Abstract

We developed a simple and rapid method for dimer and higher multimer formation of gold nanoparticles (AuNPs) in bulk suspension. A coupling of AuNPs modified with COOH-terminated alkanethiol by van-der-Waals interaction between alkyl chains was employed. We demonstrated the tunability of the interparticle gap by changing the alkyl chain length from C5 to C15. Efficient dimer formation that avoids unwanted aggregation was demonstrated for AuNPs with a diameter ranging from 20 nm to 80 nm. For all cases, we found that the interparticle gap is well-defined and uniform. For the shortest alkyl chain (C5), we achieved an interparticle gap as small as 1.0 nm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced optical forces between coupled resonant metal nanoparticles

Anna S. Zelenina, Romain Quidant, and Manuel Nieto-Vesperinas
Opt. Lett. 32(9) 1156-1158 (2007)

Gold nanoring trimers: a versatile structure for infrared sensing

Siew Lang Teo, Vivian Kaixin Lin, Renaud Marty, Nicolas Large, Esther Alarcon Llado, Arnaud Arbouet, Christian Girard, Javier Aizpurua, Sudhiranjan Tripathy, and Adnen Mlayah
Opt. Express 18(21) 22271-22282 (2010)

Wavelength-dependent emission enhancement through the design of active plasmonic nanoantennas

Mélanie Ferrié, Nicola Pinna, Serge Ravaine, and Renaud A. L. Vallée
Opt. Express 19(18) 17697-17712 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Sriram, K. Zong, S. R. C. Vivekchand, and J. J. Gooding, “Single nanoparticle plasmonic sensors,” Sensors (Basel) 15(10), 25774–25792 (2015).
    [Crossref] [PubMed]
  2. K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, “Gold nanoparticles in chemical and biological sensing,” Chem. Rev. 112(5), 2739–2779 (2012).
    [Crossref] [PubMed]
  3. B. S. Hoener, S. R. Kirchner, T. S. Heiderscheit, S. S. E. Collins, W. S. Chang, S. Link, and C. F. Landes, “Plasmonic Sensing and Control of Single-Nanoparticle Electrochemistry,” Chem 4(7), 1560–1585 (2018).
    [Crossref]
  4. M. Liu, L. Fang, Y. Li, M. Gong, A. Xu, and Z. Deng, ““flash” preparation of strongly coupled metal nanoparticle clusters with sub-nm gaps by Ag+ soldering: toward effective plasmonic tuning of solution-assembled nanomaterials,” Chem. Sci. (Camb.) 7(8), 5435–5440 (2016).
    [Crossref] [PubMed]
  5. L. Xu, M. Sun, W. Ma, H. Kuang, and C. Xu, “Self-assembled nanoparticle dimers with contemporarily relevant properties and emerging applications,” Biochem. Pharmacol. 19(10), 595–606 (2016).
  6. S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
    [Crossref] [PubMed]
  7. Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Materials (Basel) 7(7), 5169–5201 (2014).
    [Crossref] [PubMed]
  8. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
    [Crossref] [PubMed]
  9. B. Kowalczyk, I. Lagzi, and B. A. Grzybowski, “Nanoseparations: Strategies for size and/or shape-selective purification of nanoparticles,” Curr. Opin. Colloid Interface Sci. 16(2), 135–148 (2011).
    [Crossref]
  10. D. Punj, R. Regmi, A. Devilez, R. Plauchu, S. B. Moparthi, B. Stout, N. Bonod, H. Rigneault, and J. Wenger, “Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations,” ACS Photonics 2(8), 1099–1107 (2015).
    [Crossref]
  11. B. Khlebtsov, A. Melnikov, V. Zharov, and N. Khlebtsov, “Absorption and scattering of light by a dimer of metal nanospheres: Comparison of dipole and multipole approaches,” Nanotechnology 17(5), 1437–1445 (2006).
    [Crossref]
  12. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [Crossref] [PubMed]
  13. V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. Rep. 65(1–3), 1–38 (2009).
    [Crossref]
  14. S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama, and T. Niidome, “Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods,” Langmuir 27(23), 14621–14626 (2011).
    [Crossref] [PubMed]
  15. T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
    [Crossref] [PubMed]
  16. A. T. Haine and T. Niidome, “Gold Nanorods as Nanodevices for Bioimaging, Photothermal Therapeutics, and Drug Delivery,” Chem. Pharm. Bull. (Tokyo) 65(7), 625–628 (2017).
    [Crossref] [PubMed]
  17. A. M. Alkilany and C. J. Murphy, “Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?” J. Nanopart. Res. 12(7), 2313–2333 (2010).
    [Crossref] [PubMed]
  18. D. Radziuk and H. Moehwald, “Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells,” Phys. Chem. Chem. Phys. 17(33), 21072–21093 (2015).
    [Crossref] [PubMed]
  19. S. Bidault and A. Polman, “Water-based assembly and purification of plasmon-coupled gold nanoparticle dimers and trimers,” Int. J. Opt. 2012, 1–5 (2012).
    [Crossref]
  20. W. Zhou, Q. Li, H. Liu, J. Yang, and D. Liu, “Building Electromagnetic Hot Spots in Living Cells via Target-Triggered Nanoparticle Dimerization,” ACS Nano 11(4), 3532–3541 (2017).
    [Crossref] [PubMed]
  21. S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
    [Crossref] [PubMed]
  22. K. Esashika and T. Saiki, “DNA Hybridization Assay Using Gold Nanoparticles and Electrophoresis Separation Provides 1 pM Sensitivity,” Bioconjug. Chem. 29(1), 182–189 (2018).
    [Crossref] [PubMed]
  23. L. H. Wang, J. Li, S. P. Song, D. Li, and C. H. Fan, “Biomolecular sensing via coupling DNA-based recognition with gold nanoparticles,” J. Phys. D Appl. Phys. 42(20), 203001 (2009).
    [Crossref]
  24. Y. Wang and J. Irudayaraj, “Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120026 (2012).
    [Crossref] [PubMed]
  25. V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5(1), 3448 (2014).
    [Crossref] [PubMed]
  26. S. Simoncelli, E. M. Roller, P. Urban, R. Schreiber, A. J. Turberfield, T. Liedl, and T. Lohmüller, “Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas,” ACS Nano 10(11), 9809–9815 (2016).
    [Crossref] [PubMed]
  27. H. Cha, J. H. Yoon, and S. Yoon, “Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range,” ACS Nano 8(8), 8554–8563 (2014).
    [Crossref] [PubMed]
  28. K. Sugano, K. Aiba, K. Ikegami, and Y. Isono, “Single-molecule surface-enhanced Raman spectroscopy of 4,4′-bipyridine on a prefabricated substrate with directionally arrayed gold nanoparticle dimers,” Jpn. J. Appl. Phys. 56(6), 06GK01 (2017).
    [Crossref]
  29. G. Chen, Y. Wang, M. Yang, J. Xu, S. J. Goh, M. Pan, and H. Chen, “Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers,” J. Am. Chem. Soc. 132(11), 3644–3645 (2010).
    [Crossref] [PubMed]
  30. M. D. Porter, T. B. Bright, D. L. Aliara, and C. E. D. Chidsey, “Spontaneously Organized Molecular Assemblies. 4. Structural Characterization of n-Alkyl Thiol Monolayers on Gold by Optical Ellipsometry, Infrared Spectroscopy, and Electrochemistry,” J. Am. Chem. Soc. 109(12), 3559–3568 (1987).
    [Crossref]
  31. C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable Plasmonic Response from Alkanethiolate-Stabilized Gold Nanoparticle Superlattices: Evidence of Near-Field Coupling,” J. Am. Chem. Soc. 130(3), 824–826 (2008).
    [Crossref] [PubMed]
  32. M. Toma, K. Toma, K. Michioka, Y. Ikezoe, D. Obara, K. Okamoto, and K. Tamada, “Collective plasmon modes excited on a silver nanoparticle 2D crystalline sheet,” Phys. Chem. Chem. Phys. 13(16), 7459–7466 (2011).
    [Crossref] [PubMed]
  33. S. A. Jadhav, “Self-assembled monolayers (SAMs) of carboxylic acids: An overview,” Cent. Eur. J. Chem. 9(3), 369–378 (2011).
    [Crossref]
  34. A. Królikowska, A. Kudelski, A. Michota, and J. Bukowska, “SERS studies on the structure of thioglycolic acid monolayers on silver and gold,” Surf. Sci. 532–535, 227–232 (2003).
    [Crossref]
  35. M. A. Bryant and J. E. Pemberton, “Surface Raman Scattering of Self-Assembled Monolayers Formed from 1-Alkanethiols: Behavior of Films at Au and Comparison to Films at Ag,” J. Am. Chem. Soc. 113(22), 8284–8293 (1991).
    [Crossref]
  36. C. Ma and J. M. Harris, “Surface-enhanced Raman scattering study of the kinetics of self-assembly of carboxylate-terminated n-alkanethiols on silver,” Langmuir 28(5), 2628–2636 (2012).
    [Crossref] [PubMed]
  37. J. G. Wang and A. Selloni, “First principles study of fatty acid monolayers on au(lll),” J. Phys. Chem. C 113(20), 8895–8900 (2009).
    [Crossref]
  38. S. Martín, L. M. Ballesteros, A. González-Orive, H. Oliva, S. Marqués-González, M. Lorenzoni, R. J. Nichols, F. Pérez-Murano, P. J. Low, and P. Cea, “Towards a metallic top contact electrode in molecular electronic devices exhibiting a large surface coverage by photoreduction of silver cations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9036–9043 (2016).
    [Crossref]
  39. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]

2018 (2)

B. S. Hoener, S. R. Kirchner, T. S. Heiderscheit, S. S. E. Collins, W. S. Chang, S. Link, and C. F. Landes, “Plasmonic Sensing and Control of Single-Nanoparticle Electrochemistry,” Chem 4(7), 1560–1585 (2018).
[Crossref]

K. Esashika and T. Saiki, “DNA Hybridization Assay Using Gold Nanoparticles and Electrophoresis Separation Provides 1 pM Sensitivity,” Bioconjug. Chem. 29(1), 182–189 (2018).
[Crossref] [PubMed]

2017 (3)

W. Zhou, Q. Li, H. Liu, J. Yang, and D. Liu, “Building Electromagnetic Hot Spots in Living Cells via Target-Triggered Nanoparticle Dimerization,” ACS Nano 11(4), 3532–3541 (2017).
[Crossref] [PubMed]

K. Sugano, K. Aiba, K. Ikegami, and Y. Isono, “Single-molecule surface-enhanced Raman spectroscopy of 4,4′-bipyridine on a prefabricated substrate with directionally arrayed gold nanoparticle dimers,” Jpn. J. Appl. Phys. 56(6), 06GK01 (2017).
[Crossref]

A. T. Haine and T. Niidome, “Gold Nanorods as Nanodevices for Bioimaging, Photothermal Therapeutics, and Drug Delivery,” Chem. Pharm. Bull. (Tokyo) 65(7), 625–628 (2017).
[Crossref] [PubMed]

2016 (4)

M. Liu, L. Fang, Y. Li, M. Gong, A. Xu, and Z. Deng, ““flash” preparation of strongly coupled metal nanoparticle clusters with sub-nm gaps by Ag+ soldering: toward effective plasmonic tuning of solution-assembled nanomaterials,” Chem. Sci. (Camb.) 7(8), 5435–5440 (2016).
[Crossref] [PubMed]

L. Xu, M. Sun, W. Ma, H. Kuang, and C. Xu, “Self-assembled nanoparticle dimers with contemporarily relevant properties and emerging applications,” Biochem. Pharmacol. 19(10), 595–606 (2016).

S. Simoncelli, E. M. Roller, P. Urban, R. Schreiber, A. J. Turberfield, T. Liedl, and T. Lohmüller, “Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas,” ACS Nano 10(11), 9809–9815 (2016).
[Crossref] [PubMed]

S. Martín, L. M. Ballesteros, A. González-Orive, H. Oliva, S. Marqués-González, M. Lorenzoni, R. J. Nichols, F. Pérez-Murano, P. J. Low, and P. Cea, “Towards a metallic top contact electrode in molecular electronic devices exhibiting a large surface coverage by photoreduction of silver cations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9036–9043 (2016).
[Crossref]

2015 (3)

D. Radziuk and H. Moehwald, “Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells,” Phys. Chem. Chem. Phys. 17(33), 21072–21093 (2015).
[Crossref] [PubMed]

M. Sriram, K. Zong, S. R. C. Vivekchand, and J. J. Gooding, “Single nanoparticle plasmonic sensors,” Sensors (Basel) 15(10), 25774–25792 (2015).
[Crossref] [PubMed]

D. Punj, R. Regmi, A. Devilez, R. Plauchu, S. B. Moparthi, B. Stout, N. Bonod, H. Rigneault, and J. Wenger, “Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations,” ACS Photonics 2(8), 1099–1107 (2015).
[Crossref]

2014 (3)

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Materials (Basel) 7(7), 5169–5201 (2014).
[Crossref] [PubMed]

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5(1), 3448 (2014).
[Crossref] [PubMed]

H. Cha, J. H. Yoon, and S. Yoon, “Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range,” ACS Nano 8(8), 8554–8563 (2014).
[Crossref] [PubMed]

2012 (4)

Y. Wang and J. Irudayaraj, “Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120026 (2012).
[Crossref] [PubMed]

S. Bidault and A. Polman, “Water-based assembly and purification of plasmon-coupled gold nanoparticle dimers and trimers,” Int. J. Opt. 2012, 1–5 (2012).
[Crossref]

K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, “Gold nanoparticles in chemical and biological sensing,” Chem. Rev. 112(5), 2739–2779 (2012).
[Crossref] [PubMed]

C. Ma and J. M. Harris, “Surface-enhanced Raman scattering study of the kinetics of self-assembly of carboxylate-terminated n-alkanethiols on silver,” Langmuir 28(5), 2628–2636 (2012).
[Crossref] [PubMed]

2011 (4)

B. Kowalczyk, I. Lagzi, and B. A. Grzybowski, “Nanoseparations: Strategies for size and/or shape-selective purification of nanoparticles,” Curr. Opin. Colloid Interface Sci. 16(2), 135–148 (2011).
[Crossref]

S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama, and T. Niidome, “Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods,” Langmuir 27(23), 14621–14626 (2011).
[Crossref] [PubMed]

M. Toma, K. Toma, K. Michioka, Y. Ikezoe, D. Obara, K. Okamoto, and K. Tamada, “Collective plasmon modes excited on a silver nanoparticle 2D crystalline sheet,” Phys. Chem. Chem. Phys. 13(16), 7459–7466 (2011).
[Crossref] [PubMed]

S. A. Jadhav, “Self-assembled monolayers (SAMs) of carboxylic acids: An overview,” Cent. Eur. J. Chem. 9(3), 369–378 (2011).
[Crossref]

2010 (2)

G. Chen, Y. Wang, M. Yang, J. Xu, S. J. Goh, M. Pan, and H. Chen, “Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers,” J. Am. Chem. Soc. 132(11), 3644–3645 (2010).
[Crossref] [PubMed]

A. M. Alkilany and C. J. Murphy, “Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?” J. Nanopart. Res. 12(7), 2313–2333 (2010).
[Crossref] [PubMed]

2009 (3)

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. Rep. 65(1–3), 1–38 (2009).
[Crossref]

L. H. Wang, J. Li, S. P. Song, D. Li, and C. H. Fan, “Biomolecular sensing via coupling DNA-based recognition with gold nanoparticles,” J. Phys. D Appl. Phys. 42(20), 203001 (2009).
[Crossref]

J. G. Wang and A. Selloni, “First principles study of fatty acid monolayers on au(lll),” J. Phys. Chem. C 113(20), 8895–8900 (2009).
[Crossref]

2008 (1)

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable Plasmonic Response from Alkanethiolate-Stabilized Gold Nanoparticle Superlattices: Evidence of Near-Field Coupling,” J. Am. Chem. Soc. 130(3), 824–826 (2008).
[Crossref] [PubMed]

2007 (1)

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref] [PubMed]

2006 (4)

B. Khlebtsov, A. Melnikov, V. Zharov, and N. Khlebtsov, “Absorption and scattering of light by a dimer of metal nanospheres: Comparison of dipole and multipole approaches,” Nanotechnology 17(5), 1437–1445 (2006).
[Crossref]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[Crossref] [PubMed]

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

2005 (1)

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

2003 (1)

A. Królikowska, A. Kudelski, A. Michota, and J. Bukowska, “SERS studies on the structure of thioglycolic acid monolayers on silver and gold,” Surf. Sci. 532–535, 227–232 (2003).
[Crossref]

1991 (1)

M. A. Bryant and J. E. Pemberton, “Surface Raman Scattering of Self-Assembled Monolayers Formed from 1-Alkanethiols: Behavior of Films at Au and Comparison to Films at Ag,” J. Am. Chem. Soc. 113(22), 8284–8293 (1991).
[Crossref]

1987 (1)

M. D. Porter, T. B. Bright, D. L. Aliara, and C. E. D. Chidsey, “Spontaneously Organized Molecular Assemblies. 4. Structural Characterization of n-Alkyl Thiol Monolayers on Gold by Optical Ellipsometry, Infrared Spectroscopy, and Electrochemistry,” J. Am. Chem. Soc. 109(12), 3559–3568 (1987).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Agasti, S. S.

K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, “Gold nanoparticles in chemical and biological sensing,” Chem. Rev. 112(5), 2739–2779 (2012).
[Crossref] [PubMed]

Aiba, K.

K. Sugano, K. Aiba, K. Ikegami, and Y. Isono, “Single-molecule surface-enhanced Raman spectroscopy of 4,4′-bipyridine on a prefabricated substrate with directionally arrayed gold nanoparticle dimers,” Jpn. J. Appl. Phys. 56(6), 06GK01 (2017).
[Crossref]

Akiyama, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[Crossref] [PubMed]

Aliara, D. L.

M. D. Porter, T. B. Bright, D. L. Aliara, and C. E. D. Chidsey, “Spontaneously Organized Molecular Assemblies. 4. Structural Characterization of n-Alkyl Thiol Monolayers on Gold by Optical Ellipsometry, Infrared Spectroscopy, and Electrochemistry,” J. Am. Chem. Soc. 109(12), 3559–3568 (1987).
[Crossref]

Alkilany, A. M.

A. M. Alkilany and C. J. Murphy, “Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?” J. Nanopart. Res. 12(7), 2313–2333 (2010).
[Crossref] [PubMed]

Ballesteros, L. M.

S. Martín, L. M. Ballesteros, A. González-Orive, H. Oliva, S. Marqués-González, M. Lorenzoni, R. J. Nichols, F. Pérez-Murano, P. J. Low, and P. Cea, “Towards a metallic top contact electrode in molecular electronic devices exhibiting a large surface coverage by photoreduction of silver cations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9036–9043 (2016).
[Crossref]

Barrow, C. J.

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Materials (Basel) 7(7), 5169–5201 (2014).
[Crossref] [PubMed]

Baumberg, J. J.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5(1), 3448 (2014).
[Crossref] [PubMed]

Bidault, S.

S. Bidault and A. Polman, “Water-based assembly and purification of plasmon-coupled gold nanoparticle dimers and trimers,” Int. J. Opt. 2012, 1–5 (2012).
[Crossref]

Bonod, N.

D. Punj, R. Regmi, A. Devilez, R. Plauchu, S. B. Moparthi, B. Stout, N. Bonod, H. Rigneault, and J. Wenger, “Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations,” ACS Photonics 2(8), 1099–1107 (2015).
[Crossref]

Bright, T. B.

M. D. Porter, T. B. Bright, D. L. Aliara, and C. E. D. Chidsey, “Spontaneously Organized Molecular Assemblies. 4. Structural Characterization of n-Alkyl Thiol Monolayers on Gold by Optical Ellipsometry, Infrared Spectroscopy, and Electrochemistry,” J. Am. Chem. Soc. 109(12), 3559–3568 (1987).
[Crossref]

Bryant, M. A.

M. A. Bryant and J. E. Pemberton, “Surface Raman Scattering of Self-Assembled Monolayers Formed from 1-Alkanethiols: Behavior of Films at Au and Comparison to Films at Ag,” J. Am. Chem. Soc. 113(22), 8284–8293 (1991).
[Crossref]

Bukowska, J.

A. Królikowska, A. Kudelski, A. Michota, and J. Bukowska, “SERS studies on the structure of thioglycolic acid monolayers on silver and gold,” Surf. Sci. 532–535, 227–232 (2003).
[Crossref]

Cea, P.

S. Martín, L. M. Ballesteros, A. González-Orive, H. Oliva, S. Marqués-González, M. Lorenzoni, R. J. Nichols, F. Pérez-Murano, P. J. Low, and P. Cea, “Towards a metallic top contact electrode in molecular electronic devices exhibiting a large surface coverage by photoreduction of silver cations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9036–9043 (2016).
[Crossref]

Cha, H.

H. Cha, J. H. Yoon, and S. Yoon, “Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range,” ACS Nano 8(8), 8554–8563 (2014).
[Crossref] [PubMed]

Chang, W. S.

B. S. Hoener, S. R. Kirchner, T. S. Heiderscheit, S. S. E. Collins, W. S. Chang, S. Link, and C. F. Landes, “Plasmonic Sensing and Control of Single-Nanoparticle Electrochemistry,” Chem 4(7), 1560–1585 (2018).
[Crossref]

Chen, C.-F.

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable Plasmonic Response from Alkanethiolate-Stabilized Gold Nanoparticle Superlattices: Evidence of Near-Field Coupling,” J. Am. Chem. Soc. 130(3), 824–826 (2008).
[Crossref] [PubMed]

Chen, G.

G. Chen, Y. Wang, M. Yang, J. Xu, S. J. Goh, M. Pan, and H. Chen, “Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers,” J. Am. Chem. Soc. 132(11), 3644–3645 (2010).
[Crossref] [PubMed]

Chen, H.

G. Chen, Y. Wang, M. Yang, J. Xu, S. J. Goh, M. Pan, and H. Chen, “Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers,” J. Am. Chem. Soc. 132(11), 3644–3645 (2010).
[Crossref] [PubMed]

Chen, H.-Y.

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable Plasmonic Response from Alkanethiolate-Stabilized Gold Nanoparticle Superlattices: Evidence of Near-Field Coupling,” J. Am. Chem. Soc. 130(3), 824–826 (2008).
[Crossref] [PubMed]

Chidsey, C. E. D.

M. D. Porter, T. B. Bright, D. L. Aliara, and C. E. D. Chidsey, “Spontaneously Organized Molecular Assemblies. 4. Structural Characterization of n-Alkyl Thiol Monolayers on Gold by Optical Ellipsometry, Infrared Spectroscopy, and Electrochemistry,” J. Am. Chem. Soc. 109(12), 3559–3568 (1987).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, W.

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Materials (Basel) 7(7), 5169–5201 (2014).
[Crossref] [PubMed]

Collins, S. S. E.

B. S. Hoener, S. R. Kirchner, T. S. Heiderscheit, S. S. E. Collins, W. S. Chang, S. Link, and C. F. Landes, “Plasmonic Sensing and Control of Single-Nanoparticle Electrochemistry,” Chem 4(7), 1560–1585 (2018).
[Crossref]

Deng, Z.

M. Liu, L. Fang, Y. Li, M. Gong, A. Xu, and Z. Deng, ““flash” preparation of strongly coupled metal nanoparticle clusters with sub-nm gaps by Ag+ soldering: toward effective plasmonic tuning of solution-assembled nanomaterials,” Chem. Sci. (Camb.) 7(8), 5435–5440 (2016).
[Crossref] [PubMed]

Devilez, A.

D. Punj, R. Regmi, A. Devilez, R. Plauchu, S. B. Moparthi, B. Stout, N. Bonod, H. Rigneault, and J. Wenger, “Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations,” ACS Photonics 2(8), 1099–1107 (2015).
[Crossref]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

Esashika, K.

K. Esashika and T. Saiki, “DNA Hybridization Assay Using Gold Nanoparticles and Electrophoresis Separation Provides 1 pM Sensitivity,” Bioconjug. Chem. 29(1), 182–189 (2018).
[Crossref] [PubMed]

Eustis, S.

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

Fan, C. H.

L. H. Wang, J. Li, S. P. Song, D. Li, and C. H. Fan, “Biomolecular sensing via coupling DNA-based recognition with gold nanoparticles,” J. Phys. D Appl. Phys. 42(20), 203001 (2009).
[Crossref]

Fang, L.

M. Liu, L. Fang, Y. Li, M. Gong, A. Xu, and Z. Deng, ““flash” preparation of strongly coupled metal nanoparticle clusters with sub-nm gaps by Ag+ soldering: toward effective plasmonic tuning of solution-assembled nanomaterials,” Chem. Sci. (Camb.) 7(8), 5435–5440 (2016).
[Crossref] [PubMed]

Foroushani, A. D.

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Materials (Basel) 7(7), 5169–5201 (2014).
[Crossref] [PubMed]

Fukushima, H.

S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama, and T. Niidome, “Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods,” Langmuir 27(23), 14621–14626 (2011).
[Crossref] [PubMed]

Ghosh, S. K.

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref] [PubMed]

Goh, S. J.

G. Chen, Y. Wang, M. Yang, J. Xu, S. J. Goh, M. Pan, and H. Chen, “Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers,” J. Am. Chem. Soc. 132(11), 3644–3645 (2010).
[Crossref] [PubMed]

Gong, M.

M. Liu, L. Fang, Y. Li, M. Gong, A. Xu, and Z. Deng, ““flash” preparation of strongly coupled metal nanoparticle clusters with sub-nm gaps by Ag+ soldering: toward effective plasmonic tuning of solution-assembled nanomaterials,” Chem. Sci. (Camb.) 7(8), 5435–5440 (2016).
[Crossref] [PubMed]

González-Orive, A.

S. Martín, L. M. Ballesteros, A. González-Orive, H. Oliva, S. Marqués-González, M. Lorenzoni, R. J. Nichols, F. Pérez-Murano, P. J. Low, and P. Cea, “Towards a metallic top contact electrode in molecular electronic devices exhibiting a large surface coverage by photoreduction of silver cations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9036–9043 (2016).
[Crossref]

Gooding, J. J.

M. Sriram, K. Zong, S. R. C. Vivekchand, and J. J. Gooding, “Single nanoparticle plasmonic sensors,” Sensors (Basel) 15(10), 25774–25792 (2015).
[Crossref] [PubMed]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Grzybowski, B. A.

B. Kowalczyk, I. Lagzi, and B. A. Grzybowski, “Nanoseparations: Strategies for size and/or shape-selective purification of nanoparticles,” Curr. Opin. Colloid Interface Sci. 16(2), 135–148 (2011).
[Crossref]

Gwo, S.

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable Plasmonic Response from Alkanethiolate-Stabilized Gold Nanoparticle Superlattices: Evidence of Near-Field Coupling,” J. Am. Chem. Soc. 130(3), 824–826 (2008).
[Crossref] [PubMed]

Haine, A. T.

A. T. Haine and T. Niidome, “Gold Nanorods as Nanodevices for Bioimaging, Photothermal Therapeutics, and Drug Delivery,” Chem. Pharm. Bull. (Tokyo) 65(7), 625–628 (2017).
[Crossref] [PubMed]

Halas, N. J.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Harris, J. M.

C. Ma and J. M. Harris, “Surface-enhanced Raman scattering study of the kinetics of self-assembly of carboxylate-terminated n-alkanethiols on silver,” Langmuir 28(5), 2628–2636 (2012).
[Crossref] [PubMed]

Heiderscheit, T. S.

B. S. Hoener, S. R. Kirchner, T. S. Heiderscheit, S. S. E. Collins, W. S. Chang, S. Link, and C. F. Landes, “Plasmonic Sensing and Control of Single-Nanoparticle Electrochemistry,” Chem 4(7), 1560–1585 (2018).
[Crossref]

Herrmann, L. O.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5(1), 3448 (2014).
[Crossref] [PubMed]

Hoener, B. S.

B. S. Hoener, S. R. Kirchner, T. S. Heiderscheit, S. S. E. Collins, W. S. Chang, S. Link, and C. F. Landes, “Plasmonic Sensing and Control of Single-Nanoparticle Electrochemistry,” Chem 4(7), 1560–1585 (2018).
[Crossref]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Ikegami, K.

K. Sugano, K. Aiba, K. Ikegami, and Y. Isono, “Single-molecule surface-enhanced Raman spectroscopy of 4,4′-bipyridine on a prefabricated substrate with directionally arrayed gold nanoparticle dimers,” Jpn. J. Appl. Phys. 56(6), 06GK01 (2017).
[Crossref]

Ikezoe, Y.

M. Toma, K. Toma, K. Michioka, Y. Ikezoe, D. Obara, K. Okamoto, and K. Tamada, “Collective plasmon modes excited on a silver nanoparticle 2D crystalline sheet,” Phys. Chem. Chem. Phys. 13(16), 7459–7466 (2011).
[Crossref] [PubMed]

Irudayaraj, J.

Y. Wang and J. Irudayaraj, “Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120026 (2012).
[Crossref] [PubMed]

Isono, Y.

K. Sugano, K. Aiba, K. Ikegami, and Y. Isono, “Single-molecule surface-enhanced Raman spectroscopy of 4,4′-bipyridine on a prefabricated substrate with directionally arrayed gold nanoparticle dimers,” Jpn. J. Appl. Phys. 56(6), 06GK01 (2017).
[Crossref]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Jadhav, S. A.

S. A. Jadhav, “Self-assembled monolayers (SAMs) of carboxylic acids: An overview,” Cent. Eur. J. Chem. 9(3), 369–378 (2011).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Katayama, Y.

S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama, and T. Niidome, “Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods,” Langmuir 27(23), 14621–14626 (2011).
[Crossref] [PubMed]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[Crossref] [PubMed]

Kawano, T.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[Crossref] [PubMed]

Keyser, U. F.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5(1), 3448 (2014).
[Crossref] [PubMed]

Khlebtsov, B.

B. Khlebtsov, A. Melnikov, V. Zharov, and N. Khlebtsov, “Absorption and scattering of light by a dimer of metal nanospheres: Comparison of dipole and multipole approaches,” Nanotechnology 17(5), 1437–1445 (2006).
[Crossref]

Khlebtsov, N.

B. Khlebtsov, A. Melnikov, V. Zharov, and N. Khlebtsov, “Absorption and scattering of light by a dimer of metal nanospheres: Comparison of dipole and multipole approaches,” Nanotechnology 17(5), 1437–1445 (2006).
[Crossref]

Kim, C.

K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, “Gold nanoparticles in chemical and biological sensing,” Chem. Rev. 112(5), 2739–2779 (2012).
[Crossref] [PubMed]

Kirchner, S. R.

B. S. Hoener, S. R. Kirchner, T. S. Heiderscheit, S. S. E. Collins, W. S. Chang, S. Link, and C. F. Landes, “Plasmonic Sensing and Control of Single-Nanoparticle Electrochemistry,” Chem 4(7), 1560–1585 (2018).
[Crossref]

Kowalczyk, B.

B. Kowalczyk, I. Lagzi, and B. A. Grzybowski, “Nanoseparations: Strategies for size and/or shape-selective purification of nanoparticles,” Curr. Opin. Colloid Interface Sci. 16(2), 135–148 (2011).
[Crossref]

Królikowska, A.

A. Królikowska, A. Kudelski, A. Michota, and J. Bukowska, “SERS studies on the structure of thioglycolic acid monolayers on silver and gold,” Surf. Sci. 532–535, 227–232 (2003).
[Crossref]

Kuang, H.

L. Xu, M. Sun, W. Ma, H. Kuang, and C. Xu, “Self-assembled nanoparticle dimers with contemporarily relevant properties and emerging applications,” Biochem. Pharmacol. 19(10), 595–606 (2016).

Kudelski, A.

A. Królikowska, A. Kudelski, A. Michota, and J. Bukowska, “SERS studies on the structure of thioglycolic acid monolayers on silver and gold,” Surf. Sci. 532–535, 227–232 (2003).
[Crossref]

Lagzi, I.

B. Kowalczyk, I. Lagzi, and B. A. Grzybowski, “Nanoseparations: Strategies for size and/or shape-selective purification of nanoparticles,” Curr. Opin. Colloid Interface Sci. 16(2), 135–148 (2011).
[Crossref]

Landes, C. F.

B. S. Hoener, S. R. Kirchner, T. S. Heiderscheit, S. S. E. Collins, W. S. Chang, S. Link, and C. F. Landes, “Plasmonic Sensing and Control of Single-Nanoparticle Electrochemistry,” Chem 4(7), 1560–1585 (2018).
[Crossref]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Li, D.

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Materials (Basel) 7(7), 5169–5201 (2014).
[Crossref] [PubMed]

L. H. Wang, J. Li, S. P. Song, D. Li, and C. H. Fan, “Biomolecular sensing via coupling DNA-based recognition with gold nanoparticles,” J. Phys. D Appl. Phys. 42(20), 203001 (2009).
[Crossref]

Li, J.

L. H. Wang, J. Li, S. P. Song, D. Li, and C. H. Fan, “Biomolecular sensing via coupling DNA-based recognition with gold nanoparticles,” J. Phys. D Appl. Phys. 42(20), 203001 (2009).
[Crossref]

Li, Q.

W. Zhou, Q. Li, H. Liu, J. Yang, and D. Liu, “Building Electromagnetic Hot Spots in Living Cells via Target-Triggered Nanoparticle Dimerization,” ACS Nano 11(4), 3532–3541 (2017).
[Crossref] [PubMed]

Li, X.

K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, “Gold nanoparticles in chemical and biological sensing,” Chem. Rev. 112(5), 2739–2779 (2012).
[Crossref] [PubMed]

Li, Y.

M. Liu, L. Fang, Y. Li, M. Gong, A. Xu, and Z. Deng, ““flash” preparation of strongly coupled metal nanoparticle clusters with sub-nm gaps by Ag+ soldering: toward effective plasmonic tuning of solution-assembled nanomaterials,” Chem. Sci. (Camb.) 7(8), 5435–5440 (2016).
[Crossref] [PubMed]

Liedl, T.

S. Simoncelli, E. M. Roller, P. Urban, R. Schreiber, A. J. Turberfield, T. Liedl, and T. Lohmüller, “Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas,” ACS Nano 10(11), 9809–9815 (2016).
[Crossref] [PubMed]

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5(1), 3448 (2014).
[Crossref] [PubMed]

Lin, K.-J.

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable Plasmonic Response from Alkanethiolate-Stabilized Gold Nanoparticle Superlattices: Evidence of Near-Field Coupling,” J. Am. Chem. Soc. 130(3), 824–826 (2008).
[Crossref] [PubMed]

Link, S.

B. S. Hoener, S. R. Kirchner, T. S. Heiderscheit, S. S. E. Collins, W. S. Chang, S. Link, and C. F. Landes, “Plasmonic Sensing and Control of Single-Nanoparticle Electrochemistry,” Chem 4(7), 1560–1585 (2018).
[Crossref]

Liu, D.

W. Zhou, Q. Li, H. Liu, J. Yang, and D. Liu, “Building Electromagnetic Hot Spots in Living Cells via Target-Triggered Nanoparticle Dimerization,” ACS Nano 11(4), 3532–3541 (2017).
[Crossref] [PubMed]

Liu, H.

W. Zhou, Q. Li, H. Liu, J. Yang, and D. Liu, “Building Electromagnetic Hot Spots in Living Cells via Target-Triggered Nanoparticle Dimerization,” ACS Nano 11(4), 3532–3541 (2017).
[Crossref] [PubMed]

Liu, J.

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Materials (Basel) 7(7), 5169–5201 (2014).
[Crossref] [PubMed]

Liu, M.

M. Liu, L. Fang, Y. Li, M. Gong, A. Xu, and Z. Deng, ““flash” preparation of strongly coupled metal nanoparticle clusters with sub-nm gaps by Ag+ soldering: toward effective plasmonic tuning of solution-assembled nanomaterials,” Chem. Sci. (Camb.) 7(8), 5435–5440 (2016).
[Crossref] [PubMed]

Lohmüller, T.

S. Simoncelli, E. M. Roller, P. Urban, R. Schreiber, A. J. Turberfield, T. Liedl, and T. Lohmüller, “Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas,” ACS Nano 10(11), 9809–9815 (2016).
[Crossref] [PubMed]

Lorenzoni, M.

S. Martín, L. M. Ballesteros, A. González-Orive, H. Oliva, S. Marqués-González, M. Lorenzoni, R. J. Nichols, F. Pérez-Murano, P. J. Low, and P. Cea, “Towards a metallic top contact electrode in molecular electronic devices exhibiting a large surface coverage by photoreduction of silver cations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9036–9043 (2016).
[Crossref]

Low, P. J.

S. Martín, L. M. Ballesteros, A. González-Orive, H. Oliva, S. Marqués-González, M. Lorenzoni, R. J. Nichols, F. Pérez-Murano, P. J. Low, and P. Cea, “Towards a metallic top contact electrode in molecular electronic devices exhibiting a large surface coverage by photoreduction of silver cations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9036–9043 (2016).
[Crossref]

Ma, C.

C. Ma and J. M. Harris, “Surface-enhanced Raman scattering study of the kinetics of self-assembly of carboxylate-terminated n-alkanethiols on silver,” Langmuir 28(5), 2628–2636 (2012).
[Crossref] [PubMed]

Ma, W.

L. Xu, M. Sun, W. Ma, H. Kuang, and C. Xu, “Self-assembled nanoparticle dimers with contemporarily relevant properties and emerging applications,” Biochem. Pharmacol. 19(10), 595–606 (2016).

Marqués-González, S.

S. Martín, L. M. Ballesteros, A. González-Orive, H. Oliva, S. Marqués-González, M. Lorenzoni, R. J. Nichols, F. Pérez-Murano, P. J. Low, and P. Cea, “Towards a metallic top contact electrode in molecular electronic devices exhibiting a large surface coverage by photoreduction of silver cations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9036–9043 (2016).
[Crossref]

Martín, S.

S. Martín, L. M. Ballesteros, A. González-Orive, H. Oliva, S. Marqués-González, M. Lorenzoni, R. J. Nichols, F. Pérez-Murano, P. J. Low, and P. Cea, “Towards a metallic top contact electrode in molecular electronic devices exhibiting a large surface coverage by photoreduction of silver cations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9036–9043 (2016).
[Crossref]

Melnikov, A.

B. Khlebtsov, A. Melnikov, V. Zharov, and N. Khlebtsov, “Absorption and scattering of light by a dimer of metal nanospheres: Comparison of dipole and multipole approaches,” Nanotechnology 17(5), 1437–1445 (2006).
[Crossref]

Michioka, K.

M. Toma, K. Toma, K. Michioka, Y. Ikezoe, D. Obara, K. Okamoto, and K. Tamada, “Collective plasmon modes excited on a silver nanoparticle 2D crystalline sheet,” Phys. Chem. Chem. Phys. 13(16), 7459–7466 (2011).
[Crossref] [PubMed]

Michota, A.

A. Królikowska, A. Kudelski, A. Michota, and J. Bukowska, “SERS studies on the structure of thioglycolic acid monolayers on silver and gold,” Surf. Sci. 532–535, 227–232 (2003).
[Crossref]

Moehwald, H.

D. Radziuk and H. Moehwald, “Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells,” Phys. Chem. Chem. Phys. 17(33), 21072–21093 (2015).
[Crossref] [PubMed]

Moparthi, S. B.

D. Punj, R. Regmi, A. Devilez, R. Plauchu, S. B. Moparthi, B. Stout, N. Bonod, H. Rigneault, and J. Wenger, “Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations,” ACS Photonics 2(8), 1099–1107 (2015).
[Crossref]

Mori, T.

S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama, and T. Niidome, “Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods,” Langmuir 27(23), 14621–14626 (2011).
[Crossref] [PubMed]

Murphy, C. J.

A. M. Alkilany and C. J. Murphy, “Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?” J. Nanopart. Res. 12(7), 2313–2333 (2010).
[Crossref] [PubMed]

Nichols, R. J.

S. Martín, L. M. Ballesteros, A. González-Orive, H. Oliva, S. Marqués-González, M. Lorenzoni, R. J. Nichols, F. Pérez-Murano, P. J. Low, and P. Cea, “Towards a metallic top contact electrode in molecular electronic devices exhibiting a large surface coverage by photoreduction of silver cations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9036–9043 (2016).
[Crossref]

Niidome, T.

A. T. Haine and T. Niidome, “Gold Nanorods as Nanodevices for Bioimaging, Photothermal Therapeutics, and Drug Delivery,” Chem. Pharm. Bull. (Tokyo) 65(7), 625–628 (2017).
[Crossref] [PubMed]

S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama, and T. Niidome, “Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods,” Langmuir 27(23), 14621–14626 (2011).
[Crossref] [PubMed]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[Crossref] [PubMed]

Niidome, Y.

S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama, and T. Niidome, “Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods,” Langmuir 27(23), 14621–14626 (2011).
[Crossref] [PubMed]

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[Crossref] [PubMed]

Nordlander, P.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Obara, D.

M. Toma, K. Toma, K. Michioka, Y. Ikezoe, D. Obara, K. Okamoto, and K. Tamada, “Collective plasmon modes excited on a silver nanoparticle 2D crystalline sheet,” Phys. Chem. Chem. Phys. 13(16), 7459–7466 (2011).
[Crossref] [PubMed]

Okamoto, K.

M. Toma, K. Toma, K. Michioka, Y. Ikezoe, D. Obara, K. Okamoto, and K. Tamada, “Collective plasmon modes excited on a silver nanoparticle 2D crystalline sheet,” Phys. Chem. Chem. Phys. 13(16), 7459–7466 (2011).
[Crossref] [PubMed]

Okamoto, Y.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[Crossref] [PubMed]

Oliva, H.

S. Martín, L. M. Ballesteros, A. González-Orive, H. Oliva, S. Marqués-González, M. Lorenzoni, R. J. Nichols, F. Pérez-Murano, P. J. Low, and P. Cea, “Towards a metallic top contact electrode in molecular electronic devices exhibiting a large surface coverage by photoreduction of silver cations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9036–9043 (2016).
[Crossref]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Pal, T.

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref] [PubMed]

Pan, M.

G. Chen, Y. Wang, M. Yang, J. Xu, S. J. Goh, M. Pan, and H. Chen, “Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers,” J. Am. Chem. Soc. 132(11), 3644–3645 (2010).
[Crossref] [PubMed]

Park, K.

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. Rep. 65(1–3), 1–38 (2009).
[Crossref]

Pemberton, J. E.

M. A. Bryant and J. E. Pemberton, “Surface Raman Scattering of Self-Assembled Monolayers Formed from 1-Alkanethiols: Behavior of Films at Au and Comparison to Films at Ag,” J. Am. Chem. Soc. 113(22), 8284–8293 (1991).
[Crossref]

Pérez-Murano, F.

S. Martín, L. M. Ballesteros, A. González-Orive, H. Oliva, S. Marqués-González, M. Lorenzoni, R. J. Nichols, F. Pérez-Murano, P. J. Low, and P. Cea, “Towards a metallic top contact electrode in molecular electronic devices exhibiting a large surface coverage by photoreduction of silver cations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9036–9043 (2016).
[Crossref]

Plauchu, R.

D. Punj, R. Regmi, A. Devilez, R. Plauchu, S. B. Moparthi, B. Stout, N. Bonod, H. Rigneault, and J. Wenger, “Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations,” ACS Photonics 2(8), 1099–1107 (2015).
[Crossref]

Polman, A.

S. Bidault and A. Polman, “Water-based assembly and purification of plasmon-coupled gold nanoparticle dimers and trimers,” Int. J. Opt. 2012, 1–5 (2012).
[Crossref]

Porter, M. D.

M. D. Porter, T. B. Bright, D. L. Aliara, and C. E. D. Chidsey, “Spontaneously Organized Molecular Assemblies. 4. Structural Characterization of n-Alkyl Thiol Monolayers on Gold by Optical Ellipsometry, Infrared Spectroscopy, and Electrochemistry,” J. Am. Chem. Soc. 109(12), 3559–3568 (1987).
[Crossref]

Punj, D.

D. Punj, R. Regmi, A. Devilez, R. Plauchu, S. B. Moparthi, B. Stout, N. Bonod, H. Rigneault, and J. Wenger, “Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations,” ACS Photonics 2(8), 1099–1107 (2015).
[Crossref]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

Radziuk, D.

D. Radziuk and H. Moehwald, “Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells,” Phys. Chem. Chem. Phys. 17(33), 21072–21093 (2015).
[Crossref] [PubMed]

Regmi, R.

D. Punj, R. Regmi, A. Devilez, R. Plauchu, S. B. Moparthi, B. Stout, N. Bonod, H. Rigneault, and J. Wenger, “Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations,” ACS Photonics 2(8), 1099–1107 (2015).
[Crossref]

Rigneault, H.

D. Punj, R. Regmi, A. Devilez, R. Plauchu, S. B. Moparthi, B. Stout, N. Bonod, H. Rigneault, and J. Wenger, “Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations,” ACS Photonics 2(8), 1099–1107 (2015).
[Crossref]

Roller, E. M.

S. Simoncelli, E. M. Roller, P. Urban, R. Schreiber, A. J. Turberfield, T. Liedl, and T. Lohmüller, “Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas,” ACS Nano 10(11), 9809–9815 (2016).
[Crossref] [PubMed]

Rotello, V. M.

K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, “Gold nanoparticles in chemical and biological sensing,” Chem. Rev. 112(5), 2739–2779 (2012).
[Crossref] [PubMed]

Saha, K.

K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, “Gold nanoparticles in chemical and biological sensing,” Chem. Rev. 112(5), 2739–2779 (2012).
[Crossref] [PubMed]

Saiki, T.

K. Esashika and T. Saiki, “DNA Hybridization Assay Using Gold Nanoparticles and Electrophoresis Separation Provides 1 pM Sensitivity,” Bioconjug. Chem. 29(1), 182–189 (2018).
[Crossref] [PubMed]

Schreiber, R.

S. Simoncelli, E. M. Roller, P. Urban, R. Schreiber, A. J. Turberfield, T. Liedl, and T. Lohmüller, “Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas,” ACS Nano 10(11), 9809–9815 (2016).
[Crossref] [PubMed]

Selloni, A.

J. G. Wang and A. Selloni, “First principles study of fatty acid monolayers on au(lll),” J. Phys. Chem. C 113(20), 8895–8900 (2009).
[Crossref]

Sharma, V.

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. Rep. 65(1–3), 1–38 (2009).
[Crossref]

Sigle, D. O.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5(1), 3448 (2014).
[Crossref] [PubMed]

Simoncelli, S.

S. Simoncelli, E. M. Roller, P. Urban, R. Schreiber, A. J. Turberfield, T. Liedl, and T. Lohmüller, “Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas,” ACS Nano 10(11), 9809–9815 (2016).
[Crossref] [PubMed]

Song, S. P.

L. H. Wang, J. Li, S. P. Song, D. Li, and C. H. Fan, “Biomolecular sensing via coupling DNA-based recognition with gold nanoparticles,” J. Phys. D Appl. Phys. 42(20), 203001 (2009).
[Crossref]

Srinivasarao, M.

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. Rep. 65(1–3), 1–38 (2009).
[Crossref]

Sriram, M.

M. Sriram, K. Zong, S. R. C. Vivekchand, and J. J. Gooding, “Single nanoparticle plasmonic sensors,” Sensors (Basel) 15(10), 25774–25792 (2015).
[Crossref] [PubMed]

Stout, B.

D. Punj, R. Regmi, A. Devilez, R. Plauchu, S. B. Moparthi, B. Stout, N. Bonod, H. Rigneault, and J. Wenger, “Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations,” ACS Photonics 2(8), 1099–1107 (2015).
[Crossref]

Sugano, K.

K. Sugano, K. Aiba, K. Ikegami, and Y. Isono, “Single-molecule surface-enhanced Raman spectroscopy of 4,4′-bipyridine on a prefabricated substrate with directionally arrayed gold nanoparticle dimers,” Jpn. J. Appl. Phys. 56(6), 06GK01 (2017).
[Crossref]

Sun, M.

L. Xu, M. Sun, W. Ma, H. Kuang, and C. Xu, “Self-assembled nanoparticle dimers with contemporarily relevant properties and emerging applications,” Biochem. Pharmacol. 19(10), 595–606 (2016).

Takahashi, H.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[Crossref] [PubMed]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Tamada, K.

M. Toma, K. Toma, K. Michioka, Y. Ikezoe, D. Obara, K. Okamoto, and K. Tamada, “Collective plasmon modes excited on a silver nanoparticle 2D crystalline sheet,” Phys. Chem. Chem. Phys. 13(16), 7459–7466 (2011).
[Crossref] [PubMed]

Thacker, V. V.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5(1), 3448 (2014).
[Crossref] [PubMed]

Toma, K.

M. Toma, K. Toma, K. Michioka, Y. Ikezoe, D. Obara, K. Okamoto, and K. Tamada, “Collective plasmon modes excited on a silver nanoparticle 2D crystalline sheet,” Phys. Chem. Chem. Phys. 13(16), 7459–7466 (2011).
[Crossref] [PubMed]

Toma, M.

M. Toma, K. Toma, K. Michioka, Y. Ikezoe, D. Obara, K. Okamoto, and K. Tamada, “Collective plasmon modes excited on a silver nanoparticle 2D crystalline sheet,” Phys. Chem. Chem. Phys. 13(16), 7459–7466 (2011).
[Crossref] [PubMed]

Turberfield, A. J.

S. Simoncelli, E. M. Roller, P. Urban, R. Schreiber, A. J. Turberfield, T. Liedl, and T. Lohmüller, “Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas,” ACS Nano 10(11), 9809–9815 (2016).
[Crossref] [PubMed]

Tzeng, S.-D.

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable Plasmonic Response from Alkanethiolate-Stabilized Gold Nanoparticle Superlattices: Evidence of Near-Field Coupling,” J. Am. Chem. Soc. 130(3), 824–826 (2008).
[Crossref] [PubMed]

Urban, P.

S. Simoncelli, E. M. Roller, P. Urban, R. Schreiber, A. J. Turberfield, T. Liedl, and T. Lohmüller, “Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas,” ACS Nano 10(11), 9809–9815 (2016).
[Crossref] [PubMed]

Vivekchand, S. R. C.

M. Sriram, K. Zong, S. R. C. Vivekchand, and J. J. Gooding, “Single nanoparticle plasmonic sensors,” Sensors (Basel) 15(10), 25774–25792 (2015).
[Crossref] [PubMed]

Wang, H.

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Materials (Basel) 7(7), 5169–5201 (2014).
[Crossref] [PubMed]

Wang, J. G.

J. G. Wang and A. Selloni, “First principles study of fatty acid monolayers on au(lll),” J. Phys. Chem. C 113(20), 8895–8900 (2009).
[Crossref]

Wang, L. H.

L. H. Wang, J. Li, S. P. Song, D. Li, and C. H. Fan, “Biomolecular sensing via coupling DNA-based recognition with gold nanoparticles,” J. Phys. D Appl. Phys. 42(20), 203001 (2009).
[Crossref]

Wang, X.

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Materials (Basel) 7(7), 5169–5201 (2014).
[Crossref] [PubMed]

Wang, Y.

Y. Wang and J. Irudayaraj, “Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120026 (2012).
[Crossref] [PubMed]

G. Chen, Y. Wang, M. Yang, J. Xu, S. J. Goh, M. Pan, and H. Chen, “Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers,” J. Am. Chem. Soc. 132(11), 3644–3645 (2010).
[Crossref] [PubMed]

Wenger, J.

D. Punj, R. Regmi, A. Devilez, R. Plauchu, S. B. Moparthi, B. Stout, N. Bonod, H. Rigneault, and J. Wenger, “Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations,” ACS Photonics 2(8), 1099–1107 (2015).
[Crossref]

Xu, A.

M. Liu, L. Fang, Y. Li, M. Gong, A. Xu, and Z. Deng, ““flash” preparation of strongly coupled metal nanoparticle clusters with sub-nm gaps by Ag+ soldering: toward effective plasmonic tuning of solution-assembled nanomaterials,” Chem. Sci. (Camb.) 7(8), 5435–5440 (2016).
[Crossref] [PubMed]

Xu, C.

L. Xu, M. Sun, W. Ma, H. Kuang, and C. Xu, “Self-assembled nanoparticle dimers with contemporarily relevant properties and emerging applications,” Biochem. Pharmacol. 19(10), 595–606 (2016).

Xu, J.

G. Chen, Y. Wang, M. Yang, J. Xu, S. J. Goh, M. Pan, and H. Chen, “Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers,” J. Am. Chem. Soc. 132(11), 3644–3645 (2010).
[Crossref] [PubMed]

Xu, L.

L. Xu, M. Sun, W. Ma, H. Kuang, and C. Xu, “Self-assembled nanoparticle dimers with contemporarily relevant properties and emerging applications,” Biochem. Pharmacol. 19(10), 595–606 (2016).

Yamagata, M.

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[Crossref] [PubMed]

Yamashita, S.

S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama, and T. Niidome, “Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods,” Langmuir 27(23), 14621–14626 (2011).
[Crossref] [PubMed]

Yang, J.

W. Zhou, Q. Li, H. Liu, J. Yang, and D. Liu, “Building Electromagnetic Hot Spots in Living Cells via Target-Triggered Nanoparticle Dimerization,” ACS Nano 11(4), 3532–3541 (2017).
[Crossref] [PubMed]

Yang, M.

G. Chen, Y. Wang, M. Yang, J. Xu, S. J. Goh, M. Pan, and H. Chen, “Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers,” J. Am. Chem. Soc. 132(11), 3644–3645 (2010).
[Crossref] [PubMed]

Yang, W.

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Materials (Basel) 7(7), 5169–5201 (2014).
[Crossref] [PubMed]

Yoon, J. H.

H. Cha, J. H. Yoon, and S. Yoon, “Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range,” ACS Nano 8(8), 8554–8563 (2014).
[Crossref] [PubMed]

Yoon, S.

H. Cha, J. H. Yoon, and S. Yoon, “Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range,” ACS Nano 8(8), 8554–8563 (2014).
[Crossref] [PubMed]

Zhang, T.

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5(1), 3448 (2014).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Materials (Basel) 7(7), 5169–5201 (2014).
[Crossref] [PubMed]

Zharov, V.

B. Khlebtsov, A. Melnikov, V. Zharov, and N. Khlebtsov, “Absorption and scattering of light by a dimer of metal nanospheres: Comparison of dipole and multipole approaches,” Nanotechnology 17(5), 1437–1445 (2006).
[Crossref]

Zhou, W.

W. Zhou, Q. Li, H. Liu, J. Yang, and D. Liu, “Building Electromagnetic Hot Spots in Living Cells via Target-Triggered Nanoparticle Dimerization,” ACS Nano 11(4), 3532–3541 (2017).
[Crossref] [PubMed]

Zong, K.

M. Sriram, K. Zong, S. R. C. Vivekchand, and J. J. Gooding, “Single nanoparticle plasmonic sensors,” Sensors (Basel) 15(10), 25774–25792 (2015).
[Crossref] [PubMed]

ACS Nano (3)

W. Zhou, Q. Li, H. Liu, J. Yang, and D. Liu, “Building Electromagnetic Hot Spots in Living Cells via Target-Triggered Nanoparticle Dimerization,” ACS Nano 11(4), 3532–3541 (2017).
[Crossref] [PubMed]

S. Simoncelli, E. M. Roller, P. Urban, R. Schreiber, A. J. Turberfield, T. Liedl, and T. Lohmüller, “Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas,” ACS Nano 10(11), 9809–9815 (2016).
[Crossref] [PubMed]

H. Cha, J. H. Yoon, and S. Yoon, “Probing quantum plasmon coupling using gold nanoparticle dimers with tunable interparticle distances down to the subnanometer range,” ACS Nano 8(8), 8554–8563 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

D. Punj, R. Regmi, A. Devilez, R. Plauchu, S. B. Moparthi, B. Stout, N. Bonod, H. Rigneault, and J. Wenger, “Self-Assembled Nanoparticle Dimer Antennas for Plasmonic-Enhanced Single-Molecule Fluorescence Detection at Micromolar Concentrations,” ACS Photonics 2(8), 1099–1107 (2015).
[Crossref]

Biochem. Pharmacol. (1)

L. Xu, M. Sun, W. Ma, H. Kuang, and C. Xu, “Self-assembled nanoparticle dimers with contemporarily relevant properties and emerging applications,” Biochem. Pharmacol. 19(10), 595–606 (2016).

Bioconjug. Chem. (1)

K. Esashika and T. Saiki, “DNA Hybridization Assay Using Gold Nanoparticles and Electrophoresis Separation Provides 1 pM Sensitivity,” Bioconjug. Chem. 29(1), 182–189 (2018).
[Crossref] [PubMed]

Cent. Eur. J. Chem. (1)

S. A. Jadhav, “Self-assembled monolayers (SAMs) of carboxylic acids: An overview,” Cent. Eur. J. Chem. 9(3), 369–378 (2011).
[Crossref]

Chem (1)

B. S. Hoener, S. R. Kirchner, T. S. Heiderscheit, S. S. E. Collins, W. S. Chang, S. Link, and C. F. Landes, “Plasmonic Sensing and Control of Single-Nanoparticle Electrochemistry,” Chem 4(7), 1560–1585 (2018).
[Crossref]

Chem. Pharm. Bull. (Tokyo) (1)

A. T. Haine and T. Niidome, “Gold Nanorods as Nanodevices for Bioimaging, Photothermal Therapeutics, and Drug Delivery,” Chem. Pharm. Bull. (Tokyo) 65(7), 625–628 (2017).
[Crossref] [PubMed]

Chem. Rev. (2)

K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello, “Gold nanoparticles in chemical and biological sensing,” Chem. Rev. 112(5), 2739–2779 (2012).
[Crossref] [PubMed]

S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev. 107(11), 4797–4862 (2007).
[Crossref] [PubMed]

Chem. Sci. (Camb.) (1)

M. Liu, L. Fang, Y. Li, M. Gong, A. Xu, and Z. Deng, ““flash” preparation of strongly coupled metal nanoparticle clusters with sub-nm gaps by Ag+ soldering: toward effective plasmonic tuning of solution-assembled nanomaterials,” Chem. Sci. (Camb.) 7(8), 5435–5440 (2016).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[Crossref] [PubMed]

Curr. Opin. Colloid Interface Sci. (1)

B. Kowalczyk, I. Lagzi, and B. A. Grzybowski, “Nanoseparations: Strategies for size and/or shape-selective purification of nanoparticles,” Curr. Opin. Colloid Interface Sci. 16(2), 135–148 (2011).
[Crossref]

Int. J. Opt. (1)

S. Bidault and A. Polman, “Water-based assembly and purification of plasmon-coupled gold nanoparticle dimers and trimers,” Int. J. Opt. 2012, 1–5 (2012).
[Crossref]

J. Am. Chem. Soc. (5)

M. A. Bryant and J. E. Pemberton, “Surface Raman Scattering of Self-Assembled Monolayers Formed from 1-Alkanethiols: Behavior of Films at Au and Comparison to Films at Ag,” J. Am. Chem. Soc. 113(22), 8284–8293 (1991).
[Crossref]

G. Chen, Y. Wang, M. Yang, J. Xu, S. J. Goh, M. Pan, and H. Chen, “Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers,” J. Am. Chem. Soc. 132(11), 3644–3645 (2010).
[Crossref] [PubMed]

M. D. Porter, T. B. Bright, D. L. Aliara, and C. E. D. Chidsey, “Spontaneously Organized Molecular Assemblies. 4. Structural Characterization of n-Alkyl Thiol Monolayers on Gold by Optical Ellipsometry, Infrared Spectroscopy, and Electrochemistry,” J. Am. Chem. Soc. 109(12), 3559–3568 (1987).
[Crossref]

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable Plasmonic Response from Alkanethiolate-Stabilized Gold Nanoparticle Superlattices: Evidence of Near-Field Coupling,” J. Am. Chem. Soc. 130(3), 824–826 (2008).
[Crossref] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[Crossref] [PubMed]

J. Control. Release (1)

T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, “PEG-modified gold nanorods with a stealth character for in vivo applications,” J. Control. Release 114(3), 343–347 (2006).
[Crossref] [PubMed]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

S. Martín, L. M. Ballesteros, A. González-Orive, H. Oliva, S. Marqués-González, M. Lorenzoni, R. J. Nichols, F. Pérez-Murano, P. J. Low, and P. Cea, “Towards a metallic top contact electrode in molecular electronic devices exhibiting a large surface coverage by photoreduction of silver cations,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(38), 9036–9043 (2016).
[Crossref]

J. Nanopart. Res. (1)

A. M. Alkilany and C. J. Murphy, “Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?” J. Nanopart. Res. 12(7), 2313–2333 (2010).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

J. G. Wang and A. Selloni, “First principles study of fatty acid monolayers on au(lll),” J. Phys. Chem. C 113(20), 8895–8900 (2009).
[Crossref]

J. Phys. D Appl. Phys. (1)

L. H. Wang, J. Li, S. P. Song, D. Li, and C. H. Fan, “Biomolecular sensing via coupling DNA-based recognition with gold nanoparticles,” J. Phys. D Appl. Phys. 42(20), 203001 (2009).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Sugano, K. Aiba, K. Ikegami, and Y. Isono, “Single-molecule surface-enhanced Raman spectroscopy of 4,4′-bipyridine on a prefabricated substrate with directionally arrayed gold nanoparticle dimers,” Jpn. J. Appl. Phys. 56(6), 06GK01 (2017).
[Crossref]

Langmuir (2)

C. Ma and J. M. Harris, “Surface-enhanced Raman scattering study of the kinetics of self-assembly of carboxylate-terminated n-alkanethiols on silver,” Langmuir 28(5), 2628–2636 (2012).
[Crossref] [PubMed]

S. Yamashita, H. Fukushima, Y. Niidome, T. Mori, Y. Katayama, and T. Niidome, “Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods,” Langmuir 27(23), 14621–14626 (2011).
[Crossref] [PubMed]

Mater. Sci. Eng. Rep. (1)

V. Sharma, K. Park, and M. Srinivasarao, “Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly,” Mater. Sci. Eng. Rep. 65(1–3), 1–38 (2009).
[Crossref]

Materials (Basel) (1)

Y. Zhang, W. Chu, A. D. Foroushani, H. Wang, D. Li, J. Liu, C. J. Barrow, X. Wang, and W. Yang, “New gold nanostructures for sensor applications: A review,” Materials (Basel) 7(7), 5169–5201 (2014).
[Crossref] [PubMed]

Nano Lett. (1)

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Nanotechnology (1)

B. Khlebtsov, A. Melnikov, V. Zharov, and N. Khlebtsov, “Absorption and scattering of light by a dimer of metal nanospheres: Comparison of dipole and multipole approaches,” Nanotechnology 17(5), 1437–1445 (2006).
[Crossref]

Nat. Commun. (1)

V. V. Thacker, L. O. Herrmann, D. O. Sigle, T. Zhang, T. Liedl, J. J. Baumberg, and U. F. Keyser, “DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering,” Nat. Commun. 5(1), 3448 (2014).
[Crossref] [PubMed]

Philos. Trans. R. Soc. Lond. B Biol. Sci. (1)

Y. Wang and J. Irudayaraj, “Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 368(1611), 20120026 (2012).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (2)

M. Toma, K. Toma, K. Michioka, Y. Ikezoe, D. Obara, K. Okamoto, and K. Tamada, “Collective plasmon modes excited on a silver nanoparticle 2D crystalline sheet,” Phys. Chem. Chem. Phys. 13(16), 7459–7466 (2011).
[Crossref] [PubMed]

D. Radziuk and H. Moehwald, “Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells,” Phys. Chem. Chem. Phys. 17(33), 21072–21093 (2015).
[Crossref] [PubMed]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Sensors (Basel) (1)

M. Sriram, K. Zong, S. R. C. Vivekchand, and J. J. Gooding, “Single nanoparticle plasmonic sensors,” Sensors (Basel) 15(10), 25774–25792 (2015).
[Crossref] [PubMed]

Surf. Sci. (1)

A. Królikowska, A. Kudelski, A. Michota, and J. Bukowska, “SERS studies on the structure of thioglycolic acid monolayers on silver and gold,” Surf. Sci. 532–535, 227–232 (2003).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Protocol for the formation of AuNP dimer and higher multimers in a bulk suspension.
Fig. 2
Fig. 2 (a) Suspensions of multimers of 40-nm AuNPs modified with COOH-alkanethiols of C5, C7, C10, C15 and those of unmodified AuNPs (Non). (b) Agarose gels electrophoresis purification of the suspensions in (a).
Fig. 3
Fig. 3 (a) Suspensions recovered from the first (monomer: m), the second (dimer: d), and the third (trimer: t) bands in electrophoresis separation of multimers of 40-nm AuNPs modified with C5. (b) TEM images of monomers, dimers, and trimers obtained from the suspensions in (a). (c) Extinction spectra of monomers, dimers, and trimers in the suspensions in (a). (d) FDTD simulation of absorbance spectra of 40-nm AuNP trimers (linear, triangular and their intermediate) in water with interparticle gaps of 1.0 nm.
Fig. 4
Fig. 4 (a) Suspensions of 40-nm AuNP dimers recovered from electrophoresis separation for AuNP multimers modified with C5, C7, C10 and C15. (b) Extinction spectra of AuNP dimers in the suspensions in (a). (c) Cryo-TEM images of AuNP dimers obtained from the suspensions in (a). (d) FDTD simulation of absorbance spectra of 40-nm AuNP dimer in water with interparticle gaps of 1.0 nm, 1.4 nm, 2.0 nm and 3.0 nm. (e) Plot of the peak wavelength of longitudinal mode as a function of the interparticle gap obtained by FDTD simulation along with the plot for the experimental results obtained by the cryo-TEM (interparticle gap) and by the absorbance measurement (peak wavelength). (f) Hydrodynamic size distribution of AuNP dimers in the suspensions in (a) measured by dynamic light scattering.
Fig. 5
Fig. 5 (a) Electrophoresis purification of multimers of AuNPs with a diameter ranging from 20 nm to 80 nm modified with C5, C7, C10 and C15 as well as unmodified. (b) Extinction spectra of AuNP dimers recovered from the second band in electrophoresis purification in (a). (c) FDTD simulation of absorbance spectra of 20 nm to 80 nm AuNP dimer in water with interparticle gaps of 1.0 nm, 1.4 nm, 2.0 nm and 3.0 nm.
Fig. 6
Fig. 6 Surface-enhanced Raman scattering spectra of 40-nm AuNP dimers modified with C5 to C15, and monomer modified with C5.

Metrics