Abstract

We report on the dry etch process parameters and the associated etch rates for target and mask materials, as well as surface roughness in an inductively coupled plasma (ICP) for the (AlGaIn)(AsSb)-compounds. The essential chemistry is based on Cl2 with the addition of N2 for sidewall passivation. The optimized ICP etch process is capable of producing high aspect ratio structures with smooth sidewalls. In situ reflectance monitoring with a 670-nm-wavelength laser was used to enable stop-etching at a material interface with high accuracy. Given the additional need for highly selective wet chemical etchants in the fabrication of GaSb based electronic and optoelectronic devices, an extensive investigation was also performed to examine numerous etch solutions. These etchants were listed with etch rates, selectivities, and surface roughness in order to validate their suitability for intended applications. Despite the frequent use of GaSb or InAsSb materials for etch stop layers against each other, devices where their unique type-II broken bandgap alignment is undesired require new selective wet etchants between GaSb and AlGaAsSb with good selectivity. All of the wet chemical and dry etching processes described here were optimized using an n-type GaSb substrate.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Interband cascade laser on silicon

Alexander Spott, Eric J. Stanton, Alfredo Torres, Michael L. Davenport, Chadwick L. Canedy, Igor Vurgaftman, Mijin Kim, Chul Soo Kim, Charles D. Merritt, William W. Bewley, Jerry R. Meyer, and John E. Bowers
Optica 5(8) 996-1005 (2018)

Ridge-width dependence of the threshold of long wavelength (λ ≈14 µm) quantum cascade lasers with sloped and vertical sidewalls

Xue Huang, Yenting Chiu, William O. Charles, and Claire Gmachl
Opt. Express 20(3) 2539-2547 (2012)

Precision etching for multi-level AlGaAs waveguides

Zhongfa Liao and J. Stewart Aitchison
Opt. Mater. Express 7(3) 895-903 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, and M. G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,” Solid-State Electron. 49(12), 1875–1895 (2005).
    [Crossref]
  2. M. Mohapatra, A. Mumtaz, and A. K. Panda, “Performance evaluation of GaSb/AlGaAs based high electron mobility transistors,” in 3rd International Conference on Advances in Recent Technologies in Communication and Computing (ARTCom), Bangalore, India, 2011, pp. 249 – 252.
    [Crossref]
  3. R. Chao, J. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in IEEE Photonics Conference (IPC), Waikoloa, HI2016, pp. 472–473.
  4. S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
    [Crossref]
  5. K. Kashani-Shirazi, K. Vizbaras, A. Bachmann, S. Arafin, and M.-C. Amann, “Low-threshold strained quantum-well GaSb-based lasers emitting in the 2.5- to 2.7-µm wavelength range,” IEEE Photonics Technol. Lett. 21(16), 1106–1108 (2009).
    [Crossref]
  6. O. Blum, M. J. Hafich, J. F. Klem, K. Baucom, and A. Allennan, “Wet thermal oxidation of AlAsSb against As/Sb ratio,” Electron. Lett. 33(12), 1097–1099 (1997).
    [Crossref]
  7. S. Arafin, A. P. McFadden, M. Pendharkar, C. J. Palmstrøm, and L. A. Coldren, “Recent progress on GaSb-based photonic integrated circuits,” in 14th International Conference on Mid-Infrared Optoelectronics, (MIOMD), Flagstaff, AZ, USA, 2018, pp. 1–2.
  8. S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically-pumped continuous-wave vertical-cavity surface-emitting lasers at 2.6 µm,” Appl. Phys. Lett. 95(13), 131120 (2009).
    [Crossref]
  9. J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” in SPIE 6126, 61260H (2006).
  10. O. Dier, C. Lin, M. Grau, and M.-C. Amann, “Selective and non-selective wet-chemical etchants for GaSb-based materials,” Semicond. Sci. Technol. 19(11), 1250–1253 (2004).
    [Crossref]
  11. S. J. Pearton, F. Ren, T. R. Fullowan, A. Katz, W. S. Hobson, U. K. Chakrabarti, and C. R. Abernathy, “Plasma etching of III–V semiconductor thin films,” Mater. Chem. Phys. 32(3), 215–234 (1992).
    [Crossref]
  12. L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High Performance InP-Based Photonic ICs—A Tutorial,” J. Lightwave Technol. 29(4), 554–570 (2011).
    [Crossref]
  13. X. Zhang, Y. Li, X. Wang, Y. Li, G. Yue, Z. Wang, J. Xie, J. Zhang, and Y. Hao, “Study on etch process of GaSb-based VCSEL,” Guangdian Gongcheng 44(12), 1225–1229 (2017).
  14. M. You, Q. Sun, S. Li, L. Yin, X. Li, and J. Liu, “Study on HCl system wet-etching process of GaSb-based materials,” in 4th International Conference on Machinery, Materials and Information Technology Applications, Atlantis Press, 2016
    [Crossref]
  15. H. Hong-Yue, X. Wei, W. Guo-Wei, X. Ying-Qiang, R. Zheng-Wei, H. Xi, H. Zhen-Hong, L. Yong-Ping, W. Si-Hang, and N. Zhi-Chuan, “Wet chemical etching of antimonide-Based infrared materials,” Chin. Phys. Lett. 32(10), 107302 (2015).
    [Crossref]
  16. L. W. Stulz and L. A. Coldren, “Orientation of (100) InGaAsP/InP wafers by HCI chemical etching,” J. Electrochem. Soc. 130(7), 1628–1630 (1983).
    [Crossref]
  17. S. Jung, “Mid infrared III-V semiconductor emitters and detectors,” PhD dissertation, Stony Brook University, New York, USA, (2012).
  18. S. M. S. Rassel, L. Li, Y. Li, R. Yang, J. Gupta, X. Wu, and G. Aers, “High-temperature and low-threshold interband cascade lasers at wavelengths longer than 6 μm,” Opt. Eng. 57(1), 011021 (2018).
  19. S. Arafin, “Electrically-pumped GaSb-based vertical-cavity surface-emitting lasers,” PhD dissertation, Technical University of Munich, Munich, Germany, (2012).

2018 (1)

S. M. S. Rassel, L. Li, Y. Li, R. Yang, J. Gupta, X. Wu, and G. Aers, “High-temperature and low-threshold interband cascade lasers at wavelengths longer than 6 μm,” Opt. Eng. 57(1), 011021 (2018).

2017 (1)

X. Zhang, Y. Li, X. Wang, Y. Li, G. Yue, Z. Wang, J. Xie, J. Zhang, and Y. Hao, “Study on etch process of GaSb-based VCSEL,” Guangdian Gongcheng 44(12), 1225–1229 (2017).

2015 (1)

H. Hong-Yue, X. Wei, W. Guo-Wei, X. Ying-Qiang, R. Zheng-Wei, H. Xi, H. Zhen-Hong, L. Yong-Ping, W. Si-Hang, and N. Zhi-Chuan, “Wet chemical etching of antimonide-Based infrared materials,” Chin. Phys. Lett. 32(10), 107302 (2015).
[Crossref]

2011 (1)

2009 (2)

K. Kashani-Shirazi, K. Vizbaras, A. Bachmann, S. Arafin, and M.-C. Amann, “Low-threshold strained quantum-well GaSb-based lasers emitting in the 2.5- to 2.7-µm wavelength range,” IEEE Photonics Technol. Lett. 21(16), 1106–1108 (2009).
[Crossref]

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically-pumped continuous-wave vertical-cavity surface-emitting lasers at 2.6 µm,” Appl. Phys. Lett. 95(13), 131120 (2009).
[Crossref]

2008 (1)

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

2006 (1)

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” in SPIE 6126, 61260H (2006).

2005 (1)

B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, and M. G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,” Solid-State Electron. 49(12), 1875–1895 (2005).
[Crossref]

2004 (1)

O. Dier, C. Lin, M. Grau, and M.-C. Amann, “Selective and non-selective wet-chemical etchants for GaSb-based materials,” Semicond. Sci. Technol. 19(11), 1250–1253 (2004).
[Crossref]

1997 (1)

O. Blum, M. J. Hafich, J. F. Klem, K. Baucom, and A. Allennan, “Wet thermal oxidation of AlAsSb against As/Sb ratio,” Electron. Lett. 33(12), 1097–1099 (1997).
[Crossref]

1992 (1)

S. J. Pearton, F. Ren, T. R. Fullowan, A. Katz, W. S. Hobson, U. K. Chakrabarti, and C. R. Abernathy, “Plasma etching of III–V semiconductor thin films,” Mater. Chem. Phys. 32(3), 215–234 (1992).
[Crossref]

1983 (1)

L. W. Stulz and L. A. Coldren, “Orientation of (100) InGaAsP/InP wafers by HCI chemical etching,” J. Electrochem. Soc. 130(7), 1628–1630 (1983).
[Crossref]

Abernathy, C. R.

S. J. Pearton, F. Ren, T. R. Fullowan, A. Katz, W. S. Hobson, U. K. Chakrabarti, and C. R. Abernathy, “Plasma etching of III–V semiconductor thin films,” Mater. Chem. Phys. 32(3), 215–234 (1992).
[Crossref]

Aers, G.

S. M. S. Rassel, L. Li, Y. Li, R. Yang, J. Gupta, X. Wu, and G. Aers, “High-temperature and low-threshold interband cascade lasers at wavelengths longer than 6 μm,” Opt. Eng. 57(1), 011021 (2018).

Allennan, A.

O. Blum, M. J. Hafich, J. F. Klem, K. Baucom, and A. Allennan, “Wet thermal oxidation of AlAsSb against As/Sb ratio,” Electron. Lett. 33(12), 1097–1099 (1997).
[Crossref]

Amann, M.-C.

K. Kashani-Shirazi, K. Vizbaras, A. Bachmann, S. Arafin, and M.-C. Amann, “Low-threshold strained quantum-well GaSb-based lasers emitting in the 2.5- to 2.7-µm wavelength range,” IEEE Photonics Technol. Lett. 21(16), 1106–1108 (2009).
[Crossref]

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically-pumped continuous-wave vertical-cavity surface-emitting lasers at 2.6 µm,” Appl. Phys. Lett. 95(13), 131120 (2009).
[Crossref]

O. Dier, C. Lin, M. Grau, and M.-C. Amann, “Selective and non-selective wet-chemical etchants for GaSb-based materials,” Semicond. Sci. Technol. 19(11), 1250–1253 (2004).
[Crossref]

Ancona, M. G.

B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, and M. G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,” Solid-State Electron. 49(12), 1875–1895 (2005).
[Crossref]

Arafin, S.

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically-pumped continuous-wave vertical-cavity surface-emitting lasers at 2.6 µm,” Appl. Phys. Lett. 95(13), 131120 (2009).
[Crossref]

K. Kashani-Shirazi, K. Vizbaras, A. Bachmann, S. Arafin, and M.-C. Amann, “Low-threshold strained quantum-well GaSb-based lasers emitting in the 2.5- to 2.7-µm wavelength range,” IEEE Photonics Technol. Lett. 21(16), 1106–1108 (2009).
[Crossref]

Bachmann, A.

K. Kashani-Shirazi, K. Vizbaras, A. Bachmann, S. Arafin, and M.-C. Amann, “Low-threshold strained quantum-well GaSb-based lasers emitting in the 2.5- to 2.7-µm wavelength range,” IEEE Photonics Technol. Lett. 21(16), 1106–1108 (2009).
[Crossref]

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically-pumped continuous-wave vertical-cavity surface-emitting lasers at 2.6 µm,” Appl. Phys. Lett. 95(13), 131120 (2009).
[Crossref]

Barton, J. S.

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” in SPIE 6126, 61260H (2006).

Baucom, K.

O. Blum, M. J. Hafich, J. F. Klem, K. Baucom, and A. Allennan, “Wet thermal oxidation of AlAsSb against As/Sb ratio,” Electron. Lett. 33(12), 1097–1099 (1997).
[Crossref]

Belenky, G.

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

Bennett, B. R.

B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, and M. G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,” Solid-State Electron. 49(12), 1875–1895 (2005).
[Crossref]

Blum, O.

O. Blum, M. J. Hafich, J. F. Klem, K. Baucom, and A. Allennan, “Wet thermal oxidation of AlAsSb against As/Sb ratio,” Electron. Lett. 33(12), 1097–1099 (1997).
[Crossref]

Boos, J. B.

B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, and M. G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,” Solid-State Electron. 49(12), 1875–1895 (2005).
[Crossref]

Bowers, J. E.

R. Chao, J. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in IEEE Photonics Conference (IPC), Waikoloa, HI2016, pp. 472–473.

Chakrabarti, U. K.

S. J. Pearton, F. Ren, T. R. Fullowan, A. Katz, W. S. Hobson, U. K. Chakrabarti, and C. R. Abernathy, “Plasma etching of III–V semiconductor thin films,” Mater. Chem. Phys. 32(3), 215–234 (1992).
[Crossref]

Chao, R.

R. Chao, J. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in IEEE Photonics Conference (IPC), Waikoloa, HI2016, pp. 472–473.

Chen, Y.

R. Chao, J. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in IEEE Photonics Conference (IPC), Waikoloa, HI2016, pp. 472–473.

Coldren, L. A.

L. A. Coldren, S. C. Nicholes, L. Johansson, S. Ristic, R. S. Guzzon, E. J. Norberg, and U. Krishnamachari, “High Performance InP-Based Photonic ICs—A Tutorial,” J. Lightwave Technol. 29(4), 554–570 (2011).
[Crossref]

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” in SPIE 6126, 61260H (2006).

L. W. Stulz and L. A. Coldren, “Orientation of (100) InGaAsP/InP wafers by HCI chemical etching,” J. Electrochem. Soc. 130(7), 1628–1630 (1983).
[Crossref]

DenBaars, S. P.

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” in SPIE 6126, 61260H (2006).

Dier, O.

O. Dier, C. Lin, M. Grau, and M.-C. Amann, “Selective and non-selective wet-chemical etchants for GaSb-based materials,” Semicond. Sci. Technol. 19(11), 1250–1253 (2004).
[Crossref]

Dummer, M.

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” in SPIE 6126, 61260H (2006).

Fullowan, T. R.

S. J. Pearton, F. Ren, T. R. Fullowan, A. Katz, W. S. Hobson, U. K. Chakrabarti, and C. R. Abernathy, “Plasma etching of III–V semiconductor thin films,” Mater. Chem. Phys. 32(3), 215–234 (1992).
[Crossref]

Grau, M.

O. Dier, C. Lin, M. Grau, and M.-C. Amann, “Selective and non-selective wet-chemical etchants for GaSb-based materials,” Semicond. Sci. Technol. 19(11), 1250–1253 (2004).
[Crossref]

Guo-Wei, W.

H. Hong-Yue, X. Wei, W. Guo-Wei, X. Ying-Qiang, R. Zheng-Wei, H. Xi, H. Zhen-Hong, L. Yong-Ping, W. Si-Hang, and N. Zhi-Chuan, “Wet chemical etching of antimonide-Based infrared materials,” Chin. Phys. Lett. 32(10), 107302 (2015).
[Crossref]

Gupta, J.

S. M. S. Rassel, L. Li, Y. Li, R. Yang, J. Gupta, X. Wu, and G. Aers, “High-temperature and low-threshold interband cascade lasers at wavelengths longer than 6 μm,” Opt. Eng. 57(1), 011021 (2018).

Guzzon, R. S.

Hafich, M. J.

O. Blum, M. J. Hafich, J. F. Klem, K. Baucom, and A. Allennan, “Wet thermal oxidation of AlAsSb against As/Sb ratio,” Electron. Lett. 33(12), 1097–1099 (1997).
[Crossref]

Hao, Y.

X. Zhang, Y. Li, X. Wang, Y. Li, G. Yue, Z. Wang, J. Xie, J. Zhang, and Y. Hao, “Study on etch process of GaSb-based VCSEL,” Guangdian Gongcheng 44(12), 1225–1229 (2017).

Hobson, W. S.

S. J. Pearton, F. Ren, T. R. Fullowan, A. Katz, W. S. Hobson, U. K. Chakrabarti, and C. R. Abernathy, “Plasma etching of III–V semiconductor thin films,” Mater. Chem. Phys. 32(3), 215–234 (1992).
[Crossref]

Hong-Yue, H.

H. Hong-Yue, X. Wei, W. Guo-Wei, X. Ying-Qiang, R. Zheng-Wei, H. Xi, H. Zhen-Hong, L. Yong-Ping, W. Si-Hang, and N. Zhi-Chuan, “Wet chemical etching of antimonide-Based infrared materials,” Chin. Phys. Lett. 32(10), 107302 (2015).
[Crossref]

Hosoda, T.

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

Johansson, L.

Jung, S.

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

Kashani-Shirazi, K.

K. Kashani-Shirazi, K. Vizbaras, A. Bachmann, S. Arafin, and M.-C. Amann, “Low-threshold strained quantum-well GaSb-based lasers emitting in the 2.5- to 2.7-µm wavelength range,” IEEE Photonics Technol. Lett. 21(16), 1106–1108 (2009).
[Crossref]

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically-pumped continuous-wave vertical-cavity surface-emitting lasers at 2.6 µm,” Appl. Phys. Lett. 95(13), 131120 (2009).
[Crossref]

Katz, A.

S. J. Pearton, F. Ren, T. R. Fullowan, A. Katz, W. S. Hobson, U. K. Chakrabarti, and C. R. Abernathy, “Plasma etching of III–V semiconductor thin films,” Mater. Chem. Phys. 32(3), 215–234 (1992).
[Crossref]

Kipshidze, G.

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

Klem, J. F.

O. Blum, M. J. Hafich, J. F. Klem, K. Baucom, and A. Allennan, “Wet thermal oxidation of AlAsSb against As/Sb ratio,” Electron. Lett. 33(12), 1097–1099 (1997).
[Crossref]

Krishnamachari, U.

Kruppa, W.

B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, and M. G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,” Solid-State Electron. 49(12), 1875–1895 (2005).
[Crossref]

Li, L.

S. M. S. Rassel, L. Li, Y. Li, R. Yang, J. Gupta, X. Wu, and G. Aers, “High-temperature and low-threshold interband cascade lasers at wavelengths longer than 6 μm,” Opt. Eng. 57(1), 011021 (2018).

Li, S.

M. You, Q. Sun, S. Li, L. Yin, X. Li, and J. Liu, “Study on HCl system wet-etching process of GaSb-based materials,” in 4th International Conference on Machinery, Materials and Information Technology Applications, Atlantis Press, 2016
[Crossref]

Li, X.

M. You, Q. Sun, S. Li, L. Yin, X. Li, and J. Liu, “Study on HCl system wet-etching process of GaSb-based materials,” in 4th International Conference on Machinery, Materials and Information Technology Applications, Atlantis Press, 2016
[Crossref]

Li, Y.

S. M. S. Rassel, L. Li, Y. Li, R. Yang, J. Gupta, X. Wu, and G. Aers, “High-temperature and low-threshold interband cascade lasers at wavelengths longer than 6 μm,” Opt. Eng. 57(1), 011021 (2018).

X. Zhang, Y. Li, X. Wang, Y. Li, G. Yue, Z. Wang, J. Xie, J. Zhang, and Y. Hao, “Study on etch process of GaSb-based VCSEL,” Guangdian Gongcheng 44(12), 1225–1229 (2017).

X. Zhang, Y. Li, X. Wang, Y. Li, G. Yue, Z. Wang, J. Xie, J. Zhang, and Y. Hao, “Study on etch process of GaSb-based VCSEL,” Guangdian Gongcheng 44(12), 1225–1229 (2017).

Lin, C.

O. Dier, C. Lin, M. Grau, and M.-C. Amann, “Selective and non-selective wet-chemical etchants for GaSb-based materials,” Semicond. Sci. Technol. 19(11), 1250–1253 (2004).
[Crossref]

Liu, J.

M. You, Q. Sun, S. Li, L. Yin, X. Li, and J. Liu, “Study on HCl system wet-etching process of GaSb-based materials,” in 4th International Conference on Machinery, Materials and Information Technology Applications, Atlantis Press, 2016
[Crossref]

Magno, R.

B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, and M. G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,” Solid-State Electron. 49(12), 1875–1895 (2005).
[Crossref]

Mohapatra, M.

M. Mohapatra, A. Mumtaz, and A. K. Panda, “Performance evaluation of GaSb/AlGaAs based high electron mobility transistors,” in 3rd International Conference on Advances in Recent Technologies in Communication and Computing (ARTCom), Bangalore, India, 2011, pp. 249 – 252.
[Crossref]

Mumtaz, A.

M. Mohapatra, A. Mumtaz, and A. K. Panda, “Performance evaluation of GaSb/AlGaAs based high electron mobility transistors,” in 3rd International Conference on Advances in Recent Technologies in Communication and Computing (ARTCom), Bangalore, India, 2011, pp. 249 – 252.
[Crossref]

Nicholes, S. C.

Norberg, E. J.

Panda, A. K.

M. Mohapatra, A. Mumtaz, and A. K. Panda, “Performance evaluation of GaSb/AlGaAs based high electron mobility transistors,” in 3rd International Conference on Advances in Recent Technologies in Communication and Computing (ARTCom), Bangalore, India, 2011, pp. 249 – 252.
[Crossref]

Pearton, S. J.

S. J. Pearton, F. Ren, T. R. Fullowan, A. Katz, W. S. Hobson, U. K. Chakrabarti, and C. R. Abernathy, “Plasma etching of III–V semiconductor thin films,” Mater. Chem. Phys. 32(3), 215–234 (1992).
[Crossref]

Raring, J. W.

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” in SPIE 6126, 61260H (2006).

Rassel, S. M. S.

S. M. S. Rassel, L. Li, Y. Li, R. Yang, J. Gupta, X. Wu, and G. Aers, “High-temperature and low-threshold interband cascade lasers at wavelengths longer than 6 μm,” Opt. Eng. 57(1), 011021 (2018).

Ren, F.

S. J. Pearton, F. Ren, T. R. Fullowan, A. Katz, W. S. Hobson, U. K. Chakrabarti, and C. R. Abernathy, “Plasma etching of III–V semiconductor thin films,” Mater. Chem. Phys. 32(3), 215–234 (1992).
[Crossref]

Ristic, S.

Shi, J.

R. Chao, J. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in IEEE Photonics Conference (IPC), Waikoloa, HI2016, pp. 472–473.

Shterengas, L.

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

Si-Hang, W.

H. Hong-Yue, X. Wei, W. Guo-Wei, X. Ying-Qiang, R. Zheng-Wei, H. Xi, H. Zhen-Hong, L. Yong-Ping, W. Si-Hang, and N. Zhi-Chuan, “Wet chemical etching of antimonide-Based infrared materials,” Chin. Phys. Lett. 32(10), 107302 (2015).
[Crossref]

Skogen, E. J.

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” in SPIE 6126, 61260H (2006).

Snyder, D.

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

Stulz, L. W.

L. W. Stulz and L. A. Coldren, “Orientation of (100) InGaAsP/InP wafers by HCI chemical etching,” J. Electrochem. Soc. 130(7), 1628–1630 (1983).
[Crossref]

Suchalkin, S.

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

Sun, Q.

M. You, Q. Sun, S. Li, L. Yin, X. Li, and J. Liu, “Study on HCl system wet-etching process of GaSb-based materials,” in 4th International Conference on Machinery, Materials and Information Technology Applications, Atlantis Press, 2016
[Crossref]

Sysak, M. N.

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” in SPIE 6126, 61260H (2006).

Tauke-Pedretti, A.

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” in SPIE 6126, 61260H (2006).

Vizbaras, K.

K. Kashani-Shirazi, K. Vizbaras, A. Bachmann, S. Arafin, and M.-C. Amann, “Low-threshold strained quantum-well GaSb-based lasers emitting in the 2.5- to 2.7-µm wavelength range,” IEEE Photonics Technol. Lett. 21(16), 1106–1108 (2009).
[Crossref]

Wang, X.

X. Zhang, Y. Li, X. Wang, Y. Li, G. Yue, Z. Wang, J. Xie, J. Zhang, and Y. Hao, “Study on etch process of GaSb-based VCSEL,” Guangdian Gongcheng 44(12), 1225–1229 (2017).

Wang, Y.

R. Chao, J. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in IEEE Photonics Conference (IPC), Waikoloa, HI2016, pp. 472–473.

Wang, Z.

X. Zhang, Y. Li, X. Wang, Y. Li, G. Yue, Z. Wang, J. Xie, J. Zhang, and Y. Hao, “Study on etch process of GaSb-based VCSEL,” Guangdian Gongcheng 44(12), 1225–1229 (2017).

Wei, X.

H. Hong-Yue, X. Wei, W. Guo-Wei, X. Ying-Qiang, R. Zheng-Wei, H. Xi, H. Zhen-Hong, L. Yong-Ping, W. Si-Hang, and N. Zhi-Chuan, “Wet chemical etching of antimonide-Based infrared materials,” Chin. Phys. Lett. 32(10), 107302 (2015).
[Crossref]

Westerfeld, D.

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

Wu, X.

S. M. S. Rassel, L. Li, Y. Li, R. Yang, J. Gupta, X. Wu, and G. Aers, “High-temperature and low-threshold interband cascade lasers at wavelengths longer than 6 μm,” Opt. Eng. 57(1), 011021 (2018).

Wun, J.

R. Chao, J. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in IEEE Photonics Conference (IPC), Waikoloa, HI2016, pp. 472–473.

Xi, H.

H. Hong-Yue, X. Wei, W. Guo-Wei, X. Ying-Qiang, R. Zheng-Wei, H. Xi, H. Zhen-Hong, L. Yong-Ping, W. Si-Hang, and N. Zhi-Chuan, “Wet chemical etching of antimonide-Based infrared materials,” Chin. Phys. Lett. 32(10), 107302 (2015).
[Crossref]

Xie, J.

X. Zhang, Y. Li, X. Wang, Y. Li, G. Yue, Z. Wang, J. Xie, J. Zhang, and Y. Hao, “Study on etch process of GaSb-based VCSEL,” Guangdian Gongcheng 44(12), 1225–1229 (2017).

Yang, R.

S. M. S. Rassel, L. Li, Y. Li, R. Yang, J. Gupta, X. Wu, and G. Aers, “High-temperature and low-threshold interband cascade lasers at wavelengths longer than 6 μm,” Opt. Eng. 57(1), 011021 (2018).

Yin, L.

M. You, Q. Sun, S. Li, L. Yin, X. Li, and J. Liu, “Study on HCl system wet-etching process of GaSb-based materials,” in 4th International Conference on Machinery, Materials and Information Technology Applications, Atlantis Press, 2016
[Crossref]

Ying-Qiang, X.

H. Hong-Yue, X. Wei, W. Guo-Wei, X. Ying-Qiang, R. Zheng-Wei, H. Xi, H. Zhen-Hong, L. Yong-Ping, W. Si-Hang, and N. Zhi-Chuan, “Wet chemical etching of antimonide-Based infrared materials,” Chin. Phys. Lett. 32(10), 107302 (2015).
[Crossref]

Yong-Ping, L.

H. Hong-Yue, X. Wei, W. Guo-Wei, X. Ying-Qiang, R. Zheng-Wei, H. Xi, H. Zhen-Hong, L. Yong-Ping, W. Si-Hang, and N. Zhi-Chuan, “Wet chemical etching of antimonide-Based infrared materials,” Chin. Phys. Lett. 32(10), 107302 (2015).
[Crossref]

You, M.

M. You, Q. Sun, S. Li, L. Yin, X. Li, and J. Liu, “Study on HCl system wet-etching process of GaSb-based materials,” in 4th International Conference on Machinery, Materials and Information Technology Applications, Atlantis Press, 2016
[Crossref]

Yue, G.

X. Zhang, Y. Li, X. Wang, Y. Li, G. Yue, Z. Wang, J. Xie, J. Zhang, and Y. Hao, “Study on etch process of GaSb-based VCSEL,” Guangdian Gongcheng 44(12), 1225–1229 (2017).

Zhang, J.

X. Zhang, Y. Li, X. Wang, Y. Li, G. Yue, Z. Wang, J. Xie, J. Zhang, and Y. Hao, “Study on etch process of GaSb-based VCSEL,” Guangdian Gongcheng 44(12), 1225–1229 (2017).

Zhang, X.

X. Zhang, Y. Li, X. Wang, Y. Li, G. Yue, Z. Wang, J. Xie, J. Zhang, and Y. Hao, “Study on etch process of GaSb-based VCSEL,” Guangdian Gongcheng 44(12), 1225–1229 (2017).

Zheng-Wei, R.

H. Hong-Yue, X. Wei, W. Guo-Wei, X. Ying-Qiang, R. Zheng-Wei, H. Xi, H. Zhen-Hong, L. Yong-Ping, W. Si-Hang, and N. Zhi-Chuan, “Wet chemical etching of antimonide-Based infrared materials,” Chin. Phys. Lett. 32(10), 107302 (2015).
[Crossref]

Zhen-Hong, H.

H. Hong-Yue, X. Wei, W. Guo-Wei, X. Ying-Qiang, R. Zheng-Wei, H. Xi, H. Zhen-Hong, L. Yong-Ping, W. Si-Hang, and N. Zhi-Chuan, “Wet chemical etching of antimonide-Based infrared materials,” Chin. Phys. Lett. 32(10), 107302 (2015).
[Crossref]

Zhi-Chuan, N.

H. Hong-Yue, X. Wei, W. Guo-Wei, X. Ying-Qiang, R. Zheng-Wei, H. Xi, H. Zhen-Hong, L. Yong-Ping, W. Si-Hang, and N. Zhi-Chuan, “Wet chemical etching of antimonide-Based infrared materials,” Chin. Phys. Lett. 32(10), 107302 (2015).
[Crossref]

Appl. Phys. Lett. (2)

S. Suchalkin, S. Jung, G. Kipshidze, L. Shterengas, T. Hosoda, D. Westerfeld, D. Snyder, and G. Belenky, “GaSb based light emitting diodes with strained InGaAsSb type I quantum well active regions,” Appl. Phys. Lett. 93(8), 081107 (2008).
[Crossref]

S. Arafin, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Electrically-pumped continuous-wave vertical-cavity surface-emitting lasers at 2.6 µm,” Appl. Phys. Lett. 95(13), 131120 (2009).
[Crossref]

Chin. Phys. Lett. (1)

H. Hong-Yue, X. Wei, W. Guo-Wei, X. Ying-Qiang, R. Zheng-Wei, H. Xi, H. Zhen-Hong, L. Yong-Ping, W. Si-Hang, and N. Zhi-Chuan, “Wet chemical etching of antimonide-Based infrared materials,” Chin. Phys. Lett. 32(10), 107302 (2015).
[Crossref]

Electron. Lett. (1)

O. Blum, M. J. Hafich, J. F. Klem, K. Baucom, and A. Allennan, “Wet thermal oxidation of AlAsSb against As/Sb ratio,” Electron. Lett. 33(12), 1097–1099 (1997).
[Crossref]

Guangdian Gongcheng (1)

X. Zhang, Y. Li, X. Wang, Y. Li, G. Yue, Z. Wang, J. Xie, J. Zhang, and Y. Hao, “Study on etch process of GaSb-based VCSEL,” Guangdian Gongcheng 44(12), 1225–1229 (2017).

IEEE Photonics Technol. Lett. (1)

K. Kashani-Shirazi, K. Vizbaras, A. Bachmann, S. Arafin, and M.-C. Amann, “Low-threshold strained quantum-well GaSb-based lasers emitting in the 2.5- to 2.7-µm wavelength range,” IEEE Photonics Technol. Lett. 21(16), 1106–1108 (2009).
[Crossref]

in SPIE (1)

J. W. Raring, M. N. Sysak, A. Tauke-Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Advanced integration schemes for high-functionality/high-performance photonic integrated circuits,” in SPIE 6126, 61260H (2006).

J. Electrochem. Soc. (1)

L. W. Stulz and L. A. Coldren, “Orientation of (100) InGaAsP/InP wafers by HCI chemical etching,” J. Electrochem. Soc. 130(7), 1628–1630 (1983).
[Crossref]

J. Lightwave Technol. (1)

Mater. Chem. Phys. (1)

S. J. Pearton, F. Ren, T. R. Fullowan, A. Katz, W. S. Hobson, U. K. Chakrabarti, and C. R. Abernathy, “Plasma etching of III–V semiconductor thin films,” Mater. Chem. Phys. 32(3), 215–234 (1992).
[Crossref]

Opt. Eng. (1)

S. M. S. Rassel, L. Li, Y. Li, R. Yang, J. Gupta, X. Wu, and G. Aers, “High-temperature and low-threshold interband cascade lasers at wavelengths longer than 6 μm,” Opt. Eng. 57(1), 011021 (2018).

Semicond. Sci. Technol. (1)

O. Dier, C. Lin, M. Grau, and M.-C. Amann, “Selective and non-selective wet-chemical etchants for GaSb-based materials,” Semicond. Sci. Technol. 19(11), 1250–1253 (2004).
[Crossref]

Solid-State Electron. (1)

B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, and M. G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,” Solid-State Electron. 49(12), 1875–1895 (2005).
[Crossref]

Other (6)

M. Mohapatra, A. Mumtaz, and A. K. Panda, “Performance evaluation of GaSb/AlGaAs based high electron mobility transistors,” in 3rd International Conference on Advances in Recent Technologies in Communication and Computing (ARTCom), Bangalore, India, 2011, pp. 249 – 252.
[Crossref]

R. Chao, J. Wun, Y. Wang, Y. Chen, J. E. Bowers, and J. Shi, “High-speed and high-power GaSb based photodiode for 2.5 µm wavelength operations,” in IEEE Photonics Conference (IPC), Waikoloa, HI2016, pp. 472–473.

S. Arafin, A. P. McFadden, M. Pendharkar, C. J. Palmstrøm, and L. A. Coldren, “Recent progress on GaSb-based photonic integrated circuits,” in 14th International Conference on Mid-Infrared Optoelectronics, (MIOMD), Flagstaff, AZ, USA, 2018, pp. 1–2.

S. Arafin, “Electrically-pumped GaSb-based vertical-cavity surface-emitting lasers,” PhD dissertation, Technical University of Munich, Munich, Germany, (2012).

S. Jung, “Mid infrared III-V semiconductor emitters and detectors,” PhD dissertation, Stony Brook University, New York, USA, (2012).

M. You, Q. Sun, S. Li, L. Yin, X. Li, and J. Liu, “Study on HCl system wet-etching process of GaSb-based materials,” in 4th International Conference on Machinery, Materials and Information Technology Applications, Atlantis Press, 2016
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematics of different test samples with epilayers used in this dry and wet etching study.
Fig. 2
Fig. 2 Microscope images of the test samples with 5-µm surface ridges obtained after development and ready for dry etching in order to transfer the patterns into the hard mask.
Fig. 3
Fig. 3 Measured reflectivity data vs etch depth of etching test structure-B. Simulated laser monitor signal is superimposed to extract the refractive index and extinction coefficient values of the quaternary cladding layer.
Fig. 4
Fig. 4 SEM images of the test samples with 5-µm surface ridges obtained after (a) Cl2/N2 dry etching, (b) dry etching followed by 5 sec cleanup etching by HCl. Sidewalls can also be seen here after, (c) 50-μm wide stripes covered with resist and Ti//Au metal layer underneath after dry etching in Cl2/N2 plasma and (d) the close-up view of the ridges are shown at the bottom.
Fig. 5
Fig. 5 (a) Schematic of the test structures for active/passive definition test, (b) simulated and measured (smoothed out) reflectivity data as a function of etch depth are superimposed; (c) system’s original raw data for the detection of endpoint during dry etching using Cl2/N2 plasma; and (d) microscope image of the test structure after the etching, showing active/passive regions.
Fig. 6
Fig. 6 Optical microscope image of the etched surface after wet chemical etching (left) of Al0.5GaAsSb by HCl-based etchant. Roughness measurement of the etched surface is also shown by the profilometer (right).

Tables (2)

Tables Icon

Table 1 ICP Dry Etching Parameter* and the Corresponding Results for Sample-B

Tables Icon

Table 2 Wet-Etchants for Antimonide Materials Used in This Study

Metrics