Abstract

The modulation characteristics of the polyimide-based film of SWCNTs at room temperature were studied with time-domain terahertz (THz) spectroscopy in the study. The transmission greatly reduced with an increase in the power of the external optical pump. Under the pump power of 300 mW, the transmission even decreased to 3.4% of that of the original SWCNTs sample without illumination. The modulation depth of the film reached 95.6% at 300 mW, indicating the excellent modulation effect. In addition, the optical pump greatly increased the conductivity and caused a blue shift in the real conductivity peak. In order to explore the electric field modulation characteristic of the polyimide-based SWCNTs film, the results of the conductivity at 0 mW and 300 mW under different voltages were discussed. The change in transmission at 300 mW was much more significant than that at 0 mW, indicating that the modulation effect of voltage was more obvious under the condition of illumination. However, even under the pump power of 300 mW, the modulation depth was only 41.11% at 0.7 THz. In terms of the modulation depth of the optic field and electric field, we believed that the optical modulator worked better for the polyimide-based SWCNTs film.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Active bidirectional electrically-controlled terahertz device based on dimethyl sulfoxide-doped PEDOT:PSS

Wei Wang, Hongyu Ji, Dandan Liu, Luyao Xiong, Yanbing Hou, Bo Zhang, and Jingling Shen
Opt. Express 26(20) 25849-25857 (2018)

Tailoring terahertz surface plasmon wave through free-standing multi-walled carbon nanotubes metasurface

Yue Wang, Zijian Cui, Dongying Zhu, Xianbin Zhang, and Li Qian
Opt. Express 26(12) 15343-15352 (2018)

Broadband extraordinary terahertz transmission through super-aligned carbon nanotubes film

Yue Wang, Xiaoguang Zhao, Guangwu Duan, and Xin Zhang
Opt. Express 24(14) 15730-15741 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, “Terahertz wireless communications based on photonics technologies,” Opt. Express 21(20), 23736–23747 (2013).
    [Crossref] [PubMed]
  3. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  4. Y. C. Shen, A. T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
    [Crossref]
  5. X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
    [Crossref] [PubMed]
  6. H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
    [Crossref] [PubMed]
  7. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One‐dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
    [Crossref]
  8. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes--the route toward applications,” Science 297(5582), 787–792 (2002).
    [Crossref] [PubMed]
  9. P. C. Ma, N. A. Siddiqui, G. Marom, and J. K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review,” Compos. Part A Appl. Sci. Manuf. 41(10), 1345–1367 (2010).
    [Crossref]
  10. P. M. Ajayan and O. Z. Zhou, “Applications of carbon nanotubes,” in Carbon Nanotubes, M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, eds. (Springer Berlin, 2001), pp. 391–425.
    [Crossref]
  11. T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
    [Crossref]
  12. T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, and S. Iijima, “Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils,” J. Am. Chem. Soc. 128(41), 13338–13339 (2006).
    [Crossref] [PubMed]
  13. A. Kleiner and S. Eggert, “Band gaps of primary metallic carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 63(7), 073408 (2001).
    [Crossref]
  14. J. Lloyd-Hughes and T. I. Jeon, “A review of the terahertz conductivity of bulk and nano-materials,” J. Infrared Millim. Terahertz Waves 33(9), 871–925 (2012).
    [Crossref]
  15. E. Dadrasnia, S. Puthukodan, and H. Lamela, “Terahertz electrical conductivity and optical characterization of composite nonaligned single-and multiwalled carbon nanotubes,” J. Nanophotonics 8, 083099 (2014).
  16. C. Lao-Vorakiat, H. Xia, J. Kadro, T. Salim, D. Zhao, T. Ahmed, Y. M. Lam, J. X. Zhu, R. A. Marcus, M. E. Michel-Beyerle, and E. E. M. Chia, “Phonon Mode Transformation Across the Orthohombic-Tetragonal Phase Transition in a Lead Iodide Perovskite CH3NH3PbI3: A Terahertz Time-Domain Spectroscopy Approach,” J. Phys. Chem. Lett. 7(1), 1–6 (2016).
    [Crossref] [PubMed]
  17. C. Luo, J. Ji, F. Ling, D. Li, and J. Yao, “Effect of electric field on the dielectric properties of the Barium Strontium Titanate film,” J. Alloys Compd. 687, 458–462 (2016).
    [Crossref]
  18. J. Ji, C. Luo, Y. Rao, F. Ling, and J. Yao, “Investigation of optical pump on dielectric tunability in PZT/PT thin film by THz spectroscopy,” Opt. Express 24(14), 15212–15221 (2016).
    [Crossref] [PubMed]
  19. S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M. H. Jo, J. H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons,” Nat. Commun. 6(1), 8814 (2015).
    [Crossref] [PubMed]
  20. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
    [Crossref] [PubMed]
  21. P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
    [Crossref]
  22. D. S. Yang, T. Jiang, and X. A. Cheng, “Optically controlled terahertz modulator by liquid-exfoliated multilayer WS2 nanosheets,” Opt. Express 25(14), 16364–16377 (2017).
    [Crossref] [PubMed]
  23. C. Kang, I. H. Maeng, S. J. Oh, S. C. Lim, K. H. An, Y. H. Lee, and J. H. Son, “Terahertz optical and electrical properties of hydrogen-functionalized carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 75(8), 085410 (2007).
    [Crossref]
  24. H. K. Nienhuys and V. Sundström, “Influence of plasmons on terahertz conductivity measurements,” Appl. Phys. Lett. 87(1), 012101 (2005).
    [Crossref]
  25. P. Karlsen, M. V. Shuba, C. Beckerleg, D. I. Yuko, P. P. Kuzhir, S. A. Maksimenko, V. Ksenevich, H. Viet, A. G. Nasibulin, R. Tenne, and E. Hendry, “Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes,” J. Phys. D Appl. Phys. 51(1), 014003 (2018).
    [Crossref]
  26. A. L. Falk, K. C. Chiu, D. B. Farmer, Q. Cao, J. Tersoff, Y. H. Lee, P. Avouris, and S. J. Han, “Coherent plasmon and phonon-plasmon resonances in carbon nanotubes,” Phys. Rev. Lett. 118(25), 257401 (2017).
    [Crossref] [PubMed]
  27. M. V. Shuba, A. G. Paddubskaya, P. P. Kuzhir, S. A. Maksimenko, E. Flahaut, V. Fierro, A. Celzard, and G. Valusis, “Short-length carbon nanotubes as building blocks for high dielectric constant materials in the terahertz range,” J. Phys. D Appl. Phys. 50(8), 08LT01 (2017).
    [Crossref]
  28. G. Y. Slepyan, M. V. Shuba, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia, “Terahertz conductivity peak in composite materials containing carbon nanotubes: Theory and interpretation of experiment,” Phys. Rev. B 81, 205423 (2010).
  29. B. P. Gorshunov, E. S. Zhukova, J. S. Starovatykh, M. A. Belyanchikov, A. K. Grebenko, A. V. Bubis, V. I. Tsebro, A. A. Tonkikhc, D. V. Rybkovskiy, A. G. Nasibulin, E. I. Kauppinen, and E. D. Obraztsova, “Terahertz spectroscopy of charge transport in films of pristine and doped single-wall carbon nanotubes,” Carbon 126, 544–551 (2018).
    [Crossref]
  30. J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
    [Crossref] [PubMed]
  31. C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B Condens. Matter Mater. Phys. 80(17), 174116 (2009).
    [Crossref]
  32. X. C. Yang, H. X. Liu, L. L. Li, M. Huang, and J. F. Zhao, “Review on influence factors of surface plasmon resonance for nobel metal nanoparticles,” J. Funct. Mater. 2, 047 (2010).

2018 (3)

P. Karlsen, M. V. Shuba, C. Beckerleg, D. I. Yuko, P. P. Kuzhir, S. A. Maksimenko, V. Ksenevich, H. Viet, A. G. Nasibulin, R. Tenne, and E. Hendry, “Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes,” J. Phys. D Appl. Phys. 51(1), 014003 (2018).
[Crossref]

B. P. Gorshunov, E. S. Zhukova, J. S. Starovatykh, M. A. Belyanchikov, A. K. Grebenko, A. V. Bubis, V. I. Tsebro, A. A. Tonkikhc, D. V. Rybkovskiy, A. G. Nasibulin, E. I. Kauppinen, and E. D. Obraztsova, “Terahertz spectroscopy of charge transport in films of pristine and doped single-wall carbon nanotubes,” Carbon 126, 544–551 (2018).
[Crossref]

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref] [PubMed]

2017 (3)

A. L. Falk, K. C. Chiu, D. B. Farmer, Q. Cao, J. Tersoff, Y. H. Lee, P. Avouris, and S. J. Han, “Coherent plasmon and phonon-plasmon resonances in carbon nanotubes,” Phys. Rev. Lett. 118(25), 257401 (2017).
[Crossref] [PubMed]

M. V. Shuba, A. G. Paddubskaya, P. P. Kuzhir, S. A. Maksimenko, E. Flahaut, V. Fierro, A. Celzard, and G. Valusis, “Short-length carbon nanotubes as building blocks for high dielectric constant materials in the terahertz range,” J. Phys. D Appl. Phys. 50(8), 08LT01 (2017).
[Crossref]

D. S. Yang, T. Jiang, and X. A. Cheng, “Optically controlled terahertz modulator by liquid-exfoliated multilayer WS2 nanosheets,” Opt. Express 25(14), 16364–16377 (2017).
[Crossref] [PubMed]

2016 (3)

C. Lao-Vorakiat, H. Xia, J. Kadro, T. Salim, D. Zhao, T. Ahmed, Y. M. Lam, J. X. Zhu, R. A. Marcus, M. E. Michel-Beyerle, and E. E. M. Chia, “Phonon Mode Transformation Across the Orthohombic-Tetragonal Phase Transition in a Lead Iodide Perovskite CH3NH3PbI3: A Terahertz Time-Domain Spectroscopy Approach,” J. Phys. Chem. Lett. 7(1), 1–6 (2016).
[Crossref] [PubMed]

C. Luo, J. Ji, F. Ling, D. Li, and J. Yao, “Effect of electric field on the dielectric properties of the Barium Strontium Titanate film,” J. Alloys Compd. 687, 458–462 (2016).
[Crossref]

J. Ji, C. Luo, Y. Rao, F. Ling, and J. Yao, “Investigation of optical pump on dielectric tunability in PZT/PT thin film by THz spectroscopy,” Opt. Express 24(14), 15212–15221 (2016).
[Crossref] [PubMed]

2015 (1)

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M. H. Jo, J. H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons,” Nat. Commun. 6(1), 8814 (2015).
[Crossref] [PubMed]

2014 (1)

E. Dadrasnia, S. Puthukodan, and H. Lamela, “Terahertz electrical conductivity and optical characterization of composite nonaligned single-and multiwalled carbon nanotubes,” J. Nanophotonics 8, 083099 (2014).

2013 (1)

2012 (2)

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

J. Lloyd-Hughes and T. I. Jeon, “A review of the terahertz conductivity of bulk and nano-materials,” J. Infrared Millim. Terahertz Waves 33(9), 871–925 (2012).
[Crossref]

2011 (1)

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

2010 (3)

P. C. Ma, N. A. Siddiqui, G. Marom, and J. K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review,” Compos. Part A Appl. Sci. Manuf. 41(10), 1345–1367 (2010).
[Crossref]

G. Y. Slepyan, M. V. Shuba, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia, “Terahertz conductivity peak in composite materials containing carbon nanotubes: Theory and interpretation of experiment,” Phys. Rev. B 81, 205423 (2010).

X. C. Yang, H. X. Liu, L. L. Li, M. Huang, and J. F. Zhao, “Review on influence factors of surface plasmon resonance for nobel metal nanoparticles,” J. Funct. Mater. 2, 047 (2010).

2009 (1)

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B Condens. Matter Mater. Phys. 80(17), 174116 (2009).
[Crossref]

2008 (1)

P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
[Crossref]

2007 (3)

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

C. Kang, I. H. Maeng, S. J. Oh, S. C. Lim, K. H. An, Y. H. Lee, and J. H. Son, “Terahertz optical and electrical properties of hydrogen-functionalized carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 75(8), 085410 (2007).
[Crossref]

2006 (1)

T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, and S. Iijima, “Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils,” J. Am. Chem. Soc. 128(41), 13338–13339 (2006).
[Crossref] [PubMed]

2005 (3)

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

Y. C. Shen, A. T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

H. K. Nienhuys and V. Sundström, “Influence of plasmons on terahertz conductivity measurements,” Appl. Phys. Lett. 87(1), 012101 (2005).
[Crossref]

2003 (1)

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One‐dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

2002 (2)

R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes--the route toward applications,” Science 297(5582), 787–792 (2002).
[Crossref] [PubMed]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

2001 (1)

A. Kleiner and S. Eggert, “Band gaps of primary metallic carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 63(7), 073408 (2001).
[Crossref]

Ahmed, T.

C. Lao-Vorakiat, H. Xia, J. Kadro, T. Salim, D. Zhao, T. Ahmed, Y. M. Lam, J. X. Zhu, R. A. Marcus, M. E. Michel-Beyerle, and E. E. M. Chia, “Phonon Mode Transformation Across the Orthohombic-Tetragonal Phase Transition in a Lead Iodide Perovskite CH3NH3PbI3: A Terahertz Time-Domain Spectroscopy Approach,” J. Phys. Chem. Lett. 7(1), 1–6 (2016).
[Crossref] [PubMed]

Ahn, J. H.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M. H. Jo, J. H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons,” Nat. Commun. 6(1), 8814 (2015).
[Crossref] [PubMed]

An, K. H.

C. Kang, I. H. Maeng, S. J. Oh, S. C. Lim, K. H. An, Y. H. Lee, and J. H. Son, “Terahertz optical and electrical properties of hydrogen-functionalized carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 75(8), 085410 (2007).
[Crossref]

Avouris, P.

A. L. Falk, K. C. Chiu, D. B. Farmer, Q. Cao, J. Tersoff, Y. H. Lee, P. Avouris, and S. J. Han, “Coherent plasmon and phonon-plasmon resonances in carbon nanotubes,” Phys. Rev. Lett. 118(25), 257401 (2017).
[Crossref] [PubMed]

Baughman, R. H.

R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes--the route toward applications,” Science 297(5582), 787–792 (2002).
[Crossref] [PubMed]

Beckerleg, C.

P. Karlsen, M. V. Shuba, C. Beckerleg, D. I. Yuko, P. P. Kuzhir, S. A. Maksimenko, V. Ksenevich, H. Viet, A. G. Nasibulin, R. Tenne, and E. Hendry, “Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes,” J. Phys. D Appl. Phys. 51(1), 014003 (2018).
[Crossref]

Belyanchikov, M. A.

B. P. Gorshunov, E. S. Zhukova, J. S. Starovatykh, M. A. Belyanchikov, A. K. Grebenko, A. V. Bubis, V. I. Tsebro, A. A. Tonkikhc, D. V. Rybkovskiy, A. G. Nasibulin, E. I. Kauppinen, and E. D. Obraztsova, “Terahertz spectroscopy of charge transport in films of pristine and doped single-wall carbon nanotubes,” Carbon 126, 544–551 (2018).
[Crossref]

Brahlek, M.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M. H. Jo, J. H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons,” Nat. Commun. 6(1), 8814 (2015).
[Crossref] [PubMed]

Brown, N. M. D.

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

Bubis, A. V.

B. P. Gorshunov, E. S. Zhukova, J. S. Starovatykh, M. A. Belyanchikov, A. K. Grebenko, A. V. Bubis, V. I. Tsebro, A. A. Tonkikhc, D. V. Rybkovskiy, A. G. Nasibulin, E. I. Kauppinen, and E. D. Obraztsova, “Terahertz spectroscopy of charge transport in films of pristine and doped single-wall carbon nanotubes,” Carbon 126, 544–551 (2018).
[Crossref]

Cao, Q.

A. L. Falk, K. C. Chiu, D. B. Farmer, Q. Cao, J. Tersoff, Y. H. Lee, P. Avouris, and S. J. Han, “Coherent plasmon and phonon-plasmon resonances in carbon nanotubes,” Phys. Rev. Lett. 118(25), 257401 (2017).
[Crossref] [PubMed]

Celzard, A.

M. V. Shuba, A. G. Paddubskaya, P. P. Kuzhir, S. A. Maksimenko, E. Flahaut, V. Fierro, A. Celzard, and G. Valusis, “Short-length carbon nanotubes as building blocks for high dielectric constant materials in the terahertz range,” J. Phys. D Appl. Phys. 50(8), 08LT01 (2017).
[Crossref]

Cha, S.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M. H. Jo, J. H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons,” Nat. Commun. 6(1), 8814 (2015).
[Crossref] [PubMed]

Chen, Y.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

Cheng, X. A.

Chia, E. E. M.

C. Lao-Vorakiat, H. Xia, J. Kadro, T. Salim, D. Zhao, T. Ahmed, Y. M. Lam, J. X. Zhu, R. A. Marcus, M. E. Michel-Beyerle, and E. E. M. Chia, “Phonon Mode Transformation Across the Orthohombic-Tetragonal Phase Transition in a Lead Iodide Perovskite CH3NH3PbI3: A Terahertz Time-Domain Spectroscopy Approach,” J. Phys. Chem. Lett. 7(1), 1–6 (2016).
[Crossref] [PubMed]

Chiu, K. C.

A. L. Falk, K. C. Chiu, D. B. Farmer, Q. Cao, J. Tersoff, Y. H. Lee, P. Avouris, and S. J. Han, “Coherent plasmon and phonon-plasmon resonances in carbon nanotubes,” Phys. Rev. Lett. 118(25), 257401 (2017).
[Crossref] [PubMed]

Choi, H.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M. H. Jo, J. H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons,” Nat. Commun. 6(1), 8814 (2015).
[Crossref] [PubMed]

Cole, B. E.

Y. C. Shen, A. T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Dadrasnia, E.

E. Dadrasnia, S. Puthukodan, and H. Lamela, “Terahertz electrical conductivity and optical characterization of composite nonaligned single-and multiwalled carbon nanotubes,” J. Nanophotonics 8, 083099 (2014).

de Heer, W. A.

R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes--the route toward applications,” Science 297(5582), 787–792 (2002).
[Crossref] [PubMed]

Earley, S.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

Eggert, S.

A. Kleiner and S. Eggert, “Band gaps of primary metallic carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 63(7), 073408 (2001).
[Crossref]

Falk, A. L.

A. L. Falk, K. C. Chiu, D. B. Farmer, Q. Cao, J. Tersoff, Y. H. Lee, P. Avouris, and S. J. Han, “Coherent plasmon and phonon-plasmon resonances in carbon nanotubes,” Phys. Rev. Lett. 118(25), 257401 (2017).
[Crossref] [PubMed]

Fang, T.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Farmer, D. B.

A. L. Falk, K. C. Chiu, D. B. Farmer, Q. Cao, J. Tersoff, Y. H. Lee, P. Avouris, and S. J. Han, “Coherent plasmon and phonon-plasmon resonances in carbon nanotubes,” Phys. Rev. Lett. 118(25), 257401 (2017).
[Crossref] [PubMed]

Ferguson, B.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Fierro, V.

M. V. Shuba, A. G. Paddubskaya, P. P. Kuzhir, S. A. Maksimenko, E. Flahaut, V. Fierro, A. Celzard, and G. Valusis, “Short-length carbon nanotubes as building blocks for high dielectric constant materials in the terahertz range,” J. Phys. D Appl. Phys. 50(8), 08LT01 (2017).
[Crossref]

Flahaut, E.

M. V. Shuba, A. G. Paddubskaya, P. P. Kuzhir, S. A. Maksimenko, E. Flahaut, V. Fierro, A. Celzard, and G. Valusis, “Short-length carbon nanotubes as building blocks for high dielectric constant materials in the terahertz range,” J. Phys. D Appl. Phys. 50(8), 08LT01 (2017).
[Crossref]

Futaba, D. N.

T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, and S. Iijima, “Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils,” J. Am. Chem. Soc. 128(41), 13338–13339 (2006).
[Crossref] [PubMed]

Gates, B.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One‐dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Gorshunov, B. P.

B. P. Gorshunov, E. S. Zhukova, J. S. Starovatykh, M. A. Belyanchikov, A. K. Grebenko, A. V. Bubis, V. I. Tsebro, A. A. Tonkikhc, D. V. Rybkovskiy, A. G. Nasibulin, E. I. Kauppinen, and E. D. Obraztsova, “Terahertz spectroscopy of charge transport in films of pristine and doped single-wall carbon nanotubes,” Carbon 126, 544–551 (2018).
[Crossref]

Grebenko, A. K.

B. P. Gorshunov, E. S. Zhukova, J. S. Starovatykh, M. A. Belyanchikov, A. K. Grebenko, A. V. Bubis, V. I. Tsebro, A. A. Tonkikhc, D. V. Rybkovskiy, A. G. Nasibulin, E. I. Kauppinen, and E. D. Obraztsova, “Terahertz spectroscopy of charge transport in films of pristine and doped single-wall carbon nanotubes,” Carbon 126, 544–551 (2018).
[Crossref]

Han, S. J.

A. L. Falk, K. C. Chiu, D. B. Farmer, Q. Cao, J. Tersoff, Y. H. Lee, P. Avouris, and S. J. Han, “Coherent plasmon and phonon-plasmon resonances in carbon nanotubes,” Phys. Rev. Lett. 118(25), 257401 (2017).
[Crossref] [PubMed]

Hata, K.

T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, and S. Iijima, “Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils,” J. Am. Chem. Soc. 128(41), 13338–13339 (2006).
[Crossref] [PubMed]

Hendry, E.

P. Karlsen, M. V. Shuba, C. Beckerleg, D. I. Yuko, P. P. Kuzhir, S. A. Maksimenko, V. Ksenevich, H. Viet, A. G. Nasibulin, R. Tenne, and E. Hendry, “Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes,” J. Phys. D Appl. Phys. 51(1), 014003 (2018).
[Crossref]

Hiraoka, T.

T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, and S. Iijima, “Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils,” J. Am. Chem. Soc. 128(41), 13338–13339 (2006).
[Crossref] [PubMed]

Hisatake, S.

Hlinka, J.

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B Condens. Matter Mater. Phys. 80(17), 174116 (2009).
[Crossref]

Horiguchi, S.

Huang, M.

X. C. Yang, H. X. Liu, L. L. Li, M. Huang, and J. F. Zhao, “Review on influence factors of surface plasmon resonance for nobel metal nanoparticles,” J. Funct. Mater. 2, 047 (2010).

Hwang, W. S.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Iijima, S.

T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, and S. Iijima, “Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils,” J. Am. Chem. Soc. 128(41), 13338–13339 (2006).
[Crossref] [PubMed]

Jang, H.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M. H. Jo, J. H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons,” Nat. Commun. 6(1), 8814 (2015).
[Crossref] [PubMed]

Jena, D.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Jeon, T. I.

J. Lloyd-Hughes and T. I. Jeon, “A review of the terahertz conductivity of bulk and nano-materials,” J. Infrared Millim. Terahertz Waves 33(9), 871–925 (2012).
[Crossref]

Ji, J.

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref] [PubMed]

C. Luo, J. Ji, F. Ling, D. Li, and J. Yao, “Effect of electric field on the dielectric properties of the Barium Strontium Titanate film,” J. Alloys Compd. 687, 458–462 (2016).
[Crossref]

J. Ji, C. Luo, Y. Rao, F. Ling, and J. Yao, “Investigation of optical pump on dielectric tunability in PZT/PT thin film by THz spectroscopy,” Opt. Express 24(14), 15212–15221 (2016).
[Crossref] [PubMed]

Jiang, T.

Jo, M. H.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M. H. Jo, J. H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons,” Nat. Commun. 6(1), 8814 (2015).
[Crossref] [PubMed]

Kadlec, C.

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B Condens. Matter Mater. Phys. 80(17), 174116 (2009).
[Crossref]

Kadlec, F.

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B Condens. Matter Mater. Phys. 80(17), 174116 (2009).
[Crossref]

P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
[Crossref]

Kadro, J.

C. Lao-Vorakiat, H. Xia, J. Kadro, T. Salim, D. Zhao, T. Ahmed, Y. M. Lam, J. X. Zhu, R. A. Marcus, M. E. Michel-Beyerle, and E. E. M. Chia, “Phonon Mode Transformation Across the Orthohombic-Tetragonal Phase Transition in a Lead Iodide Perovskite CH3NH3PbI3: A Terahertz Time-Domain Spectroscopy Approach,” J. Phys. Chem. Lett. 7(1), 1–6 (2016).
[Crossref] [PubMed]

Kang, C.

C. Kang, I. H. Maeng, S. J. Oh, S. C. Lim, K. H. An, Y. H. Lee, and J. H. Son, “Terahertz optical and electrical properties of hydrogen-functionalized carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 75(8), 085410 (2007).
[Crossref]

Karlsen, P.

P. Karlsen, M. V. Shuba, C. Beckerleg, D. I. Yuko, P. P. Kuzhir, S. A. Maksimenko, V. Ksenevich, H. Viet, A. G. Nasibulin, R. Tenne, and E. Hendry, “Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes,” J. Phys. D Appl. Phys. 51(1), 014003 (2018).
[Crossref]

Kauppinen, E. I.

B. P. Gorshunov, E. S. Zhukova, J. S. Starovatykh, M. A. Belyanchikov, A. K. Grebenko, A. V. Bubis, V. I. Tsebro, A. A. Tonkikhc, D. V. Rybkovskiy, A. G. Nasibulin, E. I. Kauppinen, and E. D. Obraztsova, “Terahertz spectroscopy of charge transport in films of pristine and doped single-wall carbon nanotubes,” Carbon 126, 544–551 (2018).
[Crossref]

Kelly, M. M.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Kemp, M. C.

Y. C. Shen, A. T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Kim, F.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One‐dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Kim, J. K.

P. C. Ma, N. A. Siddiqui, G. Marom, and J. K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review,” Compos. Part A Appl. Sci. Manuf. 41(10), 1345–1367 (2010).
[Crossref]

Kleiner, A.

A. Kleiner and S. Eggert, “Band gaps of primary metallic carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 63(7), 073408 (2001).
[Crossref]

Koirala, N.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M. H. Jo, J. H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons,” Nat. Commun. 6(1), 8814 (2015).
[Crossref] [PubMed]

Ksenevich, V.

P. Karlsen, M. V. Shuba, C. Beckerleg, D. I. Yuko, P. P. Kuzhir, S. A. Maksimenko, V. Ksenevich, H. Viet, A. G. Nasibulin, R. Tenne, and E. Hendry, “Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes,” J. Phys. D Appl. Phys. 51(1), 014003 (2018).
[Crossref]

Kurachi, H.

T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, and S. Iijima, “Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils,” J. Am. Chem. Soc. 128(41), 13338–13339 (2006).
[Crossref] [PubMed]

Kuwano, S.

Kužel, P.

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B Condens. Matter Mater. Phys. 80(17), 174116 (2009).
[Crossref]

P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
[Crossref]

Kuzhir, P. P.

P. Karlsen, M. V. Shuba, C. Beckerleg, D. I. Yuko, P. P. Kuzhir, S. A. Maksimenko, V. Ksenevich, H. Viet, A. G. Nasibulin, R. Tenne, and E. Hendry, “Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes,” J. Phys. D Appl. Phys. 51(1), 014003 (2018).
[Crossref]

M. V. Shuba, A. G. Paddubskaya, P. P. Kuzhir, S. A. Maksimenko, E. Flahaut, V. Fierro, A. Celzard, and G. Valusis, “Short-length carbon nanotubes as building blocks for high dielectric constant materials in the terahertz range,” J. Phys. D Appl. Phys. 50(8), 08LT01 (2017).
[Crossref]

Lakhtakia, A.

G. Y. Slepyan, M. V. Shuba, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia, “Terahertz conductivity peak in composite materials containing carbon nanotubes: Theory and interpretation of experiment,” Phys. Rev. B 81, 205423 (2010).

Lam, Y. M.

C. Lao-Vorakiat, H. Xia, J. Kadro, T. Salim, D. Zhao, T. Ahmed, Y. M. Lam, J. X. Zhu, R. A. Marcus, M. E. Michel-Beyerle, and E. E. M. Chia, “Phonon Mode Transformation Across the Orthohombic-Tetragonal Phase Transition in a Lead Iodide Perovskite CH3NH3PbI3: A Terahertz Time-Domain Spectroscopy Approach,” J. Phys. Chem. Lett. 7(1), 1–6 (2016).
[Crossref] [PubMed]

Lamela, H.

E. Dadrasnia, S. Puthukodan, and H. Lamela, “Terahertz electrical conductivity and optical characterization of composite nonaligned single-and multiwalled carbon nanotubes,” J. Nanophotonics 8, 083099 (2014).

Lao-Vorakiat, C.

C. Lao-Vorakiat, H. Xia, J. Kadro, T. Salim, D. Zhao, T. Ahmed, Y. M. Lam, J. X. Zhu, R. A. Marcus, M. E. Michel-Beyerle, and E. E. M. Chia, “Phonon Mode Transformation Across the Orthohombic-Tetragonal Phase Transition in a Lead Iodide Perovskite CH3NH3PbI3: A Terahertz Time-Domain Spectroscopy Approach,” J. Phys. Chem. Lett. 7(1), 1–6 (2016).
[Crossref] [PubMed]

Lee, Y. H.

A. L. Falk, K. C. Chiu, D. B. Farmer, Q. Cao, J. Tersoff, Y. H. Lee, P. Avouris, and S. J. Han, “Coherent plasmon and phonon-plasmon resonances in carbon nanotubes,” Phys. Rev. Lett. 118(25), 257401 (2017).
[Crossref] [PubMed]

C. Kang, I. H. Maeng, S. J. Oh, S. C. Lim, K. H. An, Y. H. Lee, and J. H. Son, “Terahertz optical and electrical properties of hydrogen-functionalized carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 75(8), 085410 (2007).
[Crossref]

Li, D.

C. Luo, J. Ji, F. Ling, D. Li, and J. Yao, “Effect of electric field on the dielectric properties of the Barium Strontium Titanate film,” J. Alloys Compd. 687, 458–462 (2016).
[Crossref]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Li, L. L.

X. C. Yang, H. X. Liu, L. L. Li, M. Huang, and J. F. Zhao, “Review on influence factors of surface plasmon resonance for nobel metal nanoparticles,” J. Funct. Mater. 2, 047 (2010).

Lim, S. C.

C. Kang, I. H. Maeng, S. J. Oh, S. C. Lim, K. H. An, Y. H. Lee, and J. H. Son, “Terahertz optical and electrical properties of hydrogen-functionalized carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 75(8), 085410 (2007).
[Crossref]

Ling, F.

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref] [PubMed]

C. Luo, J. Ji, F. Ling, D. Li, and J. Yao, “Effect of electric field on the dielectric properties of the Barium Strontium Titanate film,” J. Alloys Compd. 687, 458–462 (2016).
[Crossref]

J. Ji, C. Luo, Y. Rao, F. Ling, and J. Yao, “Investigation of optical pump on dielectric tunability in PZT/PT thin film by THz spectroscopy,” Opt. Express 24(14), 15212–15221 (2016).
[Crossref] [PubMed]

Liu, H. B.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

Liu, H. X.

X. C. Yang, H. X. Liu, L. L. Li, M. Huang, and J. F. Zhao, “Review on influence factors of surface plasmon resonance for nobel metal nanoparticles,” J. Funct. Mater. 2, 047 (2010).

Liu, L.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Lloyd-Hughes, J.

J. Lloyd-Hughes and T. I. Jeon, “A review of the terahertz conductivity of bulk and nano-materials,” J. Infrared Millim. Terahertz Waves 33(9), 871–925 (2012).
[Crossref]

Lo, A. T.

Y. C. Shen, A. T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Luo, C.

C. Luo, J. Ji, F. Ling, D. Li, and J. Yao, “Effect of electric field on the dielectric properties of the Barium Strontium Titanate film,” J. Alloys Compd. 687, 458–462 (2016).
[Crossref]

J. Ji, C. Luo, Y. Rao, F. Ling, and J. Yao, “Investigation of optical pump on dielectric tunability in PZT/PT thin film by THz spectroscopy,” Opt. Express 24(14), 15212–15221 (2016).
[Crossref] [PubMed]

Ma, P. C.

P. C. Ma, N. A. Siddiqui, G. Marom, and J. K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review,” Compos. Part A Appl. Sci. Manuf. 41(10), 1345–1367 (2010).
[Crossref]

Maeng, I. H.

C. Kang, I. H. Maeng, S. J. Oh, S. C. Lim, K. H. An, Y. H. Lee, and J. H. Son, “Terahertz optical and electrical properties of hydrogen-functionalized carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 75(8), 085410 (2007).
[Crossref]

Maksimenko, S. A.

P. Karlsen, M. V. Shuba, C. Beckerleg, D. I. Yuko, P. P. Kuzhir, S. A. Maksimenko, V. Ksenevich, H. Viet, A. G. Nasibulin, R. Tenne, and E. Hendry, “Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes,” J. Phys. D Appl. Phys. 51(1), 014003 (2018).
[Crossref]

M. V. Shuba, A. G. Paddubskaya, P. P. Kuzhir, S. A. Maksimenko, E. Flahaut, V. Fierro, A. Celzard, and G. Valusis, “Short-length carbon nanotubes as building blocks for high dielectric constant materials in the terahertz range,” J. Phys. D Appl. Phys. 50(8), 08LT01 (2017).
[Crossref]

G. Y. Slepyan, M. V. Shuba, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia, “Terahertz conductivity peak in composite materials containing carbon nanotubes: Theory and interpretation of experiment,” Phys. Rev. B 81, 205423 (2010).

Marcus, R. A.

C. Lao-Vorakiat, H. Xia, J. Kadro, T. Salim, D. Zhao, T. Ahmed, Y. M. Lam, J. X. Zhu, R. A. Marcus, M. E. Michel-Beyerle, and E. E. M. Chia, “Phonon Mode Transformation Across the Orthohombic-Tetragonal Phase Transition in a Lead Iodide Perovskite CH3NH3PbI3: A Terahertz Time-Domain Spectroscopy Approach,” J. Phys. Chem. Lett. 7(1), 1–6 (2016).
[Crossref] [PubMed]

Marom, G.

P. C. Ma, N. A. Siddiqui, G. Marom, and J. K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review,” Compos. Part A Appl. Sci. Manuf. 41(10), 1345–1367 (2010).
[Crossref]

Mayers, B.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One‐dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

McLaughlin, J.

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

Michel-Beyerle, M. E.

C. Lao-Vorakiat, H. Xia, J. Kadro, T. Salim, D. Zhao, T. Ahmed, Y. M. Lam, J. X. Zhu, R. A. Marcus, M. E. Michel-Beyerle, and E. E. M. Chia, “Phonon Mode Transformation Across the Orthohombic-Tetragonal Phase Transition in a Lead Iodide Perovskite CH3NH3PbI3: A Terahertz Time-Domain Spectroscopy Approach,” J. Phys. Chem. Lett. 7(1), 1–6 (2016).
[Crossref] [PubMed]

Minamikata, Y.

Moon, J.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M. H. Jo, J. H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons,” Nat. Commun. 6(1), 8814 (2015).
[Crossref] [PubMed]

Murphy, H.

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

Nagatsuma, T.

Nasibulin, A. G.

B. P. Gorshunov, E. S. Zhukova, J. S. Starovatykh, M. A. Belyanchikov, A. K. Grebenko, A. V. Bubis, V. I. Tsebro, A. A. Tonkikhc, D. V. Rybkovskiy, A. G. Nasibulin, E. I. Kauppinen, and E. D. Obraztsova, “Terahertz spectroscopy of charge transport in films of pristine and doped single-wall carbon nanotubes,” Carbon 126, 544–551 (2018).
[Crossref]

P. Karlsen, M. V. Shuba, C. Beckerleg, D. I. Yuko, P. P. Kuzhir, S. A. Maksimenko, V. Ksenevich, H. Viet, A. G. Nasibulin, R. Tenne, and E. Hendry, “Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes,” J. Phys. D Appl. Phys. 51(1), 014003 (2018).
[Crossref]

Nemec, H.

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B Condens. Matter Mater. Phys. 80(17), 174116 (2009).
[Crossref]

Nienhuys, H. K.

H. K. Nienhuys and V. Sundström, “Influence of plasmons on terahertz conductivity measurements,” Appl. Phys. Lett. 87(1), 012101 (2005).
[Crossref]

Obraztsova, E. D.

B. P. Gorshunov, E. S. Zhukova, J. S. Starovatykh, M. A. Belyanchikov, A. K. Grebenko, A. V. Bubis, V. I. Tsebro, A. A. Tonkikhc, D. V. Rybkovskiy, A. G. Nasibulin, E. I. Kauppinen, and E. D. Obraztsova, “Terahertz spectroscopy of charge transport in films of pristine and doped single-wall carbon nanotubes,” Carbon 126, 544–551 (2018).
[Crossref]

Oh, S.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M. H. Jo, J. H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons,” Nat. Commun. 6(1), 8814 (2015).
[Crossref] [PubMed]

Oh, S. J.

C. Kang, I. H. Maeng, S. J. Oh, S. C. Lim, K. H. An, Y. H. Lee, and J. H. Son, “Terahertz optical and electrical properties of hydrogen-functionalized carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 75(8), 085410 (2007).
[Crossref]

Okpalugo, T. I. T.

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

Paddubskaya, A. G.

M. V. Shuba, A. G. Paddubskaya, P. P. Kuzhir, S. A. Maksimenko, E. Flahaut, V. Fierro, A. Celzard, and G. Valusis, “Short-length carbon nanotubes as building blocks for high dielectric constant materials in the terahertz range,” J. Phys. D Appl. Phys. 50(8), 08LT01 (2017).
[Crossref]

Panaitov, G.

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B Condens. Matter Mater. Phys. 80(17), 174116 (2009).
[Crossref]

Papakonstantinou, P.

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

Park, J.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M. H. Jo, J. H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons,” Nat. Commun. 6(1), 8814 (2015).
[Crossref] [PubMed]

Peng, B.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Plopper, G.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

Puthukodan, S.

E. Dadrasnia, S. Puthukodan, and H. Lamela, “Terahertz electrical conductivity and optical characterization of composite nonaligned single-and multiwalled carbon nanotubes,” J. Nanophotonics 8, 083099 (2014).

Rao, Y.

Rybkovskiy, D. V.

B. P. Gorshunov, E. S. Zhukova, J. S. Starovatykh, M. A. Belyanchikov, A. K. Grebenko, A. V. Bubis, V. I. Tsebro, A. A. Tonkikhc, D. V. Rybkovskiy, A. G. Nasibulin, E. I. Kauppinen, and E. D. Obraztsova, “Terahertz spectroscopy of charge transport in films of pristine and doped single-wall carbon nanotubes,” Carbon 126, 544–551 (2018).
[Crossref]

Salim, T.

C. Lao-Vorakiat, H. Xia, J. Kadro, T. Salim, D. Zhao, T. Ahmed, Y. M. Lam, J. X. Zhu, R. A. Marcus, M. E. Michel-Beyerle, and E. E. M. Chia, “Phonon Mode Transformation Across the Orthohombic-Tetragonal Phase Transition in a Lead Iodide Perovskite CH3NH3PbI3: A Terahertz Time-Domain Spectroscopy Approach,” J. Phys. Chem. Lett. 7(1), 1–6 (2016).
[Crossref] [PubMed]

Schubert, J.

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B Condens. Matter Mater. Phys. 80(17), 174116 (2009).
[Crossref]

Sensale-Rodriguez, B.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Shen, Y. C.

Y. C. Shen, A. T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Shuba, M. V.

P. Karlsen, M. V. Shuba, C. Beckerleg, D. I. Yuko, P. P. Kuzhir, S. A. Maksimenko, V. Ksenevich, H. Viet, A. G. Nasibulin, R. Tenne, and E. Hendry, “Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes,” J. Phys. D Appl. Phys. 51(1), 014003 (2018).
[Crossref]

M. V. Shuba, A. G. Paddubskaya, P. P. Kuzhir, S. A. Maksimenko, E. Flahaut, V. Fierro, A. Celzard, and G. Valusis, “Short-length carbon nanotubes as building blocks for high dielectric constant materials in the terahertz range,” J. Phys. D Appl. Phys. 50(8), 08LT01 (2017).
[Crossref]

G. Y. Slepyan, M. V. Shuba, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia, “Terahertz conductivity peak in composite materials containing carbon nanotubes: Theory and interpretation of experiment,” Phys. Rev. B 81, 205423 (2010).

Siddiqui, N. A.

P. C. Ma, N. A. Siddiqui, G. Marom, and J. K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review,” Compos. Part A Appl. Sci. Manuf. 41(10), 1345–1367 (2010).
[Crossref]

Sim, S.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M. H. Jo, J. H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons,” Nat. Commun. 6(1), 8814 (2015).
[Crossref] [PubMed]

Skoromets, V.

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B Condens. Matter Mater. Phys. 80(17), 174116 (2009).
[Crossref]

Slepyan, G. Y.

G. Y. Slepyan, M. V. Shuba, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia, “Terahertz conductivity peak in composite materials containing carbon nanotubes: Theory and interpretation of experiment,” Phys. Rev. B 81, 205423 (2010).

Son, J. H.

C. Kang, I. H. Maeng, S. J. Oh, S. C. Lim, K. H. An, Y. H. Lee, and J. H. Son, “Terahertz optical and electrical properties of hydrogen-functionalized carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 75(8), 085410 (2007).
[Crossref]

Starovatykh, J. S.

B. P. Gorshunov, E. S. Zhukova, J. S. Starovatykh, M. A. Belyanchikov, A. K. Grebenko, A. V. Bubis, V. I. Tsebro, A. A. Tonkikhc, D. V. Rybkovskiy, A. G. Nasibulin, E. I. Kauppinen, and E. D. Obraztsova, “Terahertz spectroscopy of charge transport in films of pristine and doped single-wall carbon nanotubes,” Carbon 126, 544–551 (2018).
[Crossref]

Sun, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One‐dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Sundström, V.

H. K. Nienhuys and V. Sundström, “Influence of plasmons on terahertz conductivity measurements,” Appl. Phys. Lett. 87(1), 012101 (2005).
[Crossref]

Sung, J. H.

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M. H. Jo, J. H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons,” Nat. Commun. 6(1), 8814 (2015).
[Crossref] [PubMed]

Taday, P. F.

Y. C. Shen, A. T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Tahy, K.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Takahashi, H.

Tenne, R.

P. Karlsen, M. V. Shuba, C. Beckerleg, D. I. Yuko, P. P. Kuzhir, S. A. Maksimenko, V. Ksenevich, H. Viet, A. G. Nasibulin, R. Tenne, and E. Hendry, “Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes,” J. Phys. D Appl. Phys. 51(1), 014003 (2018).
[Crossref]

Terada, J.

Tersoff, J.

A. L. Falk, K. C. Chiu, D. B. Farmer, Q. Cao, J. Tersoff, Y. H. Lee, P. Avouris, and S. J. Han, “Coherent plasmon and phonon-plasmon resonances in carbon nanotubes,” Phys. Rev. Lett. 118(25), 257401 (2017).
[Crossref] [PubMed]

Thomsen, C.

G. Y. Slepyan, M. V. Shuba, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia, “Terahertz conductivity peak in composite materials containing carbon nanotubes: Theory and interpretation of experiment,” Phys. Rev. B 81, 205423 (2010).

Tonkikhc, A. A.

B. P. Gorshunov, E. S. Zhukova, J. S. Starovatykh, M. A. Belyanchikov, A. K. Grebenko, A. V. Bubis, V. I. Tsebro, A. A. Tonkikhc, D. V. Rybkovskiy, A. G. Nasibulin, E. I. Kauppinen, and E. D. Obraztsova, “Terahertz spectroscopy of charge transport in films of pristine and doped single-wall carbon nanotubes,” Carbon 126, 544–551 (2018).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tribe, W. R.

Y. C. Shen, A. T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Tsebro, V. I.

B. P. Gorshunov, E. S. Zhukova, J. S. Starovatykh, M. A. Belyanchikov, A. K. Grebenko, A. V. Bubis, V. I. Tsebro, A. A. Tonkikhc, D. V. Rybkovskiy, A. G. Nasibulin, E. I. Kauppinen, and E. D. Obraztsova, “Terahertz spectroscopy of charge transport in films of pristine and doped single-wall carbon nanotubes,” Carbon 126, 544–551 (2018).
[Crossref]

Uemura, S.

T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, and S. Iijima, “Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils,” J. Am. Chem. Soc. 128(41), 13338–13339 (2006).
[Crossref] [PubMed]

Valusis, G.

M. V. Shuba, A. G. Paddubskaya, P. P. Kuzhir, S. A. Maksimenko, E. Flahaut, V. Fierro, A. Celzard, and G. Valusis, “Short-length carbon nanotubes as building blocks for high dielectric constant materials in the terahertz range,” J. Phys. D Appl. Phys. 50(8), 08LT01 (2017).
[Crossref]

Viet, H.

P. Karlsen, M. V. Shuba, C. Beckerleg, D. I. Yuko, P. P. Kuzhir, S. A. Maksimenko, V. Ksenevich, H. Viet, A. G. Nasibulin, R. Tenne, and E. Hendry, “Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes,” J. Phys. D Appl. Phys. 51(1), 014003 (2018).
[Crossref]

Wang, S.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Wong, L. M.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Wu, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One‐dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Xia, H.

C. Lao-Vorakiat, H. Xia, J. Kadro, T. Salim, D. Zhao, T. Ahmed, Y. M. Lam, J. X. Zhu, R. A. Marcus, M. E. Michel-Beyerle, and E. E. M. Chia, “Phonon Mode Transformation Across the Orthohombic-Tetragonal Phase Transition in a Lead Iodide Perovskite CH3NH3PbI3: A Terahertz Time-Domain Spectroscopy Approach,” J. Phys. Chem. Lett. 7(1), 1–6 (2016).
[Crossref] [PubMed]

Xia, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One‐dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Xing, H. G.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Xiong, Q.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Xu, X.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Yamada, T.

T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, and S. Iijima, “Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils,” J. Am. Chem. Soc. 128(41), 13338–13339 (2006).
[Crossref] [PubMed]

Yan, H.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One‐dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Yan, R.

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Yang, D. S.

Yang, P.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One‐dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Yang, X. C.

X. C. Yang, H. X. Liu, L. L. Li, M. Huang, and J. F. Zhao, “Review on influence factors of surface plasmon resonance for nobel metal nanoparticles,” J. Funct. Mater. 2, 047 (2010).

Yao, J.

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref] [PubMed]

C. Luo, J. Ji, F. Ling, D. Li, and J. Yao, “Effect of electric field on the dielectric properties of the Barium Strontium Titanate film,” J. Alloys Compd. 687, 458–462 (2016).
[Crossref]

J. Ji, C. Luo, Y. Rao, F. Ling, and J. Yao, “Investigation of optical pump on dielectric tunability in PZT/PT thin film by THz spectroscopy,” Opt. Express 24(14), 15212–15221 (2016).
[Crossref] [PubMed]

Yin, Y.

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One‐dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Yoshimizu, Y.

Yoshimoto, N.

Yuko, D. I.

P. Karlsen, M. V. Shuba, C. Beckerleg, D. I. Yuko, P. P. Kuzhir, S. A. Maksimenko, V. Ksenevich, H. Viet, A. G. Nasibulin, R. Tenne, and E. Hendry, “Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes,” J. Phys. D Appl. Phys. 51(1), 014003 (2018).
[Crossref]

Yumura, M.

T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, and S. Iijima, “Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils,” J. Am. Chem. Soc. 128(41), 13338–13339 (2006).
[Crossref] [PubMed]

Zakhidov, A. A.

R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes--the route toward applications,” Science 297(5582), 787–792 (2002).
[Crossref] [PubMed]

Zhang, J.

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref] [PubMed]

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Zhang, Q.

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Zhang, X. C.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Zhao, D.

C. Lao-Vorakiat, H. Xia, J. Kadro, T. Salim, D. Zhao, T. Ahmed, Y. M. Lam, J. X. Zhu, R. A. Marcus, M. E. Michel-Beyerle, and E. E. M. Chia, “Phonon Mode Transformation Across the Orthohombic-Tetragonal Phase Transition in a Lead Iodide Perovskite CH3NH3PbI3: A Terahertz Time-Domain Spectroscopy Approach,” J. Phys. Chem. Lett. 7(1), 1–6 (2016).
[Crossref] [PubMed]

Zhao, J. F.

X. C. Yang, H. X. Liu, L. L. Li, M. Huang, and J. F. Zhao, “Review on influence factors of surface plasmon resonance for nobel metal nanoparticles,” J. Funct. Mater. 2, 047 (2010).

Zhou, S.

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref] [PubMed]

Zhu, J. X.

C. Lao-Vorakiat, H. Xia, J. Kadro, T. Salim, D. Zhao, T. Ahmed, Y. M. Lam, J. X. Zhu, R. A. Marcus, M. E. Michel-Beyerle, and E. E. M. Chia, “Phonon Mode Transformation Across the Orthohombic-Tetragonal Phase Transition in a Lead Iodide Perovskite CH3NH3PbI3: A Terahertz Time-Domain Spectroscopy Approach,” J. Phys. Chem. Lett. 7(1), 1–6 (2016).
[Crossref] [PubMed]

Zhukova, E. S.

B. P. Gorshunov, E. S. Zhukova, J. S. Starovatykh, M. A. Belyanchikov, A. K. Grebenko, A. V. Bubis, V. I. Tsebro, A. A. Tonkikhc, D. V. Rybkovskiy, A. G. Nasibulin, E. I. Kauppinen, and E. D. Obraztsova, “Terahertz spectroscopy of charge transport in films of pristine and doped single-wall carbon nanotubes,” Carbon 126, 544–551 (2018).
[Crossref]

Adv. Mater. (1)

Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One‐dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. 15(5), 353–389 (2003).
[Crossref]

Appl. Phys. Lett. (2)

Y. C. Shen, A. T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

H. K. Nienhuys and V. Sundström, “Influence of plasmons on terahertz conductivity measurements,” Appl. Phys. Lett. 87(1), 012101 (2005).
[Crossref]

Biosens. Bioelectron. (1)

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. C. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref] [PubMed]

C. R. Phys. (1)

P. Kužel and F. Kadlec, “Tunable structures and modulators for THz light,” C. R. Phys. 9(2), 197–214 (2008).
[Crossref]

Carbon (2)

B. P. Gorshunov, E. S. Zhukova, J. S. Starovatykh, M. A. Belyanchikov, A. K. Grebenko, A. V. Bubis, V. I. Tsebro, A. A. Tonkikhc, D. V. Rybkovskiy, A. G. Nasibulin, E. I. Kauppinen, and E. D. Obraztsova, “Terahertz spectroscopy of charge transport in films of pristine and doped single-wall carbon nanotubes,” Carbon 126, 544–551 (2018).
[Crossref]

T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, and N. M. D. Brown, “High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs,” Carbon 43(1), 153–161 (2005).
[Crossref]

Compos. Part A Appl. Sci. Manuf. (1)

P. C. Ma, N. A. Siddiqui, G. Marom, and J. K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review,” Compos. Part A Appl. Sci. Manuf. 41(10), 1345–1367 (2010).
[Crossref]

J. Alloys Compd. (1)

C. Luo, J. Ji, F. Ling, D. Li, and J. Yao, “Effect of electric field on the dielectric properties of the Barium Strontium Titanate film,” J. Alloys Compd. 687, 458–462 (2016).
[Crossref]

J. Am. Chem. Soc. (1)

T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, and S. Iijima, “Synthesis of single- and double-walled carbon nanotube forests on conducting metal foils,” J. Am. Chem. Soc. 128(41), 13338–13339 (2006).
[Crossref] [PubMed]

J. Funct. Mater. (1)

X. C. Yang, H. X. Liu, L. L. Li, M. Huang, and J. F. Zhao, “Review on influence factors of surface plasmon resonance for nobel metal nanoparticles,” J. Funct. Mater. 2, 047 (2010).

J. Infrared Millim. Terahertz Waves (1)

J. Lloyd-Hughes and T. I. Jeon, “A review of the terahertz conductivity of bulk and nano-materials,” J. Infrared Millim. Terahertz Waves 33(9), 871–925 (2012).
[Crossref]

J. Nanophotonics (1)

E. Dadrasnia, S. Puthukodan, and H. Lamela, “Terahertz electrical conductivity and optical characterization of composite nonaligned single-and multiwalled carbon nanotubes,” J. Nanophotonics 8, 083099 (2014).

J. Phys. Chem. Lett. (1)

C. Lao-Vorakiat, H. Xia, J. Kadro, T. Salim, D. Zhao, T. Ahmed, Y. M. Lam, J. X. Zhu, R. A. Marcus, M. E. Michel-Beyerle, and E. E. M. Chia, “Phonon Mode Transformation Across the Orthohombic-Tetragonal Phase Transition in a Lead Iodide Perovskite CH3NH3PbI3: A Terahertz Time-Domain Spectroscopy Approach,” J. Phys. Chem. Lett. 7(1), 1–6 (2016).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (2)

P. Karlsen, M. V. Shuba, C. Beckerleg, D. I. Yuko, P. P. Kuzhir, S. A. Maksimenko, V. Ksenevich, H. Viet, A. G. Nasibulin, R. Tenne, and E. Hendry, “Influence of nanotube length and density on the plasmonic terahertz response of single-walled carbon nanotubes,” J. Phys. D Appl. Phys. 51(1), 014003 (2018).
[Crossref]

M. V. Shuba, A. G. Paddubskaya, P. P. Kuzhir, S. A. Maksimenko, E. Flahaut, V. Fierro, A. Celzard, and G. Valusis, “Short-length carbon nanotubes as building blocks for high dielectric constant materials in the terahertz range,” J. Phys. D Appl. Phys. 50(8), 08LT01 (2017).
[Crossref]

Nano Lett. (1)

X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11(8), 3232–3238 (2011).
[Crossref] [PubMed]

Nat. Commun. (2)

S. Sim, H. Jang, N. Koirala, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M. H. Jo, J. H. Ahn, and H. Choi, “Ultra-high modulation depth exceeding 2,400% in optically controlled topological surface plasmons,” Nat. Commun. 6(1), 8814 (2015).
[Crossref] [PubMed]

B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun. 3(1), 780 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (3)

Phys. Rev. B (1)

G. Y. Slepyan, M. V. Shuba, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia, “Terahertz conductivity peak in composite materials containing carbon nanotubes: Theory and interpretation of experiment,” Phys. Rev. B 81, 205423 (2010).

Phys. Rev. B Condens. Matter Mater. Phys. (3)

C. Kang, I. H. Maeng, S. J. Oh, S. C. Lim, K. H. An, Y. H. Lee, and J. H. Son, “Terahertz optical and electrical properties of hydrogen-functionalized carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 75(8), 085410 (2007).
[Crossref]

C. Kadlec, V. Skoromets, F. Kadlec, H. Němec, J. Hlinka, J. Schubert, G. Panaitov, and P. Kužel, “Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure,” Phys. Rev. B Condens. Matter Mater. Phys. 80(17), 174116 (2009).
[Crossref]

A. Kleiner and S. Eggert, “Band gaps of primary metallic carbon nanotubes,” Phys. Rev. B Condens. Matter Mater. Phys. 63(7), 073408 (2001).
[Crossref]

Phys. Rev. Lett. (1)

A. L. Falk, K. C. Chiu, D. B. Farmer, Q. Cao, J. Tersoff, Y. H. Lee, P. Avouris, and S. J. Han, “Coherent plasmon and phonon-plasmon resonances in carbon nanotubes,” Phys. Rev. Lett. 118(25), 257401 (2017).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Ji, S. Zhou, J. Zhang, F. Ling, and J. Yao, “Electrical terahertz modulator based on photo-excited ferroelectric superlattice,” Sci. Rep. 8(1), 2682 (2018).
[Crossref] [PubMed]

Science (1)

R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes--the route toward applications,” Science 297(5582), 787–792 (2002).
[Crossref] [PubMed]

Other (1)

P. M. Ajayan and O. Z. Zhou, “Applications of carbon nanotubes,” in Carbon Nanotubes, M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, eds. (Springer Berlin, 2001), pp. 391–425.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 200 nm high interdigitated electrodes grown on silicon substrate.
Fig. 2
Fig. 2 (a) and (b) AFM images of the sample. (c) SEM plot with a scale of 200 μm. (d) SEM image with a scale of 1 μm.
Fig. 3
Fig. 3 The THz-TDS system schematic. A green laser is obliquely incident upon the surface of the film at 60° with regard to the polar axis.
Fig. 4
Fig. 4 (a) Time-domain signal waveforms of the substrate and air at room temperature. (b) Time-domain signal waveforms of the polyimide -based SWCNTs film on the substrate under illumination.
Fig. 5
Fig. 5 (a) Transmission of the polyimide -based SWCNTs film under external optical pump power from 0mW to 300mW. (b) The modulation depth of the polyimide -based SWCNTs film under external optical pump power from 0 mW to 300 mW.
Fig. 6
Fig. 6 Measured the real and imaginary parts of conductivity of thin film at room temperature. The scatter plot was the actual measured value, and the curves were the result of simulation using the Eq. (2), which the frequency in terahertz domain were from 0.3 THz to 1 THz.
Fig. 7
Fig. 7 (a) Plasma frequency w p under different power of the external pump. (b) Electron scattering rate γ under the action of illumination.
Fig. 8
Fig. 8 Transmission of the polymer-based SWCNTs film under the power of external pump (0 mW and 300 mW) and different voltages.
Fig. 9
Fig. 9 (a) Formation of space charge field in the film without illumination. E is the voltage by the interdigital electrodes. Movement of less carriers in the film with the voltage. (b) Under illumination, a lot of carriers move in the film with the voltages.
Fig. 10
Fig. 10 (a) and (b) plasma frequency ω p of the film under the pump power of 0 mW and 300 mW and different voltages of 0 V, 10 V, 20 V, 30 V, and 40 V. (c) and (d) electron scattering rate γ of the film under the pump power of 0 mW and 300 mW and different voltages.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M= T 0 - T 1 T 0 ,
t(ω)= ( N s +1)exp(iωΔL( N s -1)/c) 1+ N s +Zσ(ω)d ,
σ(ω)= ε 0 ω[ ω p 2 ( ω 0 2 - ω 2 )i+ωγ -i],
n ¯ (q=0)= 1 e h w q=0 /KT -1 ,

Metrics