of THz radiating on the bilayer asymmetric metasurface, KTHz refers to the wavevector of incident THz pulse. ETHz and HTHz refer to the electrical components and magnetic components respectively. (b) The sandwich structure of bilayer metasurface is 125 μm × 125 μm, in which L = 98 μm, D = 2.5 μm, t = 0.2 μm, w1 = 5 μm, w2 = 6 μm, a = 32 μm, g = 6 μm, respectively.
Fig. 2
Fig. 2 (a) THz transmittance of cut-wire and of SRR under THz irradiation with different polarization. Blue solid-line refers to the transmittance of cut-wire. Red solid-line refers to the transmittance of SRR. The electric density at resonance modes of (b) cut-wire and of (c) SRR, respectively. The surface current distribution at resonance mode of (d) cut-wire and of (e) SRR, respectively. Color bar: the relative strength of electrical field as well as the surface currents.
Fig. 3
Fig. 3 (a) The THz transmittance of bilayer asymmetric metasurface with X-polarized THz incidence. (b) The THz transmittance of bilayer asymmetric metasurface with Y-polarized THz incidence. The δ is the displacement of SRR to the cut-wire. (c) 2D map of THz transmittance as a function of frequency and displacement with a finer step of 1 μm.
Fig. 4
Fig. 4 (a) The phase spectra and (b) the group delay of bilayer asymmetric metasurface with displacement δ of SRR from 0 to 64 μm at the interval of 8 μm. (b) The two-dimensional diagram of group delay as a function of frequency and displacement δ. The step of displacement δ is 1 μm.
Fig. 5
Fig. 5 (a) Surface currents distribution as well as (b) the diagram of magnetic field of THz transparency windows of bilayer asymmetric metasurface at δ = 8 μm, 16 μm, and 24 μm, correspondingly. The νT and νc refer to the transparent window and closed windows respectively. The color bar refers to the relative strength of surface currents.
Fig. 6
Fig. 6 Electrical field distribution of THz transparency windows of bilayer asymmetric metasurface at δ = 8 μm, δ = 16 μm, and δ = 24 μm, correspondingly. The νT and νc refer to the transparent window and closed windows respectively. EX refers to the electrical component along x-axis, EZ refers to the electrical component along Z-axis. The color bar refers to the relative strength of electrical field.

Tables (1)

Tables Icon

Table 1 The mode frequency of basic resonators

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Q= ν Δν ,
Δτ= dφ 2πdν ,
B r = μ 0 4π c Idl× r d r d 3 ,
m= B r V μ 0 ,
H= m 2 B 1 m 1 B 2 .
ν= 1 2π LC ,
E r = E x 2 + E z 2 .

Metrics