Abstract

We demonstrate a new optical source in the form of a thin scintillating film with subdiffraction resolution for bioimaging. Atomically smooth, uniform and highly luminescent scintillating membranes have been successfully fabricated by radio frequency magnetron sputtering for application as a nanoscale imaging probe. This cathodoluminescence-activated optical transducer converts electron beam energy to near-field, visible radiation simultaneously satisfying the requirements for high-resolution, dye-free imaging. We discovered high-yield emission for YAlO3:Gd3+ perovskite thin films with enhanced scintillating properties by providing experimental evidence for quantum cutting in the ultraviolet-visible region. A subwavelength spatial resolution of ∼100 nm with a high signal-to-noise ratio (SNR = 20) under the atmospheric condition is confirmed by using a luminescent optical probe. The simple manufacturing process of such scintillating membranes broadens their application toward super-resolution microscopy, fulfilling prerequisites for biomedical imaging where noninvasive nanoprobe is required.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of bright and thin Zn2SiO4 luminescent film for electron beam excitation-assisted optical microscope

Taichi Furukawa, Satoshi Kanamori, Masahiro Fukuta, Yasunori Nawa, Hiroko Kominami, Yoichiro Nakanishi, Atsushi Sugita, Wataru Inami, and Yoshimasa Kawata
Opt. Express 23(14) 18630-18637 (2015)

Nanometric light spots of cathode luminescence in Y2O3:Eu3+ phosphor thin films excited by focused electron beams as ultra-small illumination source for high-resolution optical microscope

Atsushi Sugita, Masashi Kamiya, Chiyu Morita, Aki Miyake, Yasunori Nawa, Yuriko Masuda, Wataru Inami, Hiro-ko Kominami, Yoichiro Nakanishi, and Yoshimasa Kawata
Opt. Mater. Express 4(1) 155-161 (2014)

Electron beam excitation assisted optical microscope with ultra-high resolution

Wataru Inami, Kentaro Nakajima, Atsuo Miyakawa, and Yoshimasa Kawata
Opt. Express 18(12) 12897-12902 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. Heintzmann and T. Huser, “Super-Resolution Structured Illumination Microscopy,” Chem. Rev. 117(23), 13890–13908 (2017).
    [Crossref]
  2. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref]
  3. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref]
  4. Z. Liu, L. D. Lavis, and E. Betzig, “Imaging Live-Cell Dynamics and Structure at the Single-Molecule Level,” Mol. Cell 58(4), 644–659 (2015).
    [Crossref]
  5. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref]
  6. M. Fernández-Suárez and A. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008).
    [Crossref]
  7. N. d. Jonge, D. B. Peckys, G. J. Kremers, and D. W. Piston, “Electron microscopy of whole cells in liquid with nanometer resolution,” Proc. Natl. Acad. Sci. 106(7), 2159–2164 (2009).
    [Crossref]
  8. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
    [Crossref]
  9. W. Inami, K. Nakajima, A. Miyakawa, and Y. Kawata, “Electron beam excitation assisted optical microscope with ultra-high resolution,” Opt. Express 18(12), 12897–12902 (2010).
    [Crossref]
  10. B. C. Heng, G. K. Das, X. Zhao, L.-L. Ma, T. T.-Y. Tan, K. W. Ng, and J. S.-C. Loo, “Comparative cytotoxicity evaluation of lanthanide nanomaterials on mouse and human cell lines with metabolic and DNA-quantification assays,” Biointerphases 5(3), FA88–FA97 (2010).
    [Crossref]
  11. J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: Advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
    [Crossref]
  12. W. R. Algar, K. Susumu, J. B. Delehanty, and I. L. Medintz, “Semiconductor quantum dots in bioanalysis: Crossing the valley of death,” Anal. Chem. 83(23), 8826–8837 (2011).
    [Crossref]
  13. T. K. Nguyen, H. P. Phan, H. Kamble, R. Vadivelu, T. Dinh, A. Iacopi, G. Walker, L. Hold, N. T. Nguyen, and D. V. Dao, “Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications,” ACS Appl. Mater. Interfaces 9(48), 41641–41647 (2017).
    [Crossref]
  14. C. W. E. Van Eijk, “Inorganic scintillators in medical imaging detectors,” Nucl. Instrum. Methods Phys. Res., Sect. A 509(1-3), 17–25 (2003).
    [Crossref]
  15. A. A. Talin, K. A. Dean, and J. E. Jaskie, “Field emission displays: A critical review,” Solid-State Electron. 45(6), 963–976 (2001).
    [Crossref]
  16. H. Lin, G. Zhang, P. A. Tanner, and H. Liang, “VUV-Vis luminescent properties of BaCaBO3F doped with Ce3+ and Tb3+,” J. Phys. Chem. C 117(24), 12769–12777 (2013).
    [Crossref]
  17. F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
    [Crossref]
  18. M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Plasmon-Enhanced Autofluorescence Imaging of Organelles in Label-Free Cells by Deep-Ultraviolet Excitation,” Anal. Chem. 88(2), 1407–1411 (2016).
    [Crossref]
  19. R. Wegh, H. Donker, A. Meijerink, R. Lamminmäki, and J. Hölsä, “Vacuum-ultraviolet spectroscopy and quantum cutting for Gd3+ in LiYF4,” Phys. Rev. B - Condens. Matter Mater. Phys. 56(21), 13841–13848 (1997).
    [Crossref]
  20. Y. Nawa, W. Inami, A. Chiba, A. Ono, A. Miyakawa, Y. Kawata, S. Lin, and S. Terakawa, “Dynamic and high-resolution live cell imaging by direct electron beam excitation,” Opt. Express 20(5), 5629–5635 (2012).
    [Crossref]
  21. D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42 - A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning 29(3), 92–101 (2007).
    [Crossref]
  22. W. Inami, J. Fujiwara, F. Masahiro, A. Ono, and Y. Kawata, “Analysis of electron and light scattering in a fluorescent thin film by combination of Monte Carlo simulation and finite-difference time-domain method,” Appl. Phys. Lett. 101(15), 151104 (2012).
    [Crossref]
  23. S. Thiberge, O. Zik, and E. Moses, “An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy,” Rev. Sci. Instrum. 75(7), 2280–2289 (2004).
    [Crossref]
  24. E. Kennedy, E. M. Nelson, T. Tanaka, J. Damiano, and G. Timp, “Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopy,” ACS Nano 10(2), 2669–2677 (2016).
    [Crossref]
  25. D. B. Peckys and N. De Jonge, “Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy,” Nano Lett. 11(4), 1733–1738 (2011).
    [Crossref]
  26. L. R. Parent, E. Bakalis, A. Ramírez-Hernández, J. K. Kammeyer, C. Park, J. De Pablo, F. Zerbetto, J. P. Patterson, and N. C. Gianneschi, “Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy,” J. Am. Chem. Soc. 139(47), 17140–17151 (2017).
    [Crossref]
  27. A. Rose, “Television Pickup Tubes and the Problem of Vision,” Adv. Electron. Electron Phys. 1, 131–166 (1948).
    [Crossref]
  28. Z. Yang, J. H. Lin, M. Z. Su, Y. Tao, and W. Wang, “Photon cascade luminescence of Gd3+ in GdBaB9O16,” J. Alloys Compd. 308(1-2), 94–97 (2000).
    [Crossref]
  29. J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4:Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B: Lasers Opt. 98(1), 139–147 (2010).
    [Crossref]
  30. K. Zheng, W. Qin, C. Cao, D. Zhao, and L. Wang, “NIR to VUV: Seven-photon upconversion emissions from Gd3+ ions in fluoride nanocrystals,” J. Phys. Chem. Lett. 6(3), 556–560 (2015).
    [Crossref]
  31. Y. Shimizu, K. Ueda, and Y. Inaguma, “Photoluminescence excitation spectra of lanthanide doped YAlO3 in vacuum ultraviolet region,” Opt. Mater. 66, 327–331 (2017).
    [Crossref]
  32. A. Miyake, S. Kanamori, Y. Nawa, W. Inami, H. Kominami, Y. Kawata, and Y. Nakanishi, “Formation of ZnO luminescent films on SiN films for light source of high-resolution optical microscope,” Jpn. J. Appl. Phys. 53(3), 034101 (2014).
    [Crossref]
  33. T. Furukawa, S. Kanamori, M. Fukuta, Y. Nawa, H. Kominami, Y. Nakanishi, A. Sugita, W. Inami, and Y. Kawata, “Fabrication of bright and thin Zn2SiO4 luminescent film for electron beam excitationassisted optical microscope,” Opt. Express 23(14), 18630–18637 (2015).
    [Crossref]
  34. H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol. 172(2), 191–202 (2010).
    [Crossref]
  35. C. G. Bischak, C. L. Hetherington, Z. Wang, J. T. Precht, D. M. Kaz, D. G. Schlom, and N. S. Ginsberg, “Cathodoluminescence-activated nanoimaging: Noninvasive near-field optical microscopy in an electron microscope,” Nano Lett. 15(5), 3383–3390 (2015).
    [Crossref]
  36. P. Chaturvedi, K. H. Hsu, A. Kumar, K. H. Fung, J. C. Mabon, and N. X. Fang, “Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy,” ACS Nano 3(10), 2965–2974 (2009).
    [Crossref]
  37. N. Liv, D. S. B. Van Oosten Slingeland, J. P. Baudoin, P. Kruit, D. W. Piston, and J. P. Hoogenboom, “Electron microscopy of living cells during in situ fluorescence microscopy,” ACS Nano 10(1), 265–273 (2016).
    [Crossref]

2017 (4)

R. Heintzmann and T. Huser, “Super-Resolution Structured Illumination Microscopy,” Chem. Rev. 117(23), 13890–13908 (2017).
[Crossref]

T. K. Nguyen, H. P. Phan, H. Kamble, R. Vadivelu, T. Dinh, A. Iacopi, G. Walker, L. Hold, N. T. Nguyen, and D. V. Dao, “Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications,” ACS Appl. Mater. Interfaces 9(48), 41641–41647 (2017).
[Crossref]

L. R. Parent, E. Bakalis, A. Ramírez-Hernández, J. K. Kammeyer, C. Park, J. De Pablo, F. Zerbetto, J. P. Patterson, and N. C. Gianneschi, “Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy,” J. Am. Chem. Soc. 139(47), 17140–17151 (2017).
[Crossref]

Y. Shimizu, K. Ueda, and Y. Inaguma, “Photoluminescence excitation spectra of lanthanide doped YAlO3 in vacuum ultraviolet region,” Opt. Mater. 66, 327–331 (2017).
[Crossref]

2016 (3)

N. Liv, D. S. B. Van Oosten Slingeland, J. P. Baudoin, P. Kruit, D. W. Piston, and J. P. Hoogenboom, “Electron microscopy of living cells during in situ fluorescence microscopy,” ACS Nano 10(1), 265–273 (2016).
[Crossref]

E. Kennedy, E. M. Nelson, T. Tanaka, J. Damiano, and G. Timp, “Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopy,” ACS Nano 10(2), 2669–2677 (2016).
[Crossref]

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Plasmon-Enhanced Autofluorescence Imaging of Organelles in Label-Free Cells by Deep-Ultraviolet Excitation,” Anal. Chem. 88(2), 1407–1411 (2016).
[Crossref]

2015 (5)

Z. Liu, L. D. Lavis, and E. Betzig, “Imaging Live-Cell Dynamics and Structure at the Single-Molecule Level,” Mol. Cell 58(4), 644–659 (2015).
[Crossref]

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: Advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

K. Zheng, W. Qin, C. Cao, D. Zhao, and L. Wang, “NIR to VUV: Seven-photon upconversion emissions from Gd3+ ions in fluoride nanocrystals,” J. Phys. Chem. Lett. 6(3), 556–560 (2015).
[Crossref]

C. G. Bischak, C. L. Hetherington, Z. Wang, J. T. Precht, D. M. Kaz, D. G. Schlom, and N. S. Ginsberg, “Cathodoluminescence-activated nanoimaging: Noninvasive near-field optical microscopy in an electron microscope,” Nano Lett. 15(5), 3383–3390 (2015).
[Crossref]

T. Furukawa, S. Kanamori, M. Fukuta, Y. Nawa, H. Kominami, Y. Nakanishi, A. Sugita, W. Inami, and Y. Kawata, “Fabrication of bright and thin Zn2SiO4 luminescent film for electron beam excitationassisted optical microscope,” Opt. Express 23(14), 18630–18637 (2015).
[Crossref]

2014 (1)

A. Miyake, S. Kanamori, Y. Nawa, W. Inami, H. Kominami, Y. Kawata, and Y. Nakanishi, “Formation of ZnO luminescent films on SiN films for light source of high-resolution optical microscope,” Jpn. J. Appl. Phys. 53(3), 034101 (2014).
[Crossref]

2013 (2)

H. Lin, G. Zhang, P. A. Tanner, and H. Liang, “VUV-Vis luminescent properties of BaCaBO3F doped with Ce3+ and Tb3+,” J. Phys. Chem. C 117(24), 12769–12777 (2013).
[Crossref]

F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
[Crossref]

2012 (2)

W. Inami, J. Fujiwara, F. Masahiro, A. Ono, and Y. Kawata, “Analysis of electron and light scattering in a fluorescent thin film by combination of Monte Carlo simulation and finite-difference time-domain method,” Appl. Phys. Lett. 101(15), 151104 (2012).
[Crossref]

Y. Nawa, W. Inami, A. Chiba, A. Ono, A. Miyakawa, Y. Kawata, S. Lin, and S. Terakawa, “Dynamic and high-resolution live cell imaging by direct electron beam excitation,” Opt. Express 20(5), 5629–5635 (2012).
[Crossref]

2011 (2)

D. B. Peckys and N. De Jonge, “Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy,” Nano Lett. 11(4), 1733–1738 (2011).
[Crossref]

W. R. Algar, K. Susumu, J. B. Delehanty, and I. L. Medintz, “Semiconductor quantum dots in bioanalysis: Crossing the valley of death,” Anal. Chem. 83(23), 8826–8837 (2011).
[Crossref]

2010 (4)

B. C. Heng, G. K. Das, X. Zhao, L.-L. Ma, T. T.-Y. Tan, K. W. Ng, and J. S.-C. Loo, “Comparative cytotoxicity evaluation of lanthanide nanomaterials on mouse and human cell lines with metabolic and DNA-quantification assays,” Biointerphases 5(3), FA88–FA97 (2010).
[Crossref]

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4:Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B: Lasers Opt. 98(1), 139–147 (2010).
[Crossref]

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol. 172(2), 191–202 (2010).
[Crossref]

W. Inami, K. Nakajima, A. Miyakawa, and Y. Kawata, “Electron beam excitation assisted optical microscope with ultra-high resolution,” Opt. Express 18(12), 12897–12902 (2010).
[Crossref]

2009 (3)

P. Chaturvedi, K. H. Hsu, A. Kumar, K. H. Fung, J. C. Mabon, and N. X. Fang, “Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy,” ACS Nano 3(10), 2965–2974 (2009).
[Crossref]

N. d. Jonge, D. B. Peckys, G. J. Kremers, and D. W. Piston, “Electron microscopy of whole cells in liquid with nanometer resolution,” Proc. Natl. Acad. Sci. 106(7), 2159–2164 (2009).
[Crossref]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

2008 (1)

M. Fernández-Suárez and A. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008).
[Crossref]

2007 (1)

D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42 - A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning 29(3), 92–101 (2007).
[Crossref]

2006 (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

2004 (1)

S. Thiberge, O. Zik, and E. Moses, “An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy,” Rev. Sci. Instrum. 75(7), 2280–2289 (2004).
[Crossref]

2003 (1)

C. W. E. Van Eijk, “Inorganic scintillators in medical imaging detectors,” Nucl. Instrum. Methods Phys. Res., Sect. A 509(1-3), 17–25 (2003).
[Crossref]

2001 (1)

A. A. Talin, K. A. Dean, and J. E. Jaskie, “Field emission displays: A critical review,” Solid-State Electron. 45(6), 963–976 (2001).
[Crossref]

2000 (1)

Z. Yang, J. H. Lin, M. Z. Su, Y. Tao, and W. Wang, “Photon cascade luminescence of Gd3+ in GdBaB9O16,” J. Alloys Compd. 308(1-2), 94–97 (2000).
[Crossref]

1997 (1)

R. Wegh, H. Donker, A. Meijerink, R. Lamminmäki, and J. Hölsä, “Vacuum-ultraviolet spectroscopy and quantum cutting for Gd3+ in LiYF4,” Phys. Rev. B - Condens. Matter Mater. Phys. 56(21), 13841–13848 (1997).
[Crossref]

1994 (1)

1948 (1)

A. Rose, “Television Pickup Tubes and the Problem of Vision,” Adv. Electron. Electron Phys. 1, 131–166 (1948).
[Crossref]

Aimez, V.

D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42 - A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning 29(3), 92–101 (2007).
[Crossref]

Algar, W. R.

W. R. Algar, K. Susumu, J. B. Delehanty, and I. L. Medintz, “Semiconductor quantum dots in bioanalysis: Crossing the valley of death,” Anal. Chem. 83(23), 8826–8837 (2011).
[Crossref]

Allouche, F.

F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
[Crossref]

Bakalis, E.

L. R. Parent, E. Bakalis, A. Ramírez-Hernández, J. K. Kammeyer, C. Park, J. De Pablo, F. Zerbetto, J. P. Patterson, and N. C. Gianneschi, “Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy,” J. Am. Chem. Soc. 139(47), 17140–17151 (2017).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Baudoin, J. P.

N. Liv, D. S. B. Van Oosten Slingeland, J. P. Baudoin, P. Kruit, D. W. Piston, and J. P. Hoogenboom, “Electron microscopy of living cells during in situ fluorescence microscopy,” ACS Nano 10(1), 265–273 (2016).
[Crossref]

Betzig, E.

Z. Liu, L. D. Lavis, and E. Betzig, “Imaging Live-Cell Dynamics and Structure at the Single-Molecule Level,” Mol. Cell 58(4), 644–659 (2015).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Bischak, C. G.

C. G. Bischak, C. L. Hetherington, Z. Wang, J. T. Precht, D. M. Kaz, D. G. Schlom, and N. S. Ginsberg, “Cathodoluminescence-activated nanoimaging: Noninvasive near-field optical microscopy in an electron microscope,” Nano Lett. 15(5), 3383–3390 (2015).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Cao, C.

K. Zheng, W. Qin, C. Cao, D. Zhao, and L. Wang, “NIR to VUV: Seven-photon upconversion emissions from Gd3+ ions in fluoride nanocrystals,” J. Phys. Chem. Lett. 6(3), 556–560 (2015).
[Crossref]

Chaturvedi, P.

P. Chaturvedi, K. H. Hsu, A. Kumar, K. H. Fung, J. C. Mabon, and N. X. Fang, “Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy,” ACS Nano 3(10), 2965–2974 (2009).
[Crossref]

Chiba, A.

Couture, A. R.

D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42 - A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning 29(3), 92–101 (2007).
[Crossref]

Damiano, J.

E. Kennedy, E. M. Nelson, T. Tanaka, J. Damiano, and G. Timp, “Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopy,” ACS Nano 10(2), 2669–2677 (2016).
[Crossref]

Dao, D. V.

T. K. Nguyen, H. P. Phan, H. Kamble, R. Vadivelu, T. Dinh, A. Iacopi, G. Walker, L. Hold, N. T. Nguyen, and D. V. Dao, “Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications,” ACS Appl. Mater. Interfaces 9(48), 41641–41647 (2017).
[Crossref]

Das, G. K.

B. C. Heng, G. K. Das, X. Zhao, L.-L. Ma, T. T.-Y. Tan, K. W. Ng, and J. S.-C. Loo, “Comparative cytotoxicity evaluation of lanthanide nanomaterials on mouse and human cell lines with metabolic and DNA-quantification assays,” Biointerphases 5(3), FA88–FA97 (2010).
[Crossref]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

De Jonge, N.

D. B. Peckys and N. De Jonge, “Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy,” Nano Lett. 11(4), 1733–1738 (2011).
[Crossref]

De Pablo, J.

L. R. Parent, E. Bakalis, A. Ramírez-Hernández, J. K. Kammeyer, C. Park, J. De Pablo, F. Zerbetto, J. P. Patterson, and N. C. Gianneschi, “Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy,” J. Am. Chem. Soc. 139(47), 17140–17151 (2017).
[Crossref]

Dean, K. A.

A. A. Talin, K. A. Dean, and J. E. Jaskie, “Field emission displays: A critical review,” Solid-State Electron. 45(6), 963–976 (2001).
[Crossref]

Delehanty, J. B.

W. R. Algar, K. Susumu, J. B. Delehanty, and I. L. Medintz, “Semiconductor quantum dots in bioanalysis: Crossing the valley of death,” Anal. Chem. 83(23), 8826–8837 (2011).
[Crossref]

Dinh, T.

T. K. Nguyen, H. P. Phan, H. Kamble, R. Vadivelu, T. Dinh, A. Iacopi, G. Walker, L. Hold, N. T. Nguyen, and D. V. Dao, “Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications,” ACS Appl. Mater. Interfaces 9(48), 41641–41647 (2017).
[Crossref]

Donker, H.

R. Wegh, H. Donker, A. Meijerink, R. Lamminmäki, and J. Hölsä, “Vacuum-ultraviolet spectroscopy and quantum cutting for Gd3+ in LiYF4,” Phys. Rev. B - Condens. Matter Mater. Phys. 56(21), 13841–13848 (1997).
[Crossref]

Drouin, D.

D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42 - A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning 29(3), 92–101 (2007).
[Crossref]

Fang, N. X.

P. Chaturvedi, K. H. Hsu, A. Kumar, K. H. Fung, J. C. Mabon, and N. X. Fang, “Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy,” ACS Nano 3(10), 2965–2974 (2009).
[Crossref]

Feng, W.

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: Advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

Fernández-Suárez, M.

M. Fernández-Suárez and A. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008).
[Crossref]

Fujiwara, J.

W. Inami, J. Fujiwara, F. Masahiro, A. Ono, and Y. Kawata, “Analysis of electron and light scattering in a fluorescent thin film by combination of Monte Carlo simulation and finite-difference time-domain method,” Appl. Phys. Lett. 101(15), 151104 (2012).
[Crossref]

Fukuta, M.

Fung, K. H.

P. Chaturvedi, K. H. Hsu, A. Kumar, K. H. Fung, J. C. Mabon, and N. X. Fang, “Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy,” ACS Nano 3(10), 2965–2974 (2009).
[Crossref]

Furukawa, T.

Gao, Z.

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4:Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B: Lasers Opt. 98(1), 139–147 (2010).
[Crossref]

Gauvin, R.

D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42 - A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning 29(3), 92–101 (2007).
[Crossref]

Gianneschi, N. C.

L. R. Parent, E. Bakalis, A. Ramírez-Hernández, J. K. Kammeyer, C. Park, J. De Pablo, F. Zerbetto, J. P. Patterson, and N. C. Gianneschi, “Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy,” J. Am. Chem. Soc. 139(47), 17140–17151 (2017).
[Crossref]

Ginsberg, N. S.

C. G. Bischak, C. L. Hetherington, Z. Wang, J. T. Precht, D. M. Kaz, D. G. Schlom, and N. S. Ginsberg, “Cathodoluminescence-activated nanoimaging: Noninvasive near-field optical microscopy in an electron microscope,” Nano Lett. 15(5), 3383–3390 (2015).
[Crossref]

Heintzmann, R.

R. Heintzmann and T. Huser, “Super-Resolution Structured Illumination Microscopy,” Chem. Rev. 117(23), 13890–13908 (2017).
[Crossref]

Hell, S. W.

Heng, B. C.

B. C. Heng, G. K. Das, X. Zhao, L.-L. Ma, T. T.-Y. Tan, K. W. Ng, and J. S.-C. Loo, “Comparative cytotoxicity evaluation of lanthanide nanomaterials on mouse and human cell lines with metabolic and DNA-quantification assays,” Biointerphases 5(3), FA88–FA97 (2010).
[Crossref]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Hetherington, C. L.

C. G. Bischak, C. L. Hetherington, Z. Wang, J. T. Precht, D. M. Kaz, D. G. Schlom, and N. S. Ginsberg, “Cathodoluminescence-activated nanoimaging: Noninvasive near-field optical microscopy in an electron microscope,” Nano Lett. 15(5), 3383–3390 (2015).
[Crossref]

Hold, L.

T. K. Nguyen, H. P. Phan, H. Kamble, R. Vadivelu, T. Dinh, A. Iacopi, G. Walker, L. Hold, N. T. Nguyen, and D. V. Dao, “Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications,” ACS Appl. Mater. Interfaces 9(48), 41641–41647 (2017).
[Crossref]

Hölsä, J.

R. Wegh, H. Donker, A. Meijerink, R. Lamminmäki, and J. Hölsä, “Vacuum-ultraviolet spectroscopy and quantum cutting for Gd3+ in LiYF4,” Phys. Rev. B - Condens. Matter Mater. Phys. 56(21), 13841–13848 (1997).
[Crossref]

Hoogenboom, J. P.

N. Liv, D. S. B. Van Oosten Slingeland, J. P. Baudoin, P. Kruit, D. W. Piston, and J. P. Hoogenboom, “Electron microscopy of living cells during in situ fluorescence microscopy,” ACS Nano 10(1), 265–273 (2016).
[Crossref]

Hsu, K. H.

P. Chaturvedi, K. H. Hsu, A. Kumar, K. H. Fung, J. C. Mabon, and N. X. Fang, “Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy,” ACS Nano 3(10), 2965–2974 (2009).
[Crossref]

Huang, Y.

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4:Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B: Lasers Opt. 98(1), 139–147 (2010).
[Crossref]

Huser, T.

R. Heintzmann and T. Huser, “Super-Resolution Structured Illumination Microscopy,” Chem. Rev. 117(23), 13890–13908 (2017).
[Crossref]

Iacopi, A.

T. K. Nguyen, H. P. Phan, H. Kamble, R. Vadivelu, T. Dinh, A. Iacopi, G. Walker, L. Hold, N. T. Nguyen, and D. V. Dao, “Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications,” ACS Appl. Mater. Interfaces 9(48), 41641–41647 (2017).
[Crossref]

Inaguma, Y.

Y. Shimizu, K. Ueda, and Y. Inaguma, “Photoluminescence excitation spectra of lanthanide doped YAlO3 in vacuum ultraviolet region,” Opt. Mater. 66, 327–331 (2017).
[Crossref]

Inami, W.

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Plasmon-Enhanced Autofluorescence Imaging of Organelles in Label-Free Cells by Deep-Ultraviolet Excitation,” Anal. Chem. 88(2), 1407–1411 (2016).
[Crossref]

T. Furukawa, S. Kanamori, M. Fukuta, Y. Nawa, H. Kominami, Y. Nakanishi, A. Sugita, W. Inami, and Y. Kawata, “Fabrication of bright and thin Zn2SiO4 luminescent film for electron beam excitationassisted optical microscope,” Opt. Express 23(14), 18630–18637 (2015).
[Crossref]

A. Miyake, S. Kanamori, Y. Nawa, W. Inami, H. Kominami, Y. Kawata, and Y. Nakanishi, “Formation of ZnO luminescent films on SiN films for light source of high-resolution optical microscope,” Jpn. J. Appl. Phys. 53(3), 034101 (2014).
[Crossref]

W. Inami, J. Fujiwara, F. Masahiro, A. Ono, and Y. Kawata, “Analysis of electron and light scattering in a fluorescent thin film by combination of Monte Carlo simulation and finite-difference time-domain method,” Appl. Phys. Lett. 101(15), 151104 (2012).
[Crossref]

Y. Nawa, W. Inami, A. Chiba, A. Ono, A. Miyakawa, Y. Kawata, S. Lin, and S. Terakawa, “Dynamic and high-resolution live cell imaging by direct electron beam excitation,” Opt. Express 20(5), 5629–5635 (2012).
[Crossref]

W. Inami, K. Nakajima, A. Miyakawa, and Y. Kawata, “Electron beam excitation assisted optical microscope with ultra-high resolution,” Opt. Express 18(12), 12897–12902 (2010).
[Crossref]

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Jamme, F.

F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
[Crossref]

Jaskie, J. E.

A. A. Talin, K. A. Dean, and J. E. Jaskie, “Field emission displays: A critical review,” Solid-State Electron. 45(6), 963–976 (2001).
[Crossref]

Joly, D.

D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42 - A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning 29(3), 92–101 (2007).
[Crossref]

Jonge, N. d.

N. d. Jonge, D. B. Peckys, G. J. Kremers, and D. W. Piston, “Electron microscopy of whole cells in liquid with nanometer resolution,” Proc. Natl. Acad. Sci. 106(7), 2159–2164 (2009).
[Crossref]

Kamble, H.

T. K. Nguyen, H. P. Phan, H. Kamble, R. Vadivelu, T. Dinh, A. Iacopi, G. Walker, L. Hold, N. T. Nguyen, and D. V. Dao, “Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications,” ACS Appl. Mater. Interfaces 9(48), 41641–41647 (2017).
[Crossref]

Kammeyer, J. K.

L. R. Parent, E. Bakalis, A. Ramírez-Hernández, J. K. Kammeyer, C. Park, J. De Pablo, F. Zerbetto, J. P. Patterson, and N. C. Gianneschi, “Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy,” J. Am. Chem. Soc. 139(47), 17140–17151 (2017).
[Crossref]

Kanamori, S.

T. Furukawa, S. Kanamori, M. Fukuta, Y. Nawa, H. Kominami, Y. Nakanishi, A. Sugita, W. Inami, and Y. Kawata, “Fabrication of bright and thin Zn2SiO4 luminescent film for electron beam excitationassisted optical microscope,” Opt. Express 23(14), 18630–18637 (2015).
[Crossref]

A. Miyake, S. Kanamori, Y. Nawa, W. Inami, H. Kominami, Y. Kawata, and Y. Nakanishi, “Formation of ZnO luminescent films on SiN films for light source of high-resolution optical microscope,” Jpn. J. Appl. Phys. 53(3), 034101 (2014).
[Crossref]

Kascakova, S.

F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
[Crossref]

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Kawata, Y.

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Plasmon-Enhanced Autofluorescence Imaging of Organelles in Label-Free Cells by Deep-Ultraviolet Excitation,” Anal. Chem. 88(2), 1407–1411 (2016).
[Crossref]

T. Furukawa, S. Kanamori, M. Fukuta, Y. Nawa, H. Kominami, Y. Nakanishi, A. Sugita, W. Inami, and Y. Kawata, “Fabrication of bright and thin Zn2SiO4 luminescent film for electron beam excitationassisted optical microscope,” Opt. Express 23(14), 18630–18637 (2015).
[Crossref]

A. Miyake, S. Kanamori, Y. Nawa, W. Inami, H. Kominami, Y. Kawata, and Y. Nakanishi, “Formation of ZnO luminescent films on SiN films for light source of high-resolution optical microscope,” Jpn. J. Appl. Phys. 53(3), 034101 (2014).
[Crossref]

W. Inami, J. Fujiwara, F. Masahiro, A. Ono, and Y. Kawata, “Analysis of electron and light scattering in a fluorescent thin film by combination of Monte Carlo simulation and finite-difference time-domain method,” Appl. Phys. Lett. 101(15), 151104 (2012).
[Crossref]

Y. Nawa, W. Inami, A. Chiba, A. Ono, A. Miyakawa, Y. Kawata, S. Lin, and S. Terakawa, “Dynamic and high-resolution live cell imaging by direct electron beam excitation,” Opt. Express 20(5), 5629–5635 (2012).
[Crossref]

W. Inami, K. Nakajima, A. Miyakawa, and Y. Kawata, “Electron beam excitation assisted optical microscope with ultra-high resolution,” Opt. Express 18(12), 12897–12902 (2010).
[Crossref]

Kaz, D. M.

C. G. Bischak, C. L. Hetherington, Z. Wang, J. T. Precht, D. M. Kaz, D. G. Schlom, and N. S. Ginsberg, “Cathodoluminescence-activated nanoimaging: Noninvasive near-field optical microscopy in an electron microscope,” Nano Lett. 15(5), 3383–3390 (2015).
[Crossref]

Kennedy, E.

E. Kennedy, E. M. Nelson, T. Tanaka, J. Damiano, and G. Timp, “Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopy,” ACS Nano 10(2), 2669–2677 (2016).
[Crossref]

Kikawada, M.

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Plasmon-Enhanced Autofluorescence Imaging of Organelles in Label-Free Cells by Deep-Ultraviolet Excitation,” Anal. Chem. 88(2), 1407–1411 (2016).
[Crossref]

Kitamura, S.

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol. 172(2), 191–202 (2010).
[Crossref]

Koizumi, M.

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol. 172(2), 191–202 (2010).
[Crossref]

Kominami, H.

T. Furukawa, S. Kanamori, M. Fukuta, Y. Nawa, H. Kominami, Y. Nakanishi, A. Sugita, W. Inami, and Y. Kawata, “Fabrication of bright and thin Zn2SiO4 luminescent film for electron beam excitationassisted optical microscope,” Opt. Express 23(14), 18630–18637 (2015).
[Crossref]

A. Miyake, S. Kanamori, Y. Nawa, W. Inami, H. Kominami, Y. Kawata, and Y. Nakanishi, “Formation of ZnO luminescent films on SiN films for light source of high-resolution optical microscope,” Jpn. J. Appl. Phys. 53(3), 034101 (2014).
[Crossref]

Kremers, G. J.

N. d. Jonge, D. B. Peckys, G. J. Kremers, and D. W. Piston, “Electron microscopy of whole cells in liquid with nanometer resolution,” Proc. Natl. Acad. Sci. 106(7), 2159–2164 (2009).
[Crossref]

Kruit, P.

N. Liv, D. S. B. Van Oosten Slingeland, J. P. Baudoin, P. Kruit, D. W. Piston, and J. P. Hoogenboom, “Electron microscopy of living cells during in situ fluorescence microscopy,” ACS Nano 10(1), 265–273 (2016).
[Crossref]

Kumar, A.

P. Chaturvedi, K. H. Hsu, A. Kumar, K. H. Fung, J. C. Mabon, and N. X. Fang, “Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy,” ACS Nano 3(10), 2965–2974 (2009).
[Crossref]

Lamminmäki, R.

R. Wegh, H. Donker, A. Meijerink, R. Lamminmäki, and J. Hölsä, “Vacuum-ultraviolet spectroscopy and quantum cutting for Gd3+ in LiYF4,” Phys. Rev. B - Condens. Matter Mater. Phys. 56(21), 13841–13848 (1997).
[Crossref]

Lavis, L. D.

Z. Liu, L. D. Lavis, and E. Betzig, “Imaging Live-Cell Dynamics and Structure at the Single-Molecule Level,” Mol. Cell 58(4), 644–659 (2015).
[Crossref]

Li, F.

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: Advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

Liang, H.

H. Lin, G. Zhang, P. A. Tanner, and H. Liang, “VUV-Vis luminescent properties of BaCaBO3F doped with Ce3+ and Tb3+,” J. Phys. Chem. C 117(24), 12769–12777 (2013).
[Crossref]

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4:Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B: Lasers Opt. 98(1), 139–147 (2010).
[Crossref]

Lin, H.

H. Lin, G. Zhang, P. A. Tanner, and H. Liang, “VUV-Vis luminescent properties of BaCaBO3F doped with Ce3+ and Tb3+,” J. Phys. Chem. C 117(24), 12769–12777 (2013).
[Crossref]

Lin, J. H.

Z. Yang, J. H. Lin, M. Z. Su, Y. Tao, and W. Wang, “Photon cascade luminescence of Gd3+ in GdBaB9O16,” J. Alloys Compd. 308(1-2), 94–97 (2000).
[Crossref]

Lin, S.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Liu, Q.

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: Advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

Liu, Z.

Z. Liu, L. D. Lavis, and E. Betzig, “Imaging Live-Cell Dynamics and Structure at the Single-Molecule Level,” Mol. Cell 58(4), 644–659 (2015).
[Crossref]

Liv, N.

N. Liv, D. S. B. Van Oosten Slingeland, J. P. Baudoin, P. Kruit, D. W. Piston, and J. P. Hoogenboom, “Electron microscopy of living cells during in situ fluorescence microscopy,” ACS Nano 10(1), 265–273 (2016).
[Crossref]

Loo, J. S.-C.

B. C. Heng, G. K. Das, X. Zhao, L.-L. Ma, T. T.-Y. Tan, K. W. Ng, and J. S.-C. Loo, “Comparative cytotoxicity evaluation of lanthanide nanomaterials on mouse and human cell lines with metabolic and DNA-quantification assays,” Biointerphases 5(3), FA88–FA97 (2010).
[Crossref]

Ma, L.-L.

B. C. Heng, G. K. Das, X. Zhao, L.-L. Ma, T. T.-Y. Tan, K. W. Ng, and J. S.-C. Loo, “Comparative cytotoxicity evaluation of lanthanide nanomaterials on mouse and human cell lines with metabolic and DNA-quantification assays,” Biointerphases 5(3), FA88–FA97 (2010).
[Crossref]

Mabon, J. C.

P. Chaturvedi, K. H. Hsu, A. Kumar, K. H. Fung, J. C. Mabon, and N. X. Fang, “Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy,” ACS Nano 3(10), 2965–2974 (2009).
[Crossref]

Maruyama, Y.

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol. 172(2), 191–202 (2010).
[Crossref]

Masahiro, F.

W. Inami, J. Fujiwara, F. Masahiro, A. Ono, and Y. Kawata, “Analysis of electron and light scattering in a fluorescent thin film by combination of Monte Carlo simulation and finite-difference time-domain method,” Appl. Phys. Lett. 101(15), 151104 (2012).
[Crossref]

Medintz, I. L.

W. R. Algar, K. Susumu, J. B. Delehanty, and I. L. Medintz, “Semiconductor quantum dots in bioanalysis: Crossing the valley of death,” Anal. Chem. 83(23), 8826–8837 (2011).
[Crossref]

Meijerink, A.

R. Wegh, H. Donker, A. Meijerink, R. Lamminmäki, and J. Hölsä, “Vacuum-ultraviolet spectroscopy and quantum cutting for Gd3+ in LiYF4,” Phys. Rev. B - Condens. Matter Mater. Phys. 56(21), 13841–13848 (1997).
[Crossref]

Mio, K.

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol. 172(2), 191–202 (2010).
[Crossref]

Miyakawa, A.

Miyake, A.

A. Miyake, S. Kanamori, Y. Nawa, W. Inami, H. Kominami, Y. Kawata, and Y. Nakanishi, “Formation of ZnO luminescent films on SiN films for light source of high-resolution optical microscope,” Jpn. J. Appl. Phys. 53(3), 034101 (2014).
[Crossref]

Moses, E.

S. Thiberge, O. Zik, and E. Moses, “An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy,” Rev. Sci. Instrum. 75(7), 2280–2289 (2004).
[Crossref]

Nakajima, K.

Nakanishi, Y.

T. Furukawa, S. Kanamori, M. Fukuta, Y. Nawa, H. Kominami, Y. Nakanishi, A. Sugita, W. Inami, and Y. Kawata, “Fabrication of bright and thin Zn2SiO4 luminescent film for electron beam excitationassisted optical microscope,” Opt. Express 23(14), 18630–18637 (2015).
[Crossref]

A. Miyake, S. Kanamori, Y. Nawa, W. Inami, H. Kominami, Y. Kawata, and Y. Nakanishi, “Formation of ZnO luminescent films on SiN films for light source of high-resolution optical microscope,” Jpn. J. Appl. Phys. 53(3), 034101 (2014).
[Crossref]

Nawa, Y.

Nelson, E. M.

E. Kennedy, E. M. Nelson, T. Tanaka, J. Damiano, and G. Timp, “Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopy,” ACS Nano 10(2), 2669–2677 (2016).
[Crossref]

Ng, K. W.

B. C. Heng, G. K. Das, X. Zhao, L.-L. Ma, T. T.-Y. Tan, K. W. Ng, and J. S.-C. Loo, “Comparative cytotoxicity evaluation of lanthanide nanomaterials on mouse and human cell lines with metabolic and DNA-quantification assays,” Biointerphases 5(3), FA88–FA97 (2010).
[Crossref]

Nguyen, N. T.

T. K. Nguyen, H. P. Phan, H. Kamble, R. Vadivelu, T. Dinh, A. Iacopi, G. Walker, L. Hold, N. T. Nguyen, and D. V. Dao, “Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications,” ACS Appl. Mater. Interfaces 9(48), 41641–41647 (2017).
[Crossref]

Nguyen, T. K.

T. K. Nguyen, H. P. Phan, H. Kamble, R. Vadivelu, T. Dinh, A. Iacopi, G. Walker, L. Hold, N. T. Nguyen, and D. V. Dao, “Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications,” ACS Appl. Mater. Interfaces 9(48), 41641–41647 (2017).
[Crossref]

Nishiyama, H.

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol. 172(2), 191–202 (2010).
[Crossref]

Ogura, T.

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol. 172(2), 191–202 (2010).
[Crossref]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Ono, A.

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Plasmon-Enhanced Autofluorescence Imaging of Organelles in Label-Free Cells by Deep-Ultraviolet Excitation,” Anal. Chem. 88(2), 1407–1411 (2016).
[Crossref]

W. Inami, J. Fujiwara, F. Masahiro, A. Ono, and Y. Kawata, “Analysis of electron and light scattering in a fluorescent thin film by combination of Monte Carlo simulation and finite-difference time-domain method,” Appl. Phys. Lett. 101(15), 151104 (2012).
[Crossref]

Y. Nawa, W. Inami, A. Chiba, A. Ono, A. Miyakawa, Y. Kawata, S. Lin, and S. Terakawa, “Dynamic and high-resolution live cell imaging by direct electron beam excitation,” Opt. Express 20(5), 5629–5635 (2012).
[Crossref]

Pallu, S.

F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
[Crossref]

Parent, L. R.

L. R. Parent, E. Bakalis, A. Ramírez-Hernández, J. K. Kammeyer, C. Park, J. De Pablo, F. Zerbetto, J. P. Patterson, and N. C. Gianneschi, “Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy,” J. Am. Chem. Soc. 139(47), 17140–17151 (2017).
[Crossref]

Park, C.

L. R. Parent, E. Bakalis, A. Ramírez-Hernández, J. K. Kammeyer, C. Park, J. De Pablo, F. Zerbetto, J. P. Patterson, and N. C. Gianneschi, “Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy,” J. Am. Chem. Soc. 139(47), 17140–17151 (2017).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Patterson, J. P.

L. R. Parent, E. Bakalis, A. Ramírez-Hernández, J. K. Kammeyer, C. Park, J. De Pablo, F. Zerbetto, J. P. Patterson, and N. C. Gianneschi, “Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy,” J. Am. Chem. Soc. 139(47), 17140–17151 (2017).
[Crossref]

Peckys, D. B.

D. B. Peckys and N. De Jonge, “Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy,” Nano Lett. 11(4), 1733–1738 (2011).
[Crossref]

N. d. Jonge, D. B. Peckys, G. J. Kremers, and D. W. Piston, “Electron microscopy of whole cells in liquid with nanometer resolution,” Proc. Natl. Acad. Sci. 106(7), 2159–2164 (2009).
[Crossref]

Phan, H. P.

T. K. Nguyen, H. P. Phan, H. Kamble, R. Vadivelu, T. Dinh, A. Iacopi, G. Walker, L. Hold, N. T. Nguyen, and D. V. Dao, “Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications,” ACS Appl. Mater. Interfaces 9(48), 41641–41647 (2017).
[Crossref]

Piston, D. W.

N. Liv, D. S. B. Van Oosten Slingeland, J. P. Baudoin, P. Kruit, D. W. Piston, and J. P. Hoogenboom, “Electron microscopy of living cells during in situ fluorescence microscopy,” ACS Nano 10(1), 265–273 (2016).
[Crossref]

N. d. Jonge, D. B. Peckys, G. J. Kremers, and D. W. Piston, “Electron microscopy of whole cells in liquid with nanometer resolution,” Proc. Natl. Acad. Sci. 106(7), 2159–2164 (2009).
[Crossref]

Precht, J. T.

C. G. Bischak, C. L. Hetherington, Z. Wang, J. T. Precht, D. M. Kaz, D. G. Schlom, and N. S. Ginsberg, “Cathodoluminescence-activated nanoimaging: Noninvasive near-field optical microscopy in an electron microscope,” Nano Lett. 15(5), 3383–3390 (2015).
[Crossref]

Qin, W.

K. Zheng, W. Qin, C. Cao, D. Zhao, and L. Wang, “NIR to VUV: Seven-photon upconversion emissions from Gd3+ ions in fluoride nanocrystals,” J. Phys. Chem. Lett. 6(3), 556–560 (2015).
[Crossref]

Ramírez-Hernández, A.

L. R. Parent, E. Bakalis, A. Ramírez-Hernández, J. K. Kammeyer, C. Park, J. De Pablo, F. Zerbetto, J. P. Patterson, and N. C. Gianneschi, “Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy,” J. Am. Chem. Soc. 139(47), 17140–17151 (2017).
[Crossref]

Réfrégiers, M.

F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
[Crossref]

Rose, A.

A. Rose, “Television Pickup Tubes and the Problem of Vision,” Adv. Electron. Electron Phys. 1, 131–166 (1948).
[Crossref]

Rouam, V.

F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Sato, C.

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol. 172(2), 191–202 (2010).
[Crossref]

Schlom, D. G.

C. G. Bischak, C. L. Hetherington, Z. Wang, J. T. Precht, D. M. Kaz, D. G. Schlom, and N. S. Ginsberg, “Cathodoluminescence-activated nanoimaging: Noninvasive near-field optical microscopy in an electron microscope,” Nano Lett. 15(5), 3383–3390 (2015).
[Crossref]

Shimizu, Y.

Y. Shimizu, K. Ueda, and Y. Inaguma, “Photoluminescence excitation spectra of lanthanide doped YAlO3 in vacuum ultraviolet region,” Opt. Mater. 66, 327–331 (2017).
[Crossref]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Su, M. Z.

Z. Yang, J. H. Lin, M. Z. Su, Y. Tao, and W. Wang, “Photon cascade luminescence of Gd3+ in GdBaB9O16,” J. Alloys Compd. 308(1-2), 94–97 (2000).
[Crossref]

Su, Q.

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4:Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B: Lasers Opt. 98(1), 139–147 (2010).
[Crossref]

Suga, M.

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol. 172(2), 191–202 (2010).
[Crossref]

Sugita, A.

Sun, Y.

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: Advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

Susumu, K.

W. R. Algar, K. Susumu, J. B. Delehanty, and I. L. Medintz, “Semiconductor quantum dots in bioanalysis: Crossing the valley of death,” Anal. Chem. 83(23), 8826–8837 (2011).
[Crossref]

Talin, A. A.

A. A. Talin, K. A. Dean, and J. E. Jaskie, “Field emission displays: A critical review,” Solid-State Electron. 45(6), 963–976 (2001).
[Crossref]

Tan, T. T.-Y.

B. C. Heng, G. K. Das, X. Zhao, L.-L. Ma, T. T.-Y. Tan, K. W. Ng, and J. S.-C. Loo, “Comparative cytotoxicity evaluation of lanthanide nanomaterials on mouse and human cell lines with metabolic and DNA-quantification assays,” Biointerphases 5(3), FA88–FA97 (2010).
[Crossref]

Tanaka, T.

E. Kennedy, E. M. Nelson, T. Tanaka, J. Damiano, and G. Timp, “Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopy,” ACS Nano 10(2), 2669–2677 (2016).
[Crossref]

Tanner, P. A.

H. Lin, G. Zhang, P. A. Tanner, and H. Liang, “VUV-Vis luminescent properties of BaCaBO3F doped with Ce3+ and Tb3+,” J. Phys. Chem. C 117(24), 12769–12777 (2013).
[Crossref]

Tao, Y.

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4:Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B: Lasers Opt. 98(1), 139–147 (2010).
[Crossref]

Z. Yang, J. H. Lin, M. Z. Su, Y. Tao, and W. Wang, “Photon cascade luminescence of Gd3+ in GdBaB9O16,” J. Alloys Compd. 308(1-2), 94–97 (2000).
[Crossref]

Tastet, X.

D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42 - A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning 29(3), 92–101 (2007).
[Crossref]

Terakawa, S.

Thiberge, S.

S. Thiberge, O. Zik, and E. Moses, “An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy,” Rev. Sci. Instrum. 75(7), 2280–2289 (2004).
[Crossref]

Timp, G.

E. Kennedy, E. M. Nelson, T. Tanaka, J. Damiano, and G. Timp, “Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopy,” ACS Nano 10(2), 2669–2677 (2016).
[Crossref]

Ting, A.

M. Fernández-Suárez and A. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008).
[Crossref]

Ueda, K.

Y. Shimizu, K. Ueda, and Y. Inaguma, “Photoluminescence excitation spectra of lanthanide doped YAlO3 in vacuum ultraviolet region,” Opt. Mater. 66, 327–331 (2017).
[Crossref]

Vadivelu, R.

T. K. Nguyen, H. P. Phan, H. Kamble, R. Vadivelu, T. Dinh, A. Iacopi, G. Walker, L. Hold, N. T. Nguyen, and D. V. Dao, “Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications,” ACS Appl. Mater. Interfaces 9(48), 41641–41647 (2017).
[Crossref]

Van Eijk, C. W. E.

C. W. E. Van Eijk, “Inorganic scintillators in medical imaging detectors,” Nucl. Instrum. Methods Phys. Res., Sect. A 509(1-3), 17–25 (2003).
[Crossref]

Van Oosten Slingeland, D. S. B.

N. Liv, D. S. B. Van Oosten Slingeland, J. P. Baudoin, P. Kruit, D. W. Piston, and J. P. Hoogenboom, “Electron microscopy of living cells during in situ fluorescence microscopy,” ACS Nano 10(1), 265–273 (2016).
[Crossref]

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Villette, S.

F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
[Crossref]

Walker, G.

T. K. Nguyen, H. P. Phan, H. Kamble, R. Vadivelu, T. Dinh, A. Iacopi, G. Walker, L. Hold, N. T. Nguyen, and D. V. Dao, “Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications,” ACS Appl. Mater. Interfaces 9(48), 41641–41647 (2017).
[Crossref]

Wang, J.

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4:Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B: Lasers Opt. 98(1), 139–147 (2010).
[Crossref]

Wang, L.

K. Zheng, W. Qin, C. Cao, D. Zhao, and L. Wang, “NIR to VUV: Seven-photon upconversion emissions from Gd3+ ions in fluoride nanocrystals,” J. Phys. Chem. Lett. 6(3), 556–560 (2015).
[Crossref]

Wang, W.

Z. Yang, J. H. Lin, M. Z. Su, Y. Tao, and W. Wang, “Photon cascade luminescence of Gd3+ in GdBaB9O16,” J. Alloys Compd. 308(1-2), 94–97 (2000).
[Crossref]

Wang, Z.

C. G. Bischak, C. L. Hetherington, Z. Wang, J. T. Precht, D. M. Kaz, D. G. Schlom, and N. S. Ginsberg, “Cathodoluminescence-activated nanoimaging: Noninvasive near-field optical microscopy in an electron microscope,” Nano Lett. 15(5), 3383–3390 (2015).
[Crossref]

Wegh, R.

R. Wegh, H. Donker, A. Meijerink, R. Lamminmäki, and J. Hölsä, “Vacuum-ultraviolet spectroscopy and quantum cutting for Gd3+ in LiYF4,” Phys. Rev. B - Condens. Matter Mater. Phys. 56(21), 13841–13848 (1997).
[Crossref]

Wichmann, J.

Yang, Z.

Z. Yang, J. H. Lin, M. Z. Su, Y. Tao, and W. Wang, “Photon cascade luminescence of Gd3+ in GdBaB9O16,” J. Alloys Compd. 308(1-2), 94–97 (2000).
[Crossref]

Zerbetto, F.

L. R. Parent, E. Bakalis, A. Ramírez-Hernández, J. K. Kammeyer, C. Park, J. De Pablo, F. Zerbetto, J. P. Patterson, and N. C. Gianneschi, “Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy,” J. Am. Chem. Soc. 139(47), 17140–17151 (2017).
[Crossref]

Zhang, G.

H. Lin, G. Zhang, P. A. Tanner, and H. Liang, “VUV-Vis luminescent properties of BaCaBO3F doped with Ce3+ and Tb3+,” J. Phys. Chem. C 117(24), 12769–12777 (2013).
[Crossref]

Zhao, D.

K. Zheng, W. Qin, C. Cao, D. Zhao, and L. Wang, “NIR to VUV: Seven-photon upconversion emissions from Gd3+ ions in fluoride nanocrystals,” J. Phys. Chem. Lett. 6(3), 556–560 (2015).
[Crossref]

Zhao, X.

B. C. Heng, G. K. Das, X. Zhao, L.-L. Ma, T. T.-Y. Tan, K. W. Ng, and J. S.-C. Loo, “Comparative cytotoxicity evaluation of lanthanide nanomaterials on mouse and human cell lines with metabolic and DNA-quantification assays,” Biointerphases 5(3), FA88–FA97 (2010).
[Crossref]

Zheng, K.

K. Zheng, W. Qin, C. Cao, D. Zhao, and L. Wang, “NIR to VUV: Seven-photon upconversion emissions from Gd3+ ions in fluoride nanocrystals,” J. Phys. Chem. Lett. 6(3), 556–560 (2015).
[Crossref]

Zhong, J.

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4:Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B: Lasers Opt. 98(1), 139–147 (2010).
[Crossref]

Zhou, J.

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: Advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4:Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B: Lasers Opt. 98(1), 139–147 (2010).
[Crossref]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Zik, O.

S. Thiberge, O. Zik, and E. Moses, “An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy,” Rev. Sci. Instrum. 75(7), 2280–2289 (2004).
[Crossref]

ACS Appl. Mater. Interfaces (1)

T. K. Nguyen, H. P. Phan, H. Kamble, R. Vadivelu, T. Dinh, A. Iacopi, G. Walker, L. Hold, N. T. Nguyen, and D. V. Dao, “Superior Robust Ultrathin Single-Crystalline Silicon Carbide Membrane as a Versatile Platform for Biological Applications,” ACS Appl. Mater. Interfaces 9(48), 41641–41647 (2017).
[Crossref]

ACS Nano (3)

E. Kennedy, E. M. Nelson, T. Tanaka, J. Damiano, and G. Timp, “Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopy,” ACS Nano 10(2), 2669–2677 (2016).
[Crossref]

P. Chaturvedi, K. H. Hsu, A. Kumar, K. H. Fung, J. C. Mabon, and N. X. Fang, “Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy,” ACS Nano 3(10), 2965–2974 (2009).
[Crossref]

N. Liv, D. S. B. Van Oosten Slingeland, J. P. Baudoin, P. Kruit, D. W. Piston, and J. P. Hoogenboom, “Electron microscopy of living cells during in situ fluorescence microscopy,” ACS Nano 10(1), 265–273 (2016).
[Crossref]

Adv. Electron. Electron Phys. (1)

A. Rose, “Television Pickup Tubes and the Problem of Vision,” Adv. Electron. Electron Phys. 1, 131–166 (1948).
[Crossref]

Anal. Chem. (2)

M. Kikawada, A. Ono, W. Inami, and Y. Kawata, “Plasmon-Enhanced Autofluorescence Imaging of Organelles in Label-Free Cells by Deep-Ultraviolet Excitation,” Anal. Chem. 88(2), 1407–1411 (2016).
[Crossref]

W. R. Algar, K. Susumu, J. B. Delehanty, and I. L. Medintz, “Semiconductor quantum dots in bioanalysis: Crossing the valley of death,” Anal. Chem. 83(23), 8826–8837 (2011).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

J. Zhong, H. Liang, Q. Su, J. Zhou, Y. Huang, Z. Gao, Y. Tao, and J. Wang, “Luminescence properties of NaGd(PO3)4:Eu3+ and energy transfer from Gd3+ to Eu3+,” Appl. Phys. B: Lasers Opt. 98(1), 139–147 (2010).
[Crossref]

Appl. Phys. Lett. (1)

W. Inami, J. Fujiwara, F. Masahiro, A. Ono, and Y. Kawata, “Analysis of electron and light scattering in a fluorescent thin film by combination of Monte Carlo simulation and finite-difference time-domain method,” Appl. Phys. Lett. 101(15), 151104 (2012).
[Crossref]

Biointerphases (1)

B. C. Heng, G. K. Das, X. Zhao, L.-L. Ma, T. T.-Y. Tan, K. W. Ng, and J. S.-C. Loo, “Comparative cytotoxicity evaluation of lanthanide nanomaterials on mouse and human cell lines with metabolic and DNA-quantification assays,” Biointerphases 5(3), FA88–FA97 (2010).
[Crossref]

Biol. Cell (1)

F. Jamme, S. Kascakova, S. Villette, F. Allouche, S. Pallu, V. Rouam, and M. Réfrégiers, “Deep UV autofluorescence microscopy for cell biology and tissue histology,” Biol. Cell 105(7), 277–288 (2013).
[Crossref]

Chem. Rev. (2)

J. Zhou, Q. Liu, W. Feng, Y. Sun, and F. Li, “Upconversion luminescent materials: Advances and applications,” Chem. Rev. 115(1), 395–465 (2015).
[Crossref]

R. Heintzmann and T. Huser, “Super-Resolution Structured Illumination Microscopy,” Chem. Rev. 117(23), 13890–13908 (2017).
[Crossref]

J. Alloys Compd. (1)

Z. Yang, J. H. Lin, M. Z. Su, Y. Tao, and W. Wang, “Photon cascade luminescence of Gd3+ in GdBaB9O16,” J. Alloys Compd. 308(1-2), 94–97 (2000).
[Crossref]

J. Am. Chem. Soc. (1)

L. R. Parent, E. Bakalis, A. Ramírez-Hernández, J. K. Kammeyer, C. Park, J. De Pablo, F. Zerbetto, J. P. Patterson, and N. C. Gianneschi, “Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy,” J. Am. Chem. Soc. 139(47), 17140–17151 (2017).
[Crossref]

J. Phys. Chem. C (1)

H. Lin, G. Zhang, P. A. Tanner, and H. Liang, “VUV-Vis luminescent properties of BaCaBO3F doped with Ce3+ and Tb3+,” J. Phys. Chem. C 117(24), 12769–12777 (2013).
[Crossref]

J. Phys. Chem. Lett. (1)

K. Zheng, W. Qin, C. Cao, D. Zhao, and L. Wang, “NIR to VUV: Seven-photon upconversion emissions from Gd3+ ions in fluoride nanocrystals,” J. Phys. Chem. Lett. 6(3), 556–560 (2015).
[Crossref]

J. Struct. Biol. (1)

H. Nishiyama, M. Suga, T. Ogura, Y. Maruyama, M. Koizumi, K. Mio, S. Kitamura, and C. Sato, “Reprint of: Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film,” J. Struct. Biol. 172(2), 191–202 (2010).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Miyake, S. Kanamori, Y. Nawa, W. Inami, H. Kominami, Y. Kawata, and Y. Nakanishi, “Formation of ZnO luminescent films on SiN films for light source of high-resolution optical microscope,” Jpn. J. Appl. Phys. 53(3), 034101 (2014).
[Crossref]

Mol. Cell (1)

Z. Liu, L. D. Lavis, and E. Betzig, “Imaging Live-Cell Dynamics and Structure at the Single-Molecule Level,” Mol. Cell 58(4), 644–659 (2015).
[Crossref]

Nano Lett. (2)

C. G. Bischak, C. L. Hetherington, Z. Wang, J. T. Precht, D. M. Kaz, D. G. Schlom, and N. S. Ginsberg, “Cathodoluminescence-activated nanoimaging: Noninvasive near-field optical microscopy in an electron microscope,” Nano Lett. 15(5), 3383–3390 (2015).
[Crossref]

D. B. Peckys and N. De Jonge, “Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy,” Nano Lett. 11(4), 1733–1738 (2011).
[Crossref]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref]

Nat. Photonics (1)

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[Crossref]

Nat. Rev. Mol. Cell Biol. (1)

M. Fernández-Suárez and A. Ting, “Fluorescent probes for super-resolution imaging in living cells,” Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. A (1)

C. W. E. Van Eijk, “Inorganic scintillators in medical imaging detectors,” Nucl. Instrum. Methods Phys. Res., Sect. A 509(1-3), 17–25 (2003).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. (1)

Y. Shimizu, K. Ueda, and Y. Inaguma, “Photoluminescence excitation spectra of lanthanide doped YAlO3 in vacuum ultraviolet region,” Opt. Mater. 66, 327–331 (2017).
[Crossref]

Phys. Rev. B - Condens. Matter Mater. Phys. (1)

R. Wegh, H. Donker, A. Meijerink, R. Lamminmäki, and J. Hölsä, “Vacuum-ultraviolet spectroscopy and quantum cutting for Gd3+ in LiYF4,” Phys. Rev. B - Condens. Matter Mater. Phys. 56(21), 13841–13848 (1997).
[Crossref]

Proc. Natl. Acad. Sci. (1)

N. d. Jonge, D. B. Peckys, G. J. Kremers, and D. W. Piston, “Electron microscopy of whole cells in liquid with nanometer resolution,” Proc. Natl. Acad. Sci. 106(7), 2159–2164 (2009).
[Crossref]

Rev. Sci. Instrum. (1)

S. Thiberge, O. Zik, and E. Moses, “An apparatus for imaging liquids, cells, and other wet samples in the scanning electron microscopy,” Rev. Sci. Instrum. 75(7), 2280–2289 (2004).
[Crossref]

Scanning (1)

D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42 - A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning 29(3), 92–101 (2007).
[Crossref]

Science (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref]

Solid-State Electron. (1)

A. A. Talin, K. A. Dean, and J. E. Jaskie, “Field emission displays: A critical review,” Solid-State Electron. 45(6), 963–976 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of an EXA microscope. The inset shows the principle of near-field optical imaging with YAP thin film as a nanoscale optical probe. (b) Energy level diagram of Gd3+ ions with an illustration of the QC processes. (c) Monte Carlo simulation of the energy distribution in a YAP thin film. (d) Simulated CL depth profiles for YAP thin films using an accelerating voltage of 1.5 kV (blue), 3 kV (black), and 5 kV (green). Experimental CL intensities for 30-, 35-, 40-, and 50-nm thin films are indicated in red.
Fig. 2.
Fig. 2. (a) Dependence of CL intensity on accelerating voltage. (b) Micromachined electron-transparent membrane with 9 single-crystal silicone (Si) windows. (c) Opposite side of the Si membrane with deposited YAP thin film. (d) Modified specimen holder for EXA microscope. (e) XRD pattern for a YAP thin film (red), reference pattern of ICDD (green) and simulated pattern (blue). (f) AFM image of the YAP thin film surface.
Fig. 3.
Fig. 3. (a) Schematic of spectroscopic CL measurements. (b) Monochromatic photon emission map. The inset shows the CL intensity distribution. (c) Monochromatic CL image of 100-nm Au NPs.
Fig. 4.
Fig. 4. (a) CL spectra of YAP thin film. (b) PL spectra for the YAP thin film. The inset depicts the lifetime decay. (c) Lifetime measurements of YAP thin film in the nanoscale range. The PL instrument response function (IRF) is illustrated in black.
Fig. 5.
Fig. 5. (a) EXA image of 100-nm Au NPs. The Au NPs are depicted as black spots. (b) Corresponding SE image. The Au NPs are depicted as white spots.
Fig. 6.
Fig. 6. Monte Carlo simulations. A cross-sectional view of energy by position distributions for accelerating voltages of 1.5 kV, 3 kV, and 5 kV. Corresponding simulations of electron scattering and penetration depth in YAP films on Si substrate are illustrated on the right.

Tables (1)

Tables Icon

Table 1. Detection efficiency of PMT in photon-counting mode.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

D=kλ/βcosθ
Ib16/ηsTC2
SNratio=Ik/2eBIk(μA)/B(MHz)
ηdet=Nd/Np=ηAlηSiηΩηα

Metrics