Abstract

A Yb femtosecond laser was used to fabricate antireflective microstructures on CdSSe single crystal samples. We investigated several microstructure fabrication methods, including direct single pulse ablation using 200 fs pulses, ablation with in-depth focusing, ablation in the presence of additional spherical aberration and ablation with obstruction of peripheral rays. We performed a comprehensive analysis of the implemented antireflection microstructure fabrication methods. The performances of the antireflection microstructures were measured using an infrared Fourier spectrum analyzer and the best samples demonstrated $>99\%$ transmission in the 4.5–6 µm range and average transmission near $97\%$ in range from 2.7 to 8 µm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of an anti-reflective microstructure on sapphire by femtosecond laser direct writing

Qian-Kun Li, Jia-Ji Cao, Yan-Hao Yu, Lei Wang, Yun-Lu Sun, Qi-Dai Chen, and Hong-Bo Sun
Opt. Lett. 42(3) 543-546 (2017)

Broadband terahertz antireflective microstructures on quartz crystal surface by CO2 laser micro-processing

Du Wang, Yaguo Li, Chuanchao Zhang, Wei Liao, Zeyu Li, Qinghua Zhang, and Qiao Xu
Opt. Express 27(13) 18351-18362 (2019)

Broadband and wide-angle antireflective subwavelength microstructures on zinc sulfide fabricated by femtosecond laser parallel multi-beam

Fan Zhang, Ji’an Duan, Xiongfeng Zhou, and Cong Wang
Opt. Express 26(26) 34016-34030 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
    [Crossref]
  2. T. T. Fernandez, M. K. Tarabrin, Y. Wang, V. A. Lazarev, S. O. Leonov, V. E. Karasik, Y. V. Korostelin, M. P. Frolov, Y. P. Podmarkov, Y. K. Skasyrsky, V. I. Kozlovsky, C. Svelto, P. Maddaloni, N. Coluccelli, P. Laporta, and G. Galzerano, “Thermo-optical and lasing characteristics of Cr2+-doped CdSe single crystal as tunable coherent source in the mid-infrared,” Opt. Mater. Express 7(11), 3815–3825 (2017).
    [Crossref]
  3. V. Artyushenko, A. Bocharnikov, T. Sakharova, and I. Usenov, “Mid-infrared fiber optics for 1-18 μm range: IR-fibers and waveguides for laser power delivery and spectral sensing,” Opt. Photonik 9(4), 35–39 (2014).
    [Crossref]
  4. T. D. Rahmlow, J. E. Lazo-Wasem, S. Wilkinsona, and F. Tinker, “Dual-band antireflection coatings for the infrared,” (2008).
  5. http://www.andersonmaterials.com/optical-coatingdegradation.html , Online.
  6. D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” (2011), p. 8016.
  7. T. C. Choy, Effective medium theory: principles and applications, vol. 165 (Oxford University Press, 2015).
  8. L. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. s1-11(1), 51–56 (1879).
    [Crossref]
  9. W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
    [Crossref]
  10. D. S. Hobbs, B. D. MacLeod, E. Sabatino, S. B. Mirov, and D. V. Martyshkin, “Laser damage resistant anti-reflection microstructures for mid-infrared metal-ion doped ZnSe gain media,” (2012), p. 8530.
  11. D. Hobbs, B. Macleod, E. Sabatino, S. Mirov, D. Martyshkin, M. Mirov, G. Tsoi, S. McDaniel, and G. Cook, “Laser testing of anti-reflection micro-structures fabricated in ZnSe and chromium-ion doped ZnSe laser gain media,” Opt. Mater. Express 7(9), 3377–3388 (2017).
    [Crossref]
  12. J. R. R. Douglas S. Hobbs and Bruce D. MacLeod, “Update on the development of high performance anti-reflecting surface relief micro-structures,” (2007).
  13. B. D. M. Douglas S. Hobbs, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” (2005).
  14. F. Defrance, C. Jung-Kubiak, J. Sayers, J. Connors, C. deYoung, M. I. Hollister, H. Yoshida, G. Chattopadhyay, S. R. Golwala, and S. J. E. Radford, “1.6:1 bandwidth two-layer antireflection structure for silicon matched to the 190-310 GHz atmospheric window,” Appl. Opt. 57(18), 5196–5209 (2018).
    [Crossref]
  15. J. Dobrowolski, D. Poitras, T. Cassidy, P. Ma, M. Acree, and H. Vakil, “Toward “perfect” antireflection coatings,” (2001).
  16. D. Poitras and J. Dobrowolski, “Toward perfect antireflection coatings. 2. theory,” Appl. Opt. 43(6), 1286–1295 (2004).
    [Crossref]
  17. J. Dobrowolski, Y. Guo, T. Tiwald, P. Ma, and D. Poitras, “Toward perfect antireflection coatings. 3. experimental results obtained with the use of reststrahlen materials,” Appl. Opt. 45(7), 1555–1662 (2006).
    [Crossref]
  18. A. Deinega, I. Valuev, B. Potapkin, and Y. Lozovik, “Antireflective properties of pyramidally textured surfaces,” Opt. Lett. 35(2), 106–108 (2010).
    [Crossref]
  19. A. Deinega, I. Valuev, B. Potapkin, and Y. Lozovik, “Minimizing light reflection from dielectric textured surfaces,” J. Opt. Soc. Am. A 28(5), 770–777 (2011).
    [Crossref]
  20. M. J. Minot, “Single-layer, gradient refractive index antireflection films effective from 0.35 to 2.5 μm,” J. Opt. Soc. Am. 66(6), 515–519 (1976).
    [Crossref]
  21. H. L. Chen, S. Y. Chuang, C. H. Lin, and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15(22), 14793–14803 (2007).
    [Crossref]
  22. L. Wang, Z.-H. Wang, Y.-H. Yu, and H.-B. Sun, “Laser interference fabrication of large-area functional periodic structure surface,” Front. Mech. Eng. 13(4), 493–503 (2018).
    [Crossref]
  23. S. Vartapetov, A. Zakhryapa, V. Kozlovsky, Y. Korostelin, V. Mikhailov, Y. Podmar’kov, I. Porofeev, D. Sviridov, Y. Skasyrsky, M. Frolov, and I. Yutkin, “Study of the formation of a microrelief on znse- and cdse-crystal surfaces ablated by excimer krf-laser radiaton,” Quantum Electron. 46(10), 903–910 (2016).
    [Crossref]
  24. M. Kowalczyk, J. Haberko, and P. Wasylczyk, “Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing,” Opt. Express 22(10), 12545–12550 (2014).
    [Crossref]
  25. J.-Q. Xi, J. K. Kim, E. F. Schubert, D. Ye, T.-M. Lu, S.-Y. Lin, and J. S. Juneja, “Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods,” Opt. Lett. 31(5), 601–603 (2006).
    [Crossref]
  26. T. Tolenis, L. Grinevičiūtė, R. Buzelis, L. Smalakys, E. Pupka, S. Melnikas, A. Selskis, R. Drazdys, and A. Melninkaitis, “Sculptured anti-reflection coatings for high power lasers,” Opt. Mater. Express 7(4), 1249–1258 (2017).
    [Crossref]
  27. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
    [Crossref]
  28. B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
    [Crossref]
  29. C.-J. Ting, F.-Y. Chang, C.-F. Chen, and C. P. Chou, “Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process,” J. Micromech. Microeng. 18(7), 075001 (2008).
    [Crossref]
  30. Q.-K. Li, J.-J. Cao, Y.-H. Yu, L. Wang, Y.-L. Sun, Q.-D. Chen, and H.-B. Sun, “Fabrication of an anti-reflective microstructure on sapphire by femtosecond laser direct writing,” Opt. Lett. 42(3), 543–546 (2017).
    [Crossref]
  31. L. Huan-Yong, J. Wan-Qi, Z. Shi-An, S. Zhen-Rong, and X. Ke-Wei, “The photoluminescence of ZnSe bulk single crystals excited by femtosecond pulse,” Chin. Phys. 15(10), 2407–2414 (2006).
    [Crossref]
  32. B. H. Christensen and P. Balling, “Modeling ultrashort-pulse laser ablation of dielectric materials,” Phys. Rev. B 79(15), 155424 (2009).
    [Crossref]
  33. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32(7), 1154–1167 (1993).
    [Crossref]
  34. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
    [Crossref]
  35. D. V. Ganin, K. E. Lapshin, A. Z. Obidin, and S. K. Vartapetov, “Specific features of direct formation of graphite-like microstructures in polycarbonate samples by single femtosecond laser pulses,” Quantum Electron. 45(11), 1029–1036 (2015).
    [Crossref]

2018 (3)

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

L. Wang, Z.-H. Wang, Y.-H. Yu, and H.-B. Sun, “Laser interference fabrication of large-area functional periodic structure surface,” Front. Mech. Eng. 13(4), 493–503 (2018).
[Crossref]

F. Defrance, C. Jung-Kubiak, J. Sayers, J. Connors, C. deYoung, M. I. Hollister, H. Yoshida, G. Chattopadhyay, S. R. Golwala, and S. J. E. Radford, “1.6:1 bandwidth two-layer antireflection structure for silicon matched to the 190-310 GHz atmospheric window,” Appl. Opt. 57(18), 5196–5209 (2018).
[Crossref]

2017 (4)

2016 (1)

S. Vartapetov, A. Zakhryapa, V. Kozlovsky, Y. Korostelin, V. Mikhailov, Y. Podmar’kov, I. Porofeev, D. Sviridov, Y. Skasyrsky, M. Frolov, and I. Yutkin, “Study of the formation of a microrelief on znse- and cdse-crystal surfaces ablated by excimer krf-laser radiaton,” Quantum Electron. 46(10), 903–910 (2016).
[Crossref]

2015 (1)

D. V. Ganin, K. E. Lapshin, A. Z. Obidin, and S. K. Vartapetov, “Specific features of direct formation of graphite-like microstructures in polycarbonate samples by single femtosecond laser pulses,” Quantum Electron. 45(11), 1029–1036 (2015).
[Crossref]

2014 (2)

V. Artyushenko, A. Bocharnikov, T. Sakharova, and I. Usenov, “Mid-infrared fiber optics for 1-18 μm range: IR-fibers and waveguides for laser power delivery and spectral sensing,” Opt. Photonik 9(4), 35–39 (2014).
[Crossref]

M. Kowalczyk, J. Haberko, and P. Wasylczyk, “Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing,” Opt. Express 22(10), 12545–12550 (2014).
[Crossref]

2013 (1)

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

2011 (1)

2010 (1)

2009 (1)

B. H. Christensen and P. Balling, “Modeling ultrashort-pulse laser ablation of dielectric materials,” Phys. Rev. B 79(15), 155424 (2009).
[Crossref]

2008 (3)

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

C.-J. Ting, F.-Y. Chang, C.-F. Chen, and C. P. Chou, “Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process,” J. Micromech. Microeng. 18(7), 075001 (2008).
[Crossref]

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

2007 (1)

2006 (3)

2005 (1)

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

2004 (1)

1993 (1)

1976 (1)

1879 (1)

L. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. s1-11(1), 51–56 (1879).
[Crossref]

Acree, M.

J. Dobrowolski, D. Poitras, T. Cassidy, P. Ma, M. Acree, and H. Vakil, “Toward “perfect” antireflection coatings,” (2001).

Artyushenko, V.

V. Artyushenko, A. Bocharnikov, T. Sakharova, and I. Usenov, “Mid-infrared fiber optics for 1-18 μm range: IR-fibers and waveguides for laser power delivery and spectral sensing,” Opt. Photonik 9(4), 35–39 (2014).
[Crossref]

Balling, P.

B. H. Christensen and P. Balling, “Modeling ultrashort-pulse laser ablation of dielectric materials,” Phys. Rev. B 79(15), 155424 (2009).
[Crossref]

Bocharnikov, A.

V. Artyushenko, A. Bocharnikov, T. Sakharova, and I. Usenov, “Mid-infrared fiber optics for 1-18 μm range: IR-fibers and waveguides for laser power delivery and spectral sensing,” Opt. Photonik 9(4), 35–39 (2014).
[Crossref]

Buzelis, R.

Cao, J.-J.

Cassidy, T.

J. Dobrowolski, D. Poitras, T. Cassidy, P. Ma, M. Acree, and H. Vakil, “Toward “perfect” antireflection coatings,” (2001).

Chang, F.-Y.

C.-J. Ting, F.-Y. Chang, C.-F. Chen, and C. P. Chou, “Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process,” J. Micromech. Microeng. 18(7), 075001 (2008).
[Crossref]

Chattopadhyay, G.

Chen, C.-F.

C.-J. Ting, F.-Y. Chang, C.-F. Chen, and C. P. Chou, “Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process,” J. Micromech. Microeng. 18(7), 075001 (2008).
[Crossref]

Chen, H. L.

Chen, Q.-D.

Chou, C. P.

C.-J. Ting, F.-Y. Chang, C.-F. Chen, and C. P. Chou, “Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process,” J. Micromech. Microeng. 18(7), 075001 (2008).
[Crossref]

Choy, T. C.

T. C. Choy, Effective medium theory: principles and applications, vol. 165 (Oxford University Press, 2015).

Christensen, B. H.

B. H. Christensen and P. Balling, “Modeling ultrashort-pulse laser ablation of dielectric materials,” Phys. Rev. B 79(15), 155424 (2009).
[Crossref]

Chuang, S. Y.

Coluccelli, N.

Connors, J.

Cook, G.

Couairon, A.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

Defrance, F.

Deinega, A.

Dergachev, A.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

deYoung, C.

Dobrowolski, J.

Drazdys, R.

Erdogan, M.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Fedorov, V.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Fernandez, T. T.

Franco, M.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

Frolov, M.

S. Vartapetov, A. Zakhryapa, V. Kozlovsky, Y. Korostelin, V. Mikhailov, Y. Podmar’kov, I. Porofeev, D. Sviridov, Y. Skasyrsky, M. Frolov, and I. Yutkin, “Study of the formation of a microrelief on znse- and cdse-crystal surfaces ablated by excimer krf-laser radiaton,” Quantum Electron. 46(10), 903–910 (2016).
[Crossref]

Frolov, M. P.

Galzerano, G.

Ganin, D. V.

D. V. Ganin, K. E. Lapshin, A. Z. Obidin, and S. K. Vartapetov, “Specific features of direct formation of graphite-like microstructures in polycarbonate samples by single femtosecond laser pulses,” Quantum Electron. 45(11), 1029–1036 (2015).
[Crossref]

Gapontsev, V.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Gentilman, R. L.

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” (2011), p. 8016.

Golwala, S. R.

Grineviciute, L.

Guo, C.

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

Guo, Y.

Haberko, J.

Hartnett, T. M.

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” (2011), p. 8016.

Hobbs, B. D. M. Douglas S.

B. D. M. Douglas S. Hobbs, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” (2005).

Hobbs, D.

Hobbs, D. S.

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” (2011), p. 8016.

D. S. Hobbs, B. D. MacLeod, E. Sabatino, S. B. Mirov, and D. V. Martyshkin, “Laser damage resistant anti-reflection microstructures for mid-infrared metal-ion doped ZnSe gain media,” (2012), p. 8530.

Hobbs, J. R. R. Douglas S.

J. R. R. Douglas S. Hobbs and Bruce D. MacLeod, “Update on the development of high performance anti-reflecting surface relief micro-structures,” (2007).

Hollister, M. I.

Huan-Yong, L.

L. Huan-Yong, J. Wan-Qi, Z. Shi-An, S. Zhen-Rong, and X. Ke-Wei, “The photoluminescence of ZnSe bulk single crystals excited by femtosecond pulse,” Chin. Phys. 15(10), 2407–2414 (2006).
[Crossref]

Ilday, S.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Jiang, B.

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

Jiang, P.

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

Juneja, J. S.

Jung-Kubiak, C.

Kalaycioglu, H.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Karasik, V. E.

Ke-Wei, X.

L. Huan-Yong, J. Wan-Qi, Z. Shi-An, S. Zhen-Rong, and X. Ke-Wei, “The photoluminescence of ZnSe bulk single crystals excited by femtosecond pulse,” Chin. Phys. 15(10), 2407–2414 (2006).
[Crossref]

Kim, J. K.

Korostelin, Y.

S. Vartapetov, A. Zakhryapa, V. Kozlovsky, Y. Korostelin, V. Mikhailov, Y. Podmar’kov, I. Porofeev, D. Sviridov, Y. Skasyrsky, M. Frolov, and I. Yutkin, “Study of the formation of a microrelief on znse- and cdse-crystal surfaces ablated by excimer krf-laser radiaton,” Quantum Electron. 46(10), 903–910 (2016).
[Crossref]

Korostelin, Y. V.

Kowalczyk, M.

Kozlovsky, V.

S. Vartapetov, A. Zakhryapa, V. Kozlovsky, Y. Korostelin, V. Mikhailov, Y. Podmar’kov, I. Porofeev, D. Sviridov, Y. Skasyrsky, M. Frolov, and I. Yutkin, “Study of the formation of a microrelief on znse- and cdse-crystal surfaces ablated by excimer krf-laser radiaton,” Quantum Electron. 46(10), 903–910 (2016).
[Crossref]

Kozlovsky, V. I.

Laporta, P.

Lapshin, K. E.

D. V. Ganin, K. E. Lapshin, A. Z. Obidin, and S. K. Vartapetov, “Specific features of direct formation of graphite-like microstructures in polycarbonate samples by single femtosecond laser pulses,” Quantum Electron. 45(11), 1029–1036 (2015).
[Crossref]

Lazarev, V. A.

Lazo-Wasem, J. E.

T. D. Rahmlow, J. E. Lazo-Wasem, S. Wilkinsona, and F. Tinker, “Dual-band antireflection coatings for the infrared,” (2008).

Leonov, S. O.

Li, Q.-K.

Lin, C. H.

Lin, S.-Y.

Lin, Y. H.

Lozovik, Y.

Lu, T.-M.

Ma, P.

Macleod, B.

MacLeod, B. D.

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” (2011), p. 8016.

D. S. Hobbs, B. D. MacLeod, E. Sabatino, S. B. Mirov, and D. V. Martyshkin, “Laser damage resistant anti-reflection microstructures for mid-infrared metal-ion doped ZnSe gain media,” (2012), p. 8530.

MacLeod, Bruce D.

J. R. R. Douglas S. Hobbs and Bruce D. MacLeod, “Update on the development of high performance anti-reflecting surface relief micro-structures,” (2007).

Maddaloni, P.

Martyshkin, D.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

D. Hobbs, B. Macleod, E. Sabatino, S. Mirov, D. Martyshkin, M. Mirov, G. Tsoi, S. McDaniel, and G. Cook, “Laser testing of anti-reflection micro-structures fabricated in ZnSe and chromium-ion doped ZnSe laser gain media,” Opt. Mater. Express 7(9), 3377–3388 (2017).
[Crossref]

Martyshkin, D. V.

D. S. Hobbs, B. D. MacLeod, E. Sabatino, S. B. Mirov, and D. V. Martyshkin, “Laser damage resistant anti-reflection microstructures for mid-infrared metal-ion doped ZnSe gain media,” (2012), p. 8530.

McDaniel, S.

Melnikas, S.

Melninkaitis, A.

Mikhailov, V.

S. Vartapetov, A. Zakhryapa, V. Kozlovsky, Y. Korostelin, V. Mikhailov, Y. Podmar’kov, I. Porofeev, D. Sviridov, Y. Skasyrsky, M. Frolov, and I. Yutkin, “Study of the formation of a microrelief on znse- and cdse-crystal surfaces ablated by excimer krf-laser radiaton,” Quantum Electron. 46(10), 903–910 (2016).
[Crossref]

Min, W.-L.

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

Minot, M. J.

Mirov, M.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

D. Hobbs, B. Macleod, E. Sabatino, S. Mirov, D. Martyshkin, M. Mirov, G. Tsoi, S. McDaniel, and G. Cook, “Laser testing of anti-reflection micro-structures fabricated in ZnSe and chromium-ion doped ZnSe laser gain media,” Opt. Mater. Express 7(9), 3377–3388 (2017).
[Crossref]

Mirov, S.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

D. Hobbs, B. Macleod, E. Sabatino, S. Mirov, D. Martyshkin, M. Mirov, G. Tsoi, S. McDaniel, and G. Cook, “Laser testing of anti-reflection micro-structures fabricated in ZnSe and chromium-ion doped ZnSe laser gain media,” Opt. Mater. Express 7(9), 3377–3388 (2017).
[Crossref]

Mirov, S. B.

D. S. Hobbs, B. D. MacLeod, E. Sabatino, S. B. Mirov, and D. V. Martyshkin, “Laser damage resistant anti-reflection microstructures for mid-infrared metal-ion doped ZnSe gain media,” (2012), p. 8530.

Morris, G. M.

Moskalev, I.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Mysyrowicz, A.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

Ö. Ilday, F.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Obidin, A. Z.

D. V. Ganin, K. E. Lapshin, A. Z. Obidin, and S. K. Vartapetov, “Specific features of direct formation of graphite-like microstructures in polycarbonate samples by single femtosecond laser pulses,” Quantum Electron. 45(11), 1029–1036 (2015).
[Crossref]

Öktem, B.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Pavlov, I.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Peppers, J.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Podmar’kov, Y.

S. Vartapetov, A. Zakhryapa, V. Kozlovsky, Y. Korostelin, V. Mikhailov, Y. Podmar’kov, I. Porofeev, D. Sviridov, Y. Skasyrsky, M. Frolov, and I. Yutkin, “Study of the formation of a microrelief on znse- and cdse-crystal surfaces ablated by excimer krf-laser radiaton,” Quantum Electron. 46(10), 903–910 (2016).
[Crossref]

Podmarkov, Y. P.

Poitras, D.

Porofeev, I.

S. Vartapetov, A. Zakhryapa, V. Kozlovsky, Y. Korostelin, V. Mikhailov, Y. Podmar’kov, I. Porofeev, D. Sviridov, Y. Skasyrsky, M. Frolov, and I. Yutkin, “Study of the formation of a microrelief on znse- and cdse-crystal surfaces ablated by excimer krf-laser radiaton,” Quantum Electron. 46(10), 903–910 (2016).
[Crossref]

Potapkin, B.

Prade, B.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

Pupka, E.

Radford, S. J. E.

Raguin, D. H.

Rahmlow, T. D.

T. D. Rahmlow, J. E. Lazo-Wasem, S. Wilkinsona, and F. Tinker, “Dual-band antireflection coatings for the infrared,” (2008).

Rayleigh, L.

L. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. s1-11(1), 51–56 (1879).
[Crossref]

Rybak, A.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Sabatino, E.

D. Hobbs, B. Macleod, E. Sabatino, S. Mirov, D. Martyshkin, M. Mirov, G. Tsoi, S. McDaniel, and G. Cook, “Laser testing of anti-reflection micro-structures fabricated in ZnSe and chromium-ion doped ZnSe laser gain media,” Opt. Mater. Express 7(9), 3377–3388 (2017).
[Crossref]

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” (2011), p. 8016.

D. S. Hobbs, B. D. MacLeod, E. Sabatino, S. B. Mirov, and D. V. Martyshkin, “Laser damage resistant anti-reflection microstructures for mid-infrared metal-ion doped ZnSe gain media,” (2012), p. 8530.

Sakharova, T.

V. Artyushenko, A. Bocharnikov, T. Sakharova, and I. Usenov, “Mid-infrared fiber optics for 1-18 μm range: IR-fibers and waveguides for laser power delivery and spectral sensing,” Opt. Photonik 9(4), 35–39 (2014).
[Crossref]

Sayers, J.

Schubert, E. F.

Selskis, A.

Shi-An, Z.

L. Huan-Yong, J. Wan-Qi, Z. Shi-An, S. Zhen-Rong, and X. Ke-Wei, “The photoluminescence of ZnSe bulk single crystals excited by femtosecond pulse,” Chin. Phys. 15(10), 2407–2414 (2006).
[Crossref]

Skasyrsky, Y.

S. Vartapetov, A. Zakhryapa, V. Kozlovsky, Y. Korostelin, V. Mikhailov, Y. Podmar’kov, I. Porofeev, D. Sviridov, Y. Skasyrsky, M. Frolov, and I. Yutkin, “Study of the formation of a microrelief on znse- and cdse-crystal surfaces ablated by excimer krf-laser radiaton,” Quantum Electron. 46(10), 903–910 (2016).
[Crossref]

Skasyrsky, Y. K.

Smalakys, L.

Smolski, V.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Sudrie, L.

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

Sun, H.-B.

L. Wang, Z.-H. Wang, Y.-H. Yu, and H.-B. Sun, “Laser interference fabrication of large-area functional periodic structure surface,” Front. Mech. Eng. 13(4), 493–503 (2018).
[Crossref]

Q.-K. Li, J.-J. Cao, Y.-H. Yu, L. Wang, Y.-L. Sun, Q.-D. Chen, and H.-B. Sun, “Fabrication of an anti-reflective microstructure on sapphire by femtosecond laser direct writing,” Opt. Lett. 42(3), 543–546 (2017).
[Crossref]

Sun, Y.-L.

Svelto, C.

Sviridov, D.

S. Vartapetov, A. Zakhryapa, V. Kozlovsky, Y. Korostelin, V. Mikhailov, Y. Podmar’kov, I. Porofeev, D. Sviridov, Y. Skasyrsky, M. Frolov, and I. Yutkin, “Study of the formation of a microrelief on znse- and cdse-crystal surfaces ablated by excimer krf-laser radiaton,” Quantum Electron. 46(10), 903–910 (2016).
[Crossref]

Tarabrin, M. K.

Ting, C.-J.

C.-J. Ting, F.-Y. Chang, C.-F. Chen, and C. P. Chou, “Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process,” J. Micromech. Microeng. 18(7), 075001 (2008).
[Crossref]

Tinker, F.

T. D. Rahmlow, J. E. Lazo-Wasem, S. Wilkinsona, and F. Tinker, “Dual-band antireflection coatings for the infrared,” (2008).

Tiwald, T.

Tolenis, T.

Tsoi, G.

Usenov, I.

V. Artyushenko, A. Bocharnikov, T. Sakharova, and I. Usenov, “Mid-infrared fiber optics for 1-18 μm range: IR-fibers and waveguides for laser power delivery and spectral sensing,” Opt. Photonik 9(4), 35–39 (2014).
[Crossref]

Vakil, H.

J. Dobrowolski, D. Poitras, T. Cassidy, P. Ma, M. Acree, and H. Vakil, “Toward “perfect” antireflection coatings,” (2001).

Valuev, I.

Vartapetov, S.

S. Vartapetov, A. Zakhryapa, V. Kozlovsky, Y. Korostelin, V. Mikhailov, Y. Podmar’kov, I. Porofeev, D. Sviridov, Y. Skasyrsky, M. Frolov, and I. Yutkin, “Study of the formation of a microrelief on znse- and cdse-crystal surfaces ablated by excimer krf-laser radiaton,” Quantum Electron. 46(10), 903–910 (2016).
[Crossref]

Vartapetov, S. K.

D. V. Ganin, K. E. Lapshin, A. Z. Obidin, and S. K. Vartapetov, “Specific features of direct formation of graphite-like microstructures in polycarbonate samples by single femtosecond laser pulses,” Quantum Electron. 45(11), 1029–1036 (2015).
[Crossref]

Vasilyev, S.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

Wang, L.

L. Wang, Z.-H. Wang, Y.-H. Yu, and H.-B. Sun, “Laser interference fabrication of large-area functional periodic structure surface,” Front. Mech. Eng. 13(4), 493–503 (2018).
[Crossref]

Q.-K. Li, J.-J. Cao, Y.-H. Yu, L. Wang, Y.-L. Sun, Q.-D. Chen, and H.-B. Sun, “Fabrication of an anti-reflective microstructure on sapphire by femtosecond laser direct writing,” Opt. Lett. 42(3), 543–546 (2017).
[Crossref]

Wang, Y.

Wang, Z.-H.

L. Wang, Z.-H. Wang, Y.-H. Yu, and H.-B. Sun, “Laser interference fabrication of large-area functional periodic structure surface,” Front. Mech. Eng. 13(4), 493–503 (2018).
[Crossref]

Wan-Qi, J.

L. Huan-Yong, J. Wan-Qi, Z. Shi-An, S. Zhen-Rong, and X. Ke-Wei, “The photoluminescence of ZnSe bulk single crystals excited by femtosecond pulse,” Chin. Phys. 15(10), 2407–2414 (2006).
[Crossref]

Wasylczyk, P.

Wilkinsona, S.

T. D. Rahmlow, J. E. Lazo-Wasem, S. Wilkinsona, and F. Tinker, “Dual-band antireflection coatings for the infrared,” (2008).

Xi, J.-Q.

Yavas, S.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Ye, D.

Yoshida, H.

Yu, Y.-H.

L. Wang, Z.-H. Wang, Y.-H. Yu, and H.-B. Sun, “Laser interference fabrication of large-area functional periodic structure surface,” Front. Mech. Eng. 13(4), 493–503 (2018).
[Crossref]

Q.-K. Li, J.-J. Cao, Y.-H. Yu, L. Wang, Y.-L. Sun, Q.-D. Chen, and H.-B. Sun, “Fabrication of an anti-reflective microstructure on sapphire by femtosecond laser direct writing,” Opt. Lett. 42(3), 543–546 (2017).
[Crossref]

Yutkin, I.

S. Vartapetov, A. Zakhryapa, V. Kozlovsky, Y. Korostelin, V. Mikhailov, Y. Podmar’kov, I. Porofeev, D. Sviridov, Y. Skasyrsky, M. Frolov, and I. Yutkin, “Study of the formation of a microrelief on znse- and cdse-crystal surfaces ablated by excimer krf-laser radiaton,” Quantum Electron. 46(10), 903–910 (2016).
[Crossref]

Zakhryapa, A.

S. Vartapetov, A. Zakhryapa, V. Kozlovsky, Y. Korostelin, V. Mikhailov, Y. Podmar’kov, I. Porofeev, D. Sviridov, Y. Skasyrsky, M. Frolov, and I. Yutkin, “Study of the formation of a microrelief on znse- and cdse-crystal surfaces ablated by excimer krf-laser radiaton,” Quantum Electron. 46(10), 903–910 (2016).
[Crossref]

Zhen-Rong, S.

L. Huan-Yong, J. Wan-Qi, Z. Shi-An, S. Zhen-Rong, and X. Ke-Wei, “The photoluminescence of ZnSe bulk single crystals excited by femtosecond pulse,” Chin. Phys. 15(10), 2407–2414 (2006).
[Crossref]

Adv. Mater. (1)

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett. 92(4), 041914 (2008).
[Crossref]

Chin. Phys. (1)

L. Huan-Yong, J. Wan-Qi, Z. Shi-An, S. Zhen-Rong, and X. Ke-Wei, “The photoluminescence of ZnSe bulk single crystals excited by femtosecond pulse,” Chin. Phys. 15(10), 2407–2414 (2006).
[Crossref]

Front. Mech. Eng. (1)

L. Wang, Z.-H. Wang, Y.-H. Yu, and H.-B. Sun, “Laser interference fabrication of large-area functional periodic structure surface,” Front. Mech. Eng. 13(4), 493–503 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–29 (2018).
[Crossref]

J. Micromech. Microeng. (1)

C.-J. Ting, F.-Y. Chang, C.-F. Chen, and C. P. Chou, “Fabrication of an antireflective polymer optical film with subwavelength structures using a roll-to-roll micro-replication process,” J. Micromech. Microeng. 18(7), 075001 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7(11), 897–901 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. Express (3)

Opt. Photonik (1)

V. Artyushenko, A. Bocharnikov, T. Sakharova, and I. Usenov, “Mid-infrared fiber optics for 1-18 μm range: IR-fibers and waveguides for laser power delivery and spectral sensing,” Opt. Photonik 9(4), 35–39 (2014).
[Crossref]

Phys. Rev. B (2)

B. H. Christensen and P. Balling, “Modeling ultrashort-pulse laser ablation of dielectric materials,” Phys. Rev. B 79(15), 155424 (2009).
[Crossref]

A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71(12), 125435 (2005).
[Crossref]

Proc. Lond. Math. Soc. (1)

L. Rayleigh, “On reflection of vibrations at the confines of two media between which the transition is gradual,” Proc. Lond. Math. Soc. s1-11(1), 51–56 (1879).
[Crossref]

Quantum Electron. (2)

D. V. Ganin, K. E. Lapshin, A. Z. Obidin, and S. K. Vartapetov, “Specific features of direct formation of graphite-like microstructures in polycarbonate samples by single femtosecond laser pulses,” Quantum Electron. 45(11), 1029–1036 (2015).
[Crossref]

S. Vartapetov, A. Zakhryapa, V. Kozlovsky, Y. Korostelin, V. Mikhailov, Y. Podmar’kov, I. Porofeev, D. Sviridov, Y. Skasyrsky, M. Frolov, and I. Yutkin, “Study of the formation of a microrelief on znse- and cdse-crystal surfaces ablated by excimer krf-laser radiaton,” Quantum Electron. 46(10), 903–910 (2016).
[Crossref]

Other (8)

J. Dobrowolski, D. Poitras, T. Cassidy, P. Ma, M. Acree, and H. Vakil, “Toward “perfect” antireflection coatings,” (2001).

T. D. Rahmlow, J. E. Lazo-Wasem, S. Wilkinsona, and F. Tinker, “Dual-band antireflection coatings for the infrared,” (2008).

http://www.andersonmaterials.com/optical-coatingdegradation.html , Online.

D. S. Hobbs, B. D. MacLeod, E. Sabatino, T. M. Hartnett, and R. L. Gentilman, “Laser damage resistant anti-reflection microstructures in Raytheon ceramic YAG, sapphire, ALON, and quartz,” (2011), p. 8016.

T. C. Choy, Effective medium theory: principles and applications, vol. 165 (Oxford University Press, 2015).

J. R. R. Douglas S. Hobbs and Bruce D. MacLeod, “Update on the development of high performance anti-reflecting surface relief micro-structures,” (2007).

B. D. M. Douglas S. Hobbs, “Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials,” (2005).

D. S. Hobbs, B. D. MacLeod, E. Sabatino, S. B. Mirov, and D. V. Martyshkin, “Laser damage resistant anti-reflection microstructures for mid-infrared metal-ion doped ZnSe gain media,” (2012), p. 8530.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Principle of direct single pulse ablation method (a), SEM top-down (b) and cross-section (c) image of an ARM sample fabricated using the method and the transmission spectra of the sample (d) in a comparison with the transmission of an untreated surface of CdSSe
Fig. 2.
Fig. 2. Dependence of transmission on ARM depth (a), behavior of averaged (b) and maximum transmission over whole mid-IR (c) as calculated via finite element method simulations
Fig. 3.
Fig. 3. Principle of direct single pulse ablation method with obstruction of peripheral rays (a), SEM top-down (b) and cross-section (c) image of an ARM sample fabricated by that method and the transmission spectrum of the sample (d) in a comparison with the transmission of an untreated surface of CdSSe
Fig. 4.
Fig. 4. Principle of direct single pulse ablation method in presence of spherical aberration (a), SEM top-down view (b) and cross-section (c) image of an ARM sample fabricated by that method and the transmission spectrum of the sample (d) in comparison with the transmission of an untreated surface of CdSSe
Fig. 5.
Fig. 5. Principle of direct single pulse ablation method with precise in-depth focusing (a), SEM top-down view (b) and cross-section (c) image of an ARM sample fabricated by that method and the transmission spectrum of the sample (d) in comparison with the transmission of an untreated surface of CdSSe

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ d i f f = n p ,
Δ = f ( N A ) f ( 0 ) = L ( 1 n 1 N A 2 n 2 N A 2 ) ,

Metrics