Abstract

We report on the control of the formation and the luminescent properties of polymorphic forms of erbium (Er) silicates by the modification of annealing temperatures, annealing atmospheres and chemical compositions. Four Er silicate polymorphs, X1-Er2SiO5, y-Er­2Si2O7, α-Er2Si2O7 and β-Er2Si2O7, are fabricated in Er-doped SiO2 films. Higher annealing temperatures turn the Er silicates into more stable polymorphs, but the annealing in O2 and the deviation of chemical compositions from the stoichiometry of Er silicates will restrain this process. The luminescent properties of these polymorphs are quite different due to their strong correlation with the crystallographic structures. Photoluminescence spectra with the main peaks at 1530 nm, 1536 nm, 1529 nm, and 1539 nm are obtained for X1-Er2SiO5, y-Er­2Si2O7, α-Er2Si2O7 and β-Er2Si2O7, respectively, and the highest photoluminescence efficiency is associated to Er ions in y-Er2Si2O7.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermal evolution of zinc interstitial related donors in high-quality NH3-doped ZnO films

Kun Tang, Ran Gu, Shunming Zhu, Zhonghua Xu, Jiandong Ye, and Shulin Gu
Opt. Mater. Express 7(2) 593-605 (2017)

Eu3+ reduction and efficient light emission in Eu2O3 films deposited on Si substrates

Gabriele Bellocchi, Giorgia Franzò, Fabio Iacona, Simona Boninelli, Maria Miritello, Tiziana Cesca, and Francesco Priolo
Opt. Express 20(5) 5501-5507 (2012)

Structure and luminescence evolution of annealed Europium-doped silicon oxides films

Dongsheng Li, Xuwu Zhang, Lu Jin, and Deren Yang
Opt. Express 18(26) 27191-27196 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Lesage, D. Timmerman, D. M. Lebrun, Y. Fujiwara, and T. Gregorkiewicz, “Hot-carrier-mediated impact excitation of Er3+ ions in SiO2 sensitized by Si Nanocrystals,” Appl. Phys. Lett. 113(3), 031109 (2018).
    [Crossref]
  2. L. Pavesi, “Routes toward silicon-based lasers,” Mater. Today 8(1), 18–25 (2005).
    [Crossref]
  3. Q. Fu, Y. Gao, D. Li, and D. Yang, “Sensitizing properties of luminescence centers on the emission of Er3+ in Si-rich SiO2 film,” J. Appl. Phys. 119(20), 203106 (2016).
    [Crossref]
  4. L. Xu, L. Jin, D. Li, and D. Yang, “Sensitization of Er3+ ions in silicon rich oxynitride films: effect of thermal treatments,” Opt. Express 22(11), 13022–13028 (2014).
    [Crossref]
  5. T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
    [Crossref]
  6. M. Fujii, K. Imakita, K. Watanabe, and S. Hayashi, “Coexistence of two different energy transfer processes in SiO2 films containing Si nanocrystals and Er,” J. Appl. Phys. 95(1), 272–280 (2004).
    [Crossref]
  7. A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
    [Crossref]
  8. M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
    [Crossref]
  9. H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
    [Crossref]
  10. T.-J. Wang, B.-W. Chen, P.-K. Chen, and C.-H. Chen, “Er/Si interdiffusion effect on photoluminescent properties of erbium oxide/silicon oxide films deposited on silicon,” J. Lumin. 192, 1065–1071 (2017).
    [Crossref]
  11. H. Shen, L. Xu, D. Li, and D. Yang, “Sensitized photoluminescence of erbium silicate synthesized on porous silicon framework,” J. Appl. Phys. 122(11), 113103 (2017).
    [Crossref]
  12. X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
    [Crossref]
  13. L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
    [Crossref]
  14. A. I. Becerro and A. Escudero, “Revision of the crystallographic data of polymorphic Y2Si2O7 and Y2SiO5 compounds,” Phase Transitions 77(12), 1093–1102 (2004).
    [Crossref]
  15. J. Felsche, “The crystal chemistry of the rare-earth silicates,” Struct. Bonding 13, 99–197 (1973).
    [Crossref]
  16. R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
    [Crossref]
  17. X. J. Wang, T. Nakajima, H. Isshiki, and T. Kimura, “Fabrication and characterization of Er silicates on SiO2/Si substrates,” Appl. Phys. Lett. 95(4), 041906 (2009).
    [Crossref]
  18. A. Maqsood, “Phase transformations in Er2Si2O7 ceramics,” J. Mater. Sci. Lett. 16(10), 837–840 (1997).
    [Crossref]
  19. R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
    [Crossref]
  20. N. A. Toropov, F. Y. Galakhov, and S. F. Konovalova, “Silicates of the rare earth elements communication 5. phase diagrams of the Dy2O3-SiO2 and Er2O3-SiO2 systems,” Russ. Chem. Bull. 10(8), 1271–1277 (1961).
    [Crossref]
  21. M. GŁowacki, G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, A. Strzęp, T. Runka, M. Drozdowski, V. Domukhovski, R. Diduszko, and M. Berkowski, “Growth conditions, structure, Raman characterization and optical properties of Sm-doped (LuxGd1−x)2SiO5 single crystals grown by the Czochralski method,” J. Solid State Chem. 186, 268–277 (2012).
    [Crossref]
  22. R. Kaindl, D. M. Többens, and V. Kahlenberg, “DFT-aided interpretation of the Raman spectra of the polymorphic forms of Y2Si2O7,” J. Raman Spectrosc. 42(1), 78–85 (2011).
    [Crossref]
  23. Q. Su and Y. Lu, Rare Earths Spectroscopy (World Scientific, Singapore, 1985).
  24. L. S. Chi, H. Y. Chen, H. H. Zhuang, and J. S. Huang, “Synthesis and Crystal Structure of Er2Si2O7,” Chin. J. Struct. Chem. 1, 24–26 (1998).
  25. H. Müller-Bunz and T. Schleid, “Über die Oxidsilicate M2O [SiO4] der schweren Lanthanoide (M = Dy-Lu) im A-Type,” Z. Anorg. Allg. Chem. 625(4), 613–618 (1999).
    [Crossref]
  26. J. Felsche, “Polymorphism and crystal data of the rare-earth disilicates of type R.E.2Si2O7,” J. Less-Common Met. 21(1), 1–14 (1970).
    [Crossref]
  27. N. G. Batalieva and Y. A. Pyatenko, “Artificial yttrialite (Y-phase) - representative of a new structure type in rare-earth diorthosilicate series,” Kristallografiya 16, 905–910 (1971).
  28. I. Hartenbach, F. Lissner, and T. Schleid, “Crystal structure of B-type Tm2Si2O7 (≡Tm4[Si3O10][SiO4]),” Z. Naturforsch., B: J. Chem. Sci. 58(9), 925–927 (2003).
    [Crossref]

2018 (1)

A. Lesage, D. Timmerman, D. M. Lebrun, Y. Fujiwara, and T. Gregorkiewicz, “Hot-carrier-mediated impact excitation of Er3+ ions in SiO2 sensitized by Si Nanocrystals,” Appl. Phys. Lett. 113(3), 031109 (2018).
[Crossref]

2017 (3)

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

T.-J. Wang, B.-W. Chen, P.-K. Chen, and C.-H. Chen, “Er/Si interdiffusion effect on photoluminescent properties of erbium oxide/silicon oxide films deposited on silicon,” J. Lumin. 192, 1065–1071 (2017).
[Crossref]

H. Shen, L. Xu, D. Li, and D. Yang, “Sensitized photoluminescence of erbium silicate synthesized on porous silicon framework,” J. Appl. Phys. 122(11), 113103 (2017).
[Crossref]

2016 (1)

Q. Fu, Y. Gao, D. Li, and D. Yang, “Sensitizing properties of luminescence centers on the emission of Er3+ in Si-rich SiO2 film,” J. Appl. Phys. 119(20), 203106 (2016).
[Crossref]

2014 (1)

2013 (1)

T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

2012 (2)

L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

M. GŁowacki, G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, A. Strzęp, T. Runka, M. Drozdowski, V. Domukhovski, R. Diduszko, and M. Berkowski, “Growth conditions, structure, Raman characterization and optical properties of Sm-doped (LuxGd1−x)2SiO5 single crystals grown by the Czochralski method,” J. Solid State Chem. 186, 268–277 (2012).
[Crossref]

2011 (1)

R. Kaindl, D. M. Többens, and V. Kahlenberg, “DFT-aided interpretation of the Raman spectra of the polymorphic forms of Y2Si2O7,” J. Raman Spectrosc. 42(1), 78–85 (2011).
[Crossref]

2010 (1)

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

2009 (1)

X. J. Wang, T. Nakajima, H. Isshiki, and T. Kimura, “Fabrication and characterization of Er silicates on SiO2/Si substrates,” Appl. Phys. Lett. 95(4), 041906 (2009).
[Crossref]

2008 (1)

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[Crossref]

2007 (1)

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

2005 (1)

L. Pavesi, “Routes toward silicon-based lasers,” Mater. Today 8(1), 18–25 (2005).
[Crossref]

2004 (2)

A. I. Becerro and A. Escudero, “Revision of the crystallographic data of polymorphic Y2Si2O7 and Y2SiO5 compounds,” Phase Transitions 77(12), 1093–1102 (2004).
[Crossref]

M. Fujii, K. Imakita, K. Watanabe, and S. Hayashi, “Coexistence of two different energy transfer processes in SiO2 films containing Si nanocrystals and Er,” J. Appl. Phys. 95(1), 272–280 (2004).
[Crossref]

2003 (1)

I. Hartenbach, F. Lissner, and T. Schleid, “Crystal structure of B-type Tm2Si2O7 (≡Tm4[Si3O10][SiO4]),” Z. Naturforsch., B: J. Chem. Sci. 58(9), 925–927 (2003).
[Crossref]

1999 (1)

H. Müller-Bunz and T. Schleid, “Über die Oxidsilicate M2O [SiO4] der schweren Lanthanoide (M = Dy-Lu) im A-Type,” Z. Anorg. Allg. Chem. 625(4), 613–618 (1999).
[Crossref]

1998 (1)

L. S. Chi, H. Y. Chen, H. H. Zhuang, and J. S. Huang, “Synthesis and Crystal Structure of Er2Si2O7,” Chin. J. Struct. Chem. 1, 24–26 (1998).

1997 (2)

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
[Crossref]

A. Maqsood, “Phase transformations in Er2Si2O7 ceramics,” J. Mater. Sci. Lett. 16(10), 837–840 (1997).
[Crossref]

1976 (1)

R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

1973 (1)

J. Felsche, “The crystal chemistry of the rare-earth silicates,” Struct. Bonding 13, 99–197 (1973).
[Crossref]

1971 (1)

N. G. Batalieva and Y. A. Pyatenko, “Artificial yttrialite (Y-phase) - representative of a new structure type in rare-earth diorthosilicate series,” Kristallografiya 16, 905–910 (1971).

1970 (1)

J. Felsche, “Polymorphism and crystal data of the rare-earth disilicates of type R.E.2Si2O7,” J. Less-Common Met. 21(1), 1–14 (1970).
[Crossref]

1961 (1)

N. A. Toropov, F. Y. Galakhov, and S. F. Konovalova, “Silicates of the rare earth elements communication 5. phase diagrams of the Dy2O3-SiO2 and Er2O3-SiO2 systems,” Russ. Chem. Bull. 10(8), 1271–1277 (1961).
[Crossref]

Batalieva, N. G.

N. G. Batalieva and Y. A. Pyatenko, “Artificial yttrialite (Y-phase) - representative of a new structure type in rare-earth diorthosilicate series,” Kristallografiya 16, 905–910 (1971).

Becerro, A. I.

A. I. Becerro and A. Escudero, “Revision of the crystallographic data of polymorphic Y2Si2O7 and Y2SiO5 compounds,” Phase Transitions 77(12), 1093–1102 (2004).
[Crossref]

Berkowski, M.

M. GŁowacki, G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, A. Strzęp, T. Runka, M. Drozdowski, V. Domukhovski, R. Diduszko, and M. Berkowski, “Growth conditions, structure, Raman characterization and optical properties of Sm-doped (LuxGd1−x)2SiO5 single crystals grown by the Czochralski method,” J. Solid State Chem. 186, 268–277 (2012).
[Crossref]

Bongiorno, C.

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Chen, B.-W.

T.-J. Wang, B.-W. Chen, P.-K. Chen, and C.-H. Chen, “Er/Si interdiffusion effect on photoluminescent properties of erbium oxide/silicon oxide films deposited on silicon,” J. Lumin. 192, 1065–1071 (2017).
[Crossref]

Chen, C.-H.

T.-J. Wang, B.-W. Chen, P.-K. Chen, and C.-H. Chen, “Er/Si interdiffusion effect on photoluminescent properties of erbium oxide/silicon oxide films deposited on silicon,” J. Lumin. 192, 1065–1071 (2017).
[Crossref]

Chen, H. Y.

L. S. Chi, H. Y. Chen, H. H. Zhuang, and J. S. Huang, “Synthesis and Crystal Structure of Er2Si2O7,” Chin. J. Struct. Chem. 1, 24–26 (1998).

Chen, K.

T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

Chen, P.-K.

T.-J. Wang, B.-W. Chen, P.-K. Chen, and C.-H. Chen, “Er/Si interdiffusion effect on photoluminescent properties of erbium oxide/silicon oxide films deposited on silicon,” J. Lumin. 192, 1065–1071 (2017).
[Crossref]

Chi, L. S.

L. S. Chi, H. Y. Chen, H. H. Zhuang, and J. S. Huang, “Synthesis and Crystal Structure of Er2Si2O7,” Chin. J. Struct. Chem. 1, 24–26 (1998).

Diduszko, R.

M. GŁowacki, G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, A. Strzęp, T. Runka, M. Drozdowski, V. Domukhovski, R. Diduszko, and M. Berkowski, “Growth conditions, structure, Raman characterization and optical properties of Sm-doped (LuxGd1−x)2SiO5 single crystals grown by the Czochralski method,” J. Solid State Chem. 186, 268–277 (2012).
[Crossref]

Dominiak-Dzik, G.

M. GŁowacki, G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, A. Strzęp, T. Runka, M. Drozdowski, V. Domukhovski, R. Diduszko, and M. Berkowski, “Growth conditions, structure, Raman characterization and optical properties of Sm-doped (LuxGd1−x)2SiO5 single crystals grown by the Czochralski method,” J. Solid State Chem. 186, 268–277 (2012).
[Crossref]

Domukhovski, V.

M. GŁowacki, G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, A. Strzęp, T. Runka, M. Drozdowski, V. Domukhovski, R. Diduszko, and M. Berkowski, “Growth conditions, structure, Raman characterization and optical properties of Sm-doped (LuxGd1−x)2SiO5 single crystals grown by the Czochralski method,” J. Solid State Chem. 186, 268–277 (2012).
[Crossref]

Drozdowski, M.

M. GŁowacki, G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, A. Strzęp, T. Runka, M. Drozdowski, V. Domukhovski, R. Diduszko, and M. Berkowski, “Growth conditions, structure, Raman characterization and optical properties of Sm-doped (LuxGd1−x)2SiO5 single crystals grown by the Czochralski method,” J. Solid State Chem. 186, 268–277 (2012).
[Crossref]

Escudero, A.

A. I. Becerro and A. Escudero, “Revision of the crystallographic data of polymorphic Y2Si2O7 and Y2SiO5 compounds,” Phase Transitions 77(12), 1093–1102 (2004).
[Crossref]

Fan, F.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Felsche, J.

J. Felsche, “The crystal chemistry of the rare-earth silicates,” Struct. Bonding 13, 99–197 (1973).
[Crossref]

J. Felsche, “Polymorphism and crystal data of the rare-earth disilicates of type R.E.2Si2O7,” J. Less-Common Met. 21(1), 1–14 (1970).
[Crossref]

Feng, X.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Franzò, G.

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Fu, Q.

Q. Fu, Y. Gao, D. Li, and D. Yang, “Sensitizing properties of luminescence centers on the emission of Er3+ in Si-rich SiO2 film,” J. Appl. Phys. 119(20), 203106 (2016).
[Crossref]

Fujii, M.

M. Fujii, K. Imakita, K. Watanabe, and S. Hayashi, “Coexistence of two different energy transfer processes in SiO2 films containing Si nanocrystals and Er,” J. Appl. Phys. 95(1), 272–280 (2004).
[Crossref]

Fujiwara, Y.

A. Lesage, D. Timmerman, D. M. Lebrun, Y. Fujiwara, and T. Gregorkiewicz, “Hot-carrier-mediated impact excitation of Er3+ ions in SiO2 sensitized by Si Nanocrystals,” Appl. Phys. Lett. 113(3), 031109 (2018).
[Crossref]

Galakhov, F. Y.

N. A. Toropov, F. Y. Galakhov, and S. F. Konovalova, “Silicates of the rare earth elements communication 5. phase diagrams of the Dy2O3-SiO2 and Er2O3-SiO2 systems,” Russ. Chem. Bull. 10(8), 1271–1277 (1961).
[Crossref]

Gao, Y.

Q. Fu, Y. Gao, D. Li, and D. Yang, “Sensitizing properties of luminescence centers on the emission of Er3+ in Si-rich SiO2 film,” J. Appl. Phys. 119(20), 203106 (2016).
[Crossref]

GLowacki, M.

M. GŁowacki, G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, A. Strzęp, T. Runka, M. Drozdowski, V. Domukhovski, R. Diduszko, and M. Berkowski, “Growth conditions, structure, Raman characterization and optical properties of Sm-doped (LuxGd1−x)2SiO5 single crystals grown by the Czochralski method,” J. Solid State Chem. 186, 268–277 (2012).
[Crossref]

Gregorkiewicz, T.

A. Lesage, D. Timmerman, D. M. Lebrun, Y. Fujiwara, and T. Gregorkiewicz, “Hot-carrier-mediated impact excitation of Er3+ ions in SiO2 sensitized by Si Nanocrystals,” Appl. Phys. Lett. 113(3), 031109 (2018).
[Crossref]

Hartenbach, I.

I. Hartenbach, F. Lissner, and T. Schleid, “Crystal structure of B-type Tm2Si2O7 (≡Tm4[Si3O10][SiO4]),” Z. Naturforsch., B: J. Chem. Sci. 58(9), 925–927 (2003).
[Crossref]

Hayashi, S.

M. Fujii, K. Imakita, K. Watanabe, and S. Hayashi, “Coexistence of two different energy transfer processes in SiO2 films containing Si nanocrystals and Er,” J. Appl. Phys. 95(1), 272–280 (2004).
[Crossref]

Huang, J. S.

L. S. Chi, H. Y. Chen, H. H. Zhuang, and J. S. Huang, “Synthesis and Crystal Structure of Er2Si2O7,” Chin. J. Struct. Chem. 1, 24–26 (1998).

Iacona, F.

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[Crossref]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Imakita, K.

M. Fujii, K. Imakita, K. Watanabe, and S. Hayashi, “Coexistence of two different energy transfer processes in SiO2 films containing Si nanocrystals and Er,” J. Appl. Phys. 95(1), 272–280 (2004).
[Crossref]

Irrera, A.

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Isshiki, H.

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

X. J. Wang, T. Nakajima, H. Isshiki, and T. Kimura, “Fabrication and characterization of Er silicates on SiO2/Si substrates,” Appl. Phys. Lett. 95(4), 041906 (2009).
[Crossref]

Jin, L.

Kahlenberg, V.

R. Kaindl, D. M. Többens, and V. Kahlenberg, “DFT-aided interpretation of the Raman spectra of the polymorphic forms of Y2Si2O7,” J. Raman Spectrosc. 42(1), 78–85 (2011).
[Crossref]

Kaindl, R.

R. Kaindl, D. M. Többens, and V. Kahlenberg, “DFT-aided interpretation of the Raman spectra of the polymorphic forms of Y2Si2O7,” J. Raman Spectrosc. 42(1), 78–85 (2011).
[Crossref]

Kimura, T.

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

X. J. Wang, T. Nakajima, H. Isshiki, and T. Kimura, “Fabrication and characterization of Er silicates on SiO2/Si substrates,” Appl. Phys. Lett. 95(4), 041906 (2009).
[Crossref]

Konovalova, S. F.

N. A. Toropov, F. Y. Galakhov, and S. F. Konovalova, “Silicates of the rare earth elements communication 5. phase diagrams of the Dy2O3-SiO2 and Er2O3-SiO2 systems,” Russ. Chem. Bull. 10(8), 1271–1277 (1961).
[Crossref]

Lebrun, D. M.

A. Lesage, D. Timmerman, D. M. Lebrun, Y. Fujiwara, and T. Gregorkiewicz, “Hot-carrier-mediated impact excitation of Er3+ ions in SiO2 sensitized by Si Nanocrystals,” Appl. Phys. Lett. 113(3), 031109 (2018).
[Crossref]

Lesage, A.

A. Lesage, D. Timmerman, D. M. Lebrun, Y. Fujiwara, and T. Gregorkiewicz, “Hot-carrier-mediated impact excitation of Er3+ ions in SiO2 sensitized by Si Nanocrystals,” Appl. Phys. Lett. 113(3), 031109 (2018).
[Crossref]

Li, D.

H. Shen, L. Xu, D. Li, and D. Yang, “Sensitized photoluminescence of erbium silicate synthesized on porous silicon framework,” J. Appl. Phys. 122(11), 113103 (2017).
[Crossref]

Q. Fu, Y. Gao, D. Li, and D. Yang, “Sensitizing properties of luminescence centers on the emission of Er3+ in Si-rich SiO2 film,” J. Appl. Phys. 119(20), 203106 (2016).
[Crossref]

L. Xu, L. Jin, D. Li, and D. Yang, “Sensitization of Er3+ ions in silicon rich oxynitride films: effect of thermal treatments,” Opt. Express 22(11), 13022–13028 (2014).
[Crossref]

Li, Y.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Lin, T.

T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

Lisiecki, R.

M. GŁowacki, G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, A. Strzęp, T. Runka, M. Drozdowski, V. Domukhovski, R. Diduszko, and M. Berkowski, “Growth conditions, structure, Raman characterization and optical properties of Sm-doped (LuxGd1−x)2SiO5 single crystals grown by the Czochralski method,” J. Solid State Chem. 186, 268–277 (2012).
[Crossref]

Lissner, F.

I. Hartenbach, F. Lissner, and T. Schleid, “Crystal structure of B-type Tm2Si2O7 (≡Tm4[Si3O10][SiO4]),” Z. Naturforsch., B: J. Chem. Sci. 58(9), 925–927 (2003).
[Crossref]

Liu, X.

T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

Liu, Z.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

Lo Savio, R.

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[Crossref]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Lu, Y.

Q. Su and Y. Lu, Rare Earths Spectroscopy (World Scientific, Singapore, 1985).

Maqsood, A.

A. Maqsood, “Phase transformations in Er2Si2O7 ceramics,” J. Mater. Sci. Lett. 16(10), 837–840 (1997).
[Crossref]

Miritello, M.

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[Crossref]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Müller-Bunz, H.

H. Müller-Bunz and T. Schleid, “Über die Oxidsilicate M2O [SiO4] der schweren Lanthanoide (M = Dy-Lu) im A-Type,” Z. Anorg. Allg. Chem. 625(4), 613–618 (1999).
[Crossref]

Nakajima, T.

X. J. Wang, T. Nakajima, H. Isshiki, and T. Kimura, “Fabrication and characterization of Er silicates on SiO2/Si substrates,” Appl. Phys. Lett. 95(4), 041906 (2009).
[Crossref]

Nichols, P. L.

L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

Ning, C. Z.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

Ning, H.

L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

Pavesi, L.

L. Pavesi, “Routes toward silicon-based lasers,” Mater. Today 8(1), 18–25 (2005).
[Crossref]

Piro, A. M.

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[Crossref]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Polman, A.

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
[Crossref]

Priolo, F.

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[Crossref]

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Pyatenko, Y. A.

N. G. Batalieva and Y. A. Pyatenko, “Artificial yttrialite (Y-phase) - representative of a new structure type in rare-earth diorthosilicate series,” Kristallografiya 16, 905–910 (1971).

Runka, T.

M. GŁowacki, G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, A. Strzęp, T. Runka, M. Drozdowski, V. Domukhovski, R. Diduszko, and M. Berkowski, “Growth conditions, structure, Raman characterization and optical properties of Sm-doped (LuxGd1−x)2SiO5 single crystals grown by the Czochralski method,” J. Solid State Chem. 186, 268–277 (2012).
[Crossref]

Ryba-Romanowski, W.

M. GŁowacki, G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, A. Strzęp, T. Runka, M. Drozdowski, V. Domukhovski, R. Diduszko, and M. Berkowski, “Growth conditions, structure, Raman characterization and optical properties of Sm-doped (LuxGd1−x)2SiO5 single crystals grown by the Czochralski method,” J. Solid State Chem. 186, 268–277 (2012).
[Crossref]

Schleid, T.

I. Hartenbach, F. Lissner, and T. Schleid, “Crystal structure of B-type Tm2Si2O7 (≡Tm4[Si3O10][SiO4]),” Z. Naturforsch., B: J. Chem. Sci. 58(9), 925–927 (2003).
[Crossref]

H. Müller-Bunz and T. Schleid, “Über die Oxidsilicate M2O [SiO4] der schweren Lanthanoide (M = Dy-Lu) im A-Type,” Z. Anorg. Allg. Chem. 625(4), 613–618 (1999).
[Crossref]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Shen, H.

H. Shen, L. Xu, D. Li, and D. Yang, “Sensitized photoluminescence of erbium silicate synthesized on porous silicon framework,” J. Appl. Phys. 122(11), 113103 (2017).
[Crossref]

Strzep, A.

M. GŁowacki, G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, A. Strzęp, T. Runka, M. Drozdowski, V. Domukhovski, R. Diduszko, and M. Berkowski, “Growth conditions, structure, Raman characterization and optical properties of Sm-doped (LuxGd1−x)2SiO5 single crystals grown by the Czochralski method,” J. Solid State Chem. 186, 268–277 (2012).
[Crossref]

Su, Q.

Q. Su and Y. Lu, Rare Earths Spectroscopy (World Scientific, Singapore, 1985).

Sun, H.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Swihart, M. T.

T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

Timmerman, D.

A. Lesage, D. Timmerman, D. M. Lebrun, Y. Fujiwara, and T. Gregorkiewicz, “Hot-carrier-mediated impact excitation of Er3+ ions in SiO2 sensitized by Si Nanocrystals,” Appl. Phys. Lett. 113(3), 031109 (2018).
[Crossref]

Többens, D. M.

R. Kaindl, D. M. Többens, and V. Kahlenberg, “DFT-aided interpretation of the Raman spectra of the polymorphic forms of Y2Si2O7,” J. Raman Spectrosc. 42(1), 78–85 (2011).
[Crossref]

Toropov, N. A.

N. A. Toropov, F. Y. Galakhov, and S. F. Konovalova, “Silicates of the rare earth elements communication 5. phase diagrams of the Dy2O3-SiO2 and Er2O3-SiO2 systems,” Russ. Chem. Bull. 10(8), 1271–1277 (1961).
[Crossref]

Turkdogan, S.

L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

Wang, T.-J.

T.-J. Wang, B.-W. Chen, P.-K. Chen, and C.-H. Chen, “Er/Si interdiffusion effect on photoluminescent properties of erbium oxide/silicon oxide films deposited on silicon,” J. Lumin. 192, 1065–1071 (2017).
[Crossref]

Wang, X. J.

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

X. J. Wang, T. Nakajima, H. Isshiki, and T. Kimura, “Fabrication and characterization of Er silicates on SiO2/Si substrates,” Appl. Phys. Lett. 95(4), 041906 (2009).
[Crossref]

Watanabe, K.

M. Fujii, K. Imakita, K. Watanabe, and S. Hayashi, “Coexistence of two different energy transfer processes in SiO2 films containing Si nanocrystals and Er,” J. Appl. Phys. 95(1), 272–280 (2004).
[Crossref]

Xu, J.

T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

Xu, L.

H. Shen, L. Xu, D. Li, and D. Yang, “Sensitized photoluminescence of erbium silicate synthesized on porous silicon framework,” J. Appl. Phys. 122(11), 113103 (2017).
[Crossref]

L. Xu, L. Jin, D. Li, and D. Yang, “Sensitization of Er3+ ions in silicon rich oxynitride films: effect of thermal treatments,” Opt. Express 22(11), 13022–13028 (2014).
[Crossref]

T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

Yang, D.

H. Shen, L. Xu, D. Li, and D. Yang, “Sensitized photoluminescence of erbium silicate synthesized on porous silicon framework,” J. Appl. Phys. 122(11), 113103 (2017).
[Crossref]

Q. Fu, Y. Gao, D. Li, and D. Yang, “Sensitizing properties of luminescence centers on the emission of Er3+ in Si-rich SiO2 film,” J. Appl. Phys. 119(20), 203106 (2016).
[Crossref]

L. Xu, L. Jin, D. Li, and D. Yang, “Sensitization of Er3+ ions in silicon rich oxynitride films: effect of thermal treatments,” Opt. Express 22(11), 13022–13028 (2014).
[Crossref]

Yin, L.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

Yuan, G.

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

Zhang, X.

T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

Zhao, S.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Zheng, Y.

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Zhou, Z.

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

Zhuang, H. H.

L. S. Chi, H. Y. Chen, H. H. Zhuang, and J. S. Huang, “Synthesis and Crystal Structure of Er2Si2O7,” Chin. J. Struct. Chem. 1, 24–26 (1998).

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Adv. Mater. (1)

M. Miritello, R. Lo Savio, F. Iacona, G. Franzò, A. Irrera, A. M. Piro, C. Bongiorno, and F. Priolo, “Efficient Luminescence and Energy Transfer in Erbium Silicate Thin Films,” Adv. Mater. 19(12), 1582–1588 (2007).
[Crossref]

Appl. Phys. Lett. (5)

T. Lin, X. Zhang, J. Xu, X. Liu, M. T. Swihart, L. Xu, and K. Chen, “Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films,” Appl. Phys. Lett. 103(18), 181906 (2013).
[Crossref]

A. Lesage, D. Timmerman, D. M. Lebrun, Y. Fujiwara, and T. Gregorkiewicz, “Hot-carrier-mediated impact excitation of Er3+ ions in SiO2 sensitized by Si Nanocrystals,” Appl. Phys. Lett. 113(3), 031109 (2018).
[Crossref]

R. Lo Savio, M. Miritello, A. M. Piro, F. Priolo, and F. Iacona, “The influence of stoichiometry on the structural stability and on the optical emission of erbium silicate thin films,” Appl. Phys. Lett. 93(2), 021919 (2008).
[Crossref]

X. J. Wang, T. Nakajima, H. Isshiki, and T. Kimura, “Fabrication and characterization of Er silicates on SiO2/Si substrates,” Appl. Phys. Lett. 95(4), 041906 (2009).
[Crossref]

L. Yin, H. Ning, S. Turkdogan, Z. Liu, P. L. Nichols, and C. Z. Ning, “Long lifetime, high density single-crystal erbium compound nanowires as a high optical gain material,” Appl. Phys. Lett. 100(24), 241905 (2012).
[Crossref]

Chin. J. Struct. Chem. (1)

L. S. Chi, H. Y. Chen, H. H. Zhuang, and J. S. Huang, “Synthesis and Crystal Structure of Er2Si2O7,” Chin. J. Struct. Chem. 1, 24–26 (1998).

J. Appl. Phys. (5)

H. Shen, L. Xu, D. Li, and D. Yang, “Sensitized photoluminescence of erbium silicate synthesized on porous silicon framework,” J. Appl. Phys. 122(11), 113103 (2017).
[Crossref]

X. J. Wang, G. Yuan, H. Isshiki, T. Kimura, and Z. Zhou, “Photoluminescence enhancement and high gain amplification of ErxY2−xSiO5 waveguide,” J. Appl. Phys. 108(1), 013506 (2010).
[Crossref]

Q. Fu, Y. Gao, D. Li, and D. Yang, “Sensitizing properties of luminescence centers on the emission of Er3+ in Si-rich SiO2 film,” J. Appl. Phys. 119(20), 203106 (2016).
[Crossref]

M. Fujii, K. Imakita, K. Watanabe, and S. Hayashi, “Coexistence of two different energy transfer processes in SiO2 films containing Si nanocrystals and Er,” J. Appl. Phys. 95(1), 272–280 (2004).
[Crossref]

A. Polman, “Erbium implanted thin film photonic materials,” J. Appl. Phys. 82(1), 1–39 (1997).
[Crossref]

J. Less-Common Met. (1)

J. Felsche, “Polymorphism and crystal data of the rare-earth disilicates of type R.E.2Si2O7,” J. Less-Common Met. 21(1), 1–14 (1970).
[Crossref]

J. Lumin. (1)

T.-J. Wang, B.-W. Chen, P.-K. Chen, and C.-H. Chen, “Er/Si interdiffusion effect on photoluminescent properties of erbium oxide/silicon oxide films deposited on silicon,” J. Lumin. 192, 1065–1071 (2017).
[Crossref]

J. Mater. Sci. Lett. (1)

A. Maqsood, “Phase transformations in Er2Si2O7 ceramics,” J. Mater. Sci. Lett. 16(10), 837–840 (1997).
[Crossref]

J. Raman Spectrosc. (1)

R. Kaindl, D. M. Többens, and V. Kahlenberg, “DFT-aided interpretation of the Raman spectra of the polymorphic forms of Y2Si2O7,” J. Raman Spectrosc. 42(1), 78–85 (2011).
[Crossref]

J. Solid State Chem. (1)

M. GŁowacki, G. Dominiak-Dzik, W. Ryba-Romanowski, R. Lisiecki, A. Strzęp, T. Runka, M. Drozdowski, V. Domukhovski, R. Diduszko, and M. Berkowski, “Growth conditions, structure, Raman characterization and optical properties of Sm-doped (LuxGd1−x)2SiO5 single crystals grown by the Czochralski method,” J. Solid State Chem. 186, 268–277 (2012).
[Crossref]

Kristallografiya (1)

N. G. Batalieva and Y. A. Pyatenko, “Artificial yttrialite (Y-phase) - representative of a new structure type in rare-earth diorthosilicate series,” Kristallografiya 16, 905–910 (1971).

Mater. Today (1)

L. Pavesi, “Routes toward silicon-based lasers,” Mater. Today 8(1), 18–25 (2005).
[Crossref]

Nat. Photonics (1)

H. Sun, L. Yin, Z. Liu, Y. Zheng, F. Fan, S. Zhao, X. Feng, Y. Li, and C. Z. Ning, “Giant optical gain in a single-crystal erbium chloride silicate nanowire,” Nat. Photonics 11(9), 589–593 (2017).
[Crossref]

Opt. Express (1)

Phase Transitions (1)

A. I. Becerro and A. Escudero, “Revision of the crystallographic data of polymorphic Y2Si2O7 and Y2SiO5 compounds,” Phase Transitions 77(12), 1093–1102 (2004).
[Crossref]

Russ. Chem. Bull. (1)

N. A. Toropov, F. Y. Galakhov, and S. F. Konovalova, “Silicates of the rare earth elements communication 5. phase diagrams of the Dy2O3-SiO2 and Er2O3-SiO2 systems,” Russ. Chem. Bull. 10(8), 1271–1277 (1961).
[Crossref]

Struct. Bonding (1)

J. Felsche, “The crystal chemistry of the rare-earth silicates,” Struct. Bonding 13, 99–197 (1973).
[Crossref]

Z. Anorg. Allg. Chem. (1)

H. Müller-Bunz and T. Schleid, “Über die Oxidsilicate M2O [SiO4] der schweren Lanthanoide (M = Dy-Lu) im A-Type,” Z. Anorg. Allg. Chem. 625(4), 613–618 (1999).
[Crossref]

Z. Naturforsch., B: J. Chem. Sci. (1)

I. Hartenbach, F. Lissner, and T. Schleid, “Crystal structure of B-type Tm2Si2O7 (≡Tm4[Si3O10][SiO4]),” Z. Naturforsch., B: J. Chem. Sci. 58(9), 925–927 (2003).
[Crossref]

Other (1)

Q. Su and Y. Lu, Rare Earths Spectroscopy (World Scientific, Singapore, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. XRD spectra of sample 1 annealed at 1150 °C in N2, sample 2 to sample 5 annealed at 1000 °C and 1150 °C in N2 and sample 3 and sample 4 annealed at 1150 °C in O2.
Fig. 2.
Fig. 2. Cross-sectional TEM image (a) and SAED pattern (b) of sample 1 annealed at 1150 °C in N2. Cross-sectional TEM images and HR-TEM images with SAED patterns as insets of sample 3 annealed at 1150 °C in N2 (c)(d), sample 5 annealed at 1150 °C in N2 (e)(f), and sample 3 annealed at 1150 °C in O2 (g)(h).
Fig. 3.
Fig. 3. Raman spectra of sample 3 annealed at 900 °C (a), 1000 °C (b), 1150 °C (c), and sample 4 annealed at 1000 °C (d). (e) OM image of sample 3 annealed at 1000 °C and (f) spatial Raman map of the peak located at 845 cm-1.
Fig. 4.
Fig. 4. PL spectra of sample 2 to sample 5 annealed at 1000 °C and 1150 °C.
Fig. 5.
Fig. 5. PL decay curves of sample 2 and sample 4 annealed at 1000 °C and sample 3 annealed at 1150 °C. The red lines represent single-exponential fits.

Tables (2)

Tables Icon

Table 1. Chemical compositions of the as-deposited films and the XRD results for the samples annealed under different conditions

Tables Icon

Table 2. PL lifetimes of the samples

Metrics