Abstract

Optimization techniques have been indispensable for designing high-performance meta-devices targeted to a wide range of applications. In fact, today optimization is no longer an afterthought and is a fundamental tool for many optical and RF designers. Still, many devices presented in recent literature do not take advantage of optimization techniques. This paper seeks to address this by presenting both an introduction to and a review of several of the most popular techniques currently used for meta-device design. Additionally, emerging techniques like topology optimization and multi-objective optimization and their context to device design are thoroughly discussed. Moreover, attention is given to future directions in meta-device optimization such as surrogate-modeling and deep learning which have the potential to disrupt the fields of optical and radio frequency (RF) inverse-design. Finally, many design examples from the literature are presented and a flow-chart that provides guidance on how best to apply these optimization algorithms to a given problem is provided for the reader.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analytical surrogate model for the aberrations of an arbitrary GRIN lens

John A. Easum, Sawyer D. Campbell, Jogender Nagar, and Douglas H. Werner
Opt. Express 24(16) 17805-17818 (2016)

Cost-Effective Topology Design for HSR Resilient Mesh Networks

Yazan M. Allawi, Dujeong Lee, Kyusang Lee, and June-Koo Kevin Rhee
J. Opt. Commun. Netw. 7(1) 8-20 (2015)

Optimization of photonic crystal structures

Jasmin Smajic, Christian Hafner, and Daniel Erni
J. Opt. Soc. Am. A 21(11) 2223-2232 (2004)

References

  • View by:
  • |
  • |
  • |

  1. D. K. Cheng, “Optimization techniques for antenna arrays,” Proc. IEEE 59(12), 1664–1674 (1971).
    [Crossref]
  2. T. H. Jamieson, Optimization Techniques in Lens Design, Monographs on Applied Optics, No. 5 (American Elsevier Pub. Co, 1971).
  3. J. Raphson, “Analysis aequationum universalis seu ad aequationes algebraicas resolvendas methodus generalis, & expedita, ex nova infinitarum serierum methodo, deducta ac demonstrata: cui annexum est de spatio reali, seu ente infinito conamen mathematico-metaphysicum,” (1697).
  4. I. Newton, The Method of Fluxions and Infinite Series: With its Application to the Geometry of Curve-Lines (London, 1736).
  5. M. Augustine Cauchy, “Méthode générale pour la résolution des systemes d’équations simultanées,” Comp. Rend. Sci. Paris 25, 536–538 (1847).
  6. M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. Res. Natl. Bur. Stand. 49(6), 409 (1952).
    [Crossref]
  7. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963).
    [Crossref]
  8. A. Yabe, Optimization in Lens Design (SPIE Press, 2018).
  9. S. D. Campbell, D. E. Brocker, J. Nagar, and D. H. Werner, “SWaP reduction regimes in achromatic GRIN singlets,” Appl. Opt. 55(13), 3594 (2016).
    [Crossref] [PubMed]
  10. R. A. Flynn, E. F. Fleet, G. Beadie, and J. S. Shirk, “Achromatic GRIN singlet lens design,” Opt. Express 21(4), 4970–4978 (2013).
    [Crossref] [PubMed]
  11. J. Nagar, S. D. Campbell, and D. H. Werner, “Apochromatic singlets enabled by metasurface-augmented GRIN lenses,” Optica 5(2), 99–102 (2018).
    [Crossref]
  12. L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
    [Crossref] [PubMed]
  13. E. D. Huber, “Extrapolated least-squares optimization in optical design,” J. Opt. Soc. Am. A 2(4), 544–554 (1985).
    [Crossref]
  14. X. Cheng, Y. Wang, Q. Hao, and J. Sasian, “Automatic element addition and deletion in lens optimization,” Appl. Opt. 42(7), 1309–1317 (2003).
    [Crossref] [PubMed]
  15. L. Li, Q.-H. Wang, X.-Q. Xu, and D.-H. Li, “Two-step method for lens system design,” Opt. Express 18(12), 13285–13300 (2010).
    [Crossref] [PubMed]
  16. A. Massa, G. Oliveri, P. Rocca, and F. Viani, “System-by-design: A new paradigm for handling design complexity,” in The 8th European Conference on Antennas and Propagation (EuCAP 2014) (IEEE, 2014), pp. 1180–1183.
    [Crossref]
  17. J. H. Holland, “Genetic algorithms,” Sci. Am. 267(1), 66–72 (1992).
    [Crossref]
  18. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International Conference on Neural Networks (IEEE, 1995), 4, pp. 1942–1948.
    [Crossref]
  19. R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
    [Crossref]
  20. P. Rocca, G. Oliveri, and A. Massa, “Differential Evolution as Applied to Electromagnetics,” IEEE Antennas Propag. Mag. 53(1), 38–49 (2011).
    [Crossref]
  21. N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES),” Evol. Comput. 11(1), 1–18 (2003).
    [Crossref] [PubMed]
  22. Genetic and Evolutionary Computation Conference, International Conference on Genetic Algorithms, and Genetic and Evolutionary Computation Conference, GECCO 2018, the Genetic and Evolutionary Computation Conference Companium [a Recombination of the 27th International Conference on Genetic Algorithms (ICGA) and the 23rd Annual Genetic Programming Conference (GP)], July 15th - 19th 2018, Kyoto, Japan (Association for Computing Machinery, 2018).
  23. J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).
    [Crossref]
  24. K. Deb, “Multi-objective optimization,” in Search Methodologies (Springer US, 2014), pp. 403–449.
  25. D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Comput. 1(1), 67–82 (1997).
    [Crossref]
  26. J.-A. Désidéri, “Multiple-gradient descent algorithm for multiobjective optimization,” C. R. Math. 350(5), 313–318 (2012).
    [Crossref]
  27. J. A. Easum, J. Nagar, P. L. Werner, and D. H. Werner, “Efficient multi-objective antenna optimization with tolerance analysis through the use of surrogate models,” IEEE Trans. Antenn. Propag. 66(12), 6706–6715 (2018).
    [Crossref]
  28. J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, 1st MIT Press ed, Complex Adaptive Systems (MIT Press, 1992).
  29. J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
    [Crossref] [PubMed]
  30. C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
    [Crossref] [PubMed]
  31. T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
    [Crossref] [PubMed]
  32. S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
    [Crossref]
  33. S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive genetic algorithm for optical metasurfaces design,” Sci. Rep. 8(1), 11040 (2018).
    [Crossref] [PubMed]
  34. “Creative Commons — Attribution 4.0 International — CC BY 4.0,” https://creativecommons.org/licenses/by/4.0/ .
  35. R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics (IEEE Press : Wiley-Interscience, 2007).
  36. S. Chakravarty, R. Mittra, and N. R. Williams, “Application of a microgenetic algorithm (MGA) to the design of broadband microwave absorbers using multiple frequency selective surface screens buried in dielectrics,” IEEE Trans. Antenn. Propag. 50(3), 284–296 (2002).
    [Crossref]
  37. M. A. Gingrich and D. H. Werner, “Synthesis of low/zero index of refraction metamaterials from frequency selective surfaces using genetic algorithms,” Electron. Lett. 41(23), 1266–1267 (2005).
    [Crossref]
  38. P. Y. Chen, C. H. Chen, H. Wang, J. H. Tsai, and W. X. Ni, “Synthesis design of artificial magnetic metamaterials using a genetic algorithm,” Opt. Express 16(17), 12806–12818 (2008).
    [Crossref] [PubMed]
  39. J. A. Bossard, C. P. Scarborough, Q. Wu, S. D. Campbell, D. H. Werner, P. L. Werner, S. Griffiths, and M. Ketner, “Mitigating field enhancement in metasurfaces and metamaterials for high-power microwave applications,” IEEE Trans. Antenn. Propag. 64(12), 5309–5319 (2016).
    [Crossref]
  40. K. Chen, L. Cui, Y. Feng, J. Zhao, T. Jiang, and B. Zhu, “Coding metasurface for broadband microwave scattering reduction with optical transparency,” Opt. Express 25(5), 5571–5579 (2017).
    [Crossref] [PubMed]
  41. L. R. Ji-Di, X. Y. Cao, Y. Tang, S. M. Wang, Y. Zhao, and X. W. Zhu, “A new coding metasurface for wideband RCS reduction,” Wuxiandian Gongcheng 27(2), 394–401 (2018).
    [Crossref]
  42. T. Han, X.-Y. Cao, J. Gao, Y.-L. Zhao, and Y. Zhao, “A coding metasurface with properties of absorption and diffusion for RCS reduction,” Prog. Electromagn. Res. C 75, 181–191 (2017).
    [Crossref]
  43. D. Z. Zhu, P. L. Werner, and D. H. Werner, “Design and optimization of 3-D frequency-selective surfaces based on a multiobjective lazy ant colony optimization algorithm,” IEEE Trans. Antenn. Propag. 65(12), 7137–7149 (2017).
    [Crossref]
  44. A. Lewis, G. Weis, M. Randall, A. Galehdar, and D. Thiel, “Optimising efficiency and gain of small meander line RFID antennas using ant colony system,” in 2009 IEEE Congress on Evolutionary Computation (2009), pp. 1486–1492.
    [Crossref]
  45. K. R. Mahmoud, M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, “Super directive Yagi–Uda nanoantennas with an ellipsoid reflector for optimal radiation emission,” J. Opt. Soc. Am. B 34(10), 2041–2049 (2017).
    [Crossref]
  46. J. R. Ong, H. S. Chu, V. H. Chen, A. Y. Zhu, and P. Genevet, “Freestanding dielectric nanohole array metasurface for mid-infrared wavelength applications,” Opt. Lett. 42(13), 2639–2642 (2017).
    [Crossref] [PubMed]
  47. P. E. Sieber and D. H. Werner, “Infrared broadband quarter-wave and half-wave plates synthesized from anisotropic Bézier metasurfaces,” Opt. Express 22(26), 32371–32383 (2014).
    [Crossref] [PubMed]
  48. S. H. Martin, I. Martinez, J. P. Turpin, D. H. Werner, E. Lier, and M. G. Bray, “The synthesis of wide- and multi-bandgap electromagnetic surfaces with finite size and nonuniform capacitive loading,” IEEE Trans. Microw. Theory Tech. 62(9), 1962–1972 (2014).
    [Crossref]
  49. S. D. Campbell, J. Nagar, and D. H. Werner, “Multi-element, multi-frequency lens transformations enabled by optical wavefront matching,” Opt. Express 25(15), 17258–17270 (2017).
    [Crossref] [PubMed]
  50. X.-S. Yang, Nature-Inspired Metaheuristic Algorithms (Luniver Press, 2008).
  51. D. H. Werner, J. A. Bossard, Z. Bayraktar, Z. H. Jiang, M. D. Gregory, and P. L. Werner, “Nature inspired optimization techniques for metamaterial design,” in Numerical Methods for Metamaterial Design, K. Diest, ed., Topics in Applied Physics (Springer Netherlands, 2013), pp. 97–146.
  52. D. Karaboga and B. Akay, “A comparative study of artificial bee colony algorithm,” Appl. Math. Comput. 214(1), 108–132 (2009).
    [Crossref]
  53. X.-S. Yang, “A new metaheuristic bat-inspired algorithm,” in Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), J. R. González, D. A. Pelta, C. Cruz, G. Terrazas, and N. Krasnogor, eds., Studies in Computational Intelligence (Springer Berlin Heidelberg, 2010), pp. 65–74.
  54. J. Kennedy, “Swarm intelligence,” in Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies, A. Y. Zomaya, ed. (Springer US, 2006), pp. 187–219.
  55. M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Trans. Syst. Man Cybern. B Cybern. 26(1), 29–41 (1996).
    [Crossref] [PubMed]
  56. E. L. Lawler, ed., The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, Wiley-Interscience Series in Discrete Mathematics (Wiley, 1985).
  57. D. Charbonneau, C. Poff, H. Nguyen, M. C. Shin, K. Kierstead, and A. Dornhaus, “Who are the “lazy” ants? The function of inactivity in social insects and a possible role of constraint: inactive ants are corpulent and may be young and/or selfish,” Integr. Comp. Biol. 57(3), 649–667 (2017).
    [Crossref] [PubMed]
  58. D. Z. Zhu, M. D. Gregoy, P. L. Werner, and D. H. Werner, “Fabrication and characterization of multi-band polarization independent 3D printed frequency selective structures with ultra-wide fields of view,” IEEE Trans. Antenn. Propag. 66(11), 6096–6105 (2018).
    [Crossref]
  59. S. D. Campbell, D. Z. Zhu, J. Nagar, R. P. Jenkins, J. A. Easum, D. H. Werner, and P. L. Werner, “Inverse design of engineered materials for extreme optical devices,” in 2018 International Applied Computational Electromagnetics Society Symposium (ACES) (IEEE, 2018), pp. 1–2.
    [Crossref]
  60. J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
    [Crossref]
  61. D. W. Boeringer and D. H. Werner, “Particle swarm optimization versus genetic algorithms for phased array synthesis,” IEEE Trans. Antenn. Propag. 52(3), 771–779 (2004).
    [Crossref]
  62. S. Cui and D. S. Weile, “Application of a parallel particle swarm optimization scheme to the design of electromagnetic absorbers,” IEEE Trans. Antenn. Propag. 53(11), 3616–3624 (2005).
    [Crossref]
  63. N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations,” IEEE Trans. Antenn. Propag. 55(3), 556–567 (2007).
    [Crossref]
  64. K. Deb and R. B. Agrawal, “Simulated Binary Crossover for Continuous Search Space,” Complex Syst. 9(2), 115–148 (1995).
  65. A. V. Kildishev, U. K. Chettiar, Z. Liu, V. M. Shalaev, D.-H. Kwon, Z. Bayraktar, and D. H. Werner, “Stochastic optimization of low-loss optical negative-index metamaterial,” J. Opt. Soc. Am. B 24(10), A34–A39 (2007).
    [Crossref]
  66. Z. Bayraktar, M. Komurcu, J. A. Bossard, and D. H. Werner, “The wind driven optimization technique and its application in electromagnetics,” IEEE Trans. Antenn. Propag. 61(5), 2745–2757 (2013).
    [Crossref]
  67. J. J. Grefenstette, “Optimization of control parameters for genetic algorithms,” IEEE Trans. Syst. Man Cybern. 16(1), 122–128 (1986).
    [Crossref]
  68. A. El-Gallad, M. El-Hawary, A. Sallam, and A. Kalas, “Enhancing the particle swarm optimizer via proper parameters selection,” in IEEE CCECE2002. Canadian Conference on Electrical and Computer Engineering. Conference Proceedings (Cat. No.02CH37373)2, 792–797 (2002).
    [Crossref]
  69. C. Li, S. Yang, and T. T. Nguyen, “A self-learning particle swarm optimizer for global optimization problems,” IEEE Trans. Syst. Man Cybern. B Cybern. 42(3), 627–646 (2012).
    [Crossref] [PubMed]
  70. G. Xu, “An adaptive parameter tuning of particle swarm optimization algorithm,” Appl. Math. Comput. 219(9), 4560–4569 (2013).
    [Crossref]
  71. M. D. Gregory, Z. Bayraktar, and D. H. Werner, “Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,” IEEE Trans. Antenn. Propag. 59(4), 1275–1285 (2011).
    [Crossref]
  72. M. D. Gregory, S. V. Martin, and D. H. Werner, “Improved electromagnetics optimization: the covariance matrix adaptation evolutionary strategy,” IEEE Antennas Propag. Mag. 57(3), 48–59 (2015).
    [Crossref]
  73. S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260(2), 716–722 (2006).
    [Crossref]
  74. P. Petropoulos and X. Yang, “Nonlinear sculpturing of optical spectra,” in 2012 14th International Conference on Transparent Optical Networks (ICTON) (2012), pp. 1–4.
    [Crossref]
  75. S. Thibault, C. Gagné, J. Beaulieu, and M. Parizeau, “Evolutionary algorithms applied to lens design: case study and analysis,” in Optical Design and Engineering II (International Society for Optics and Photonics 5962(9), 596209 (2005).
  76. J. Nagar, D. E. Brocker, S. D. Campbell, J. A. Easum, and D. H. Werner, “Modularization of gradient-index optical design using wavefront matching enabled optimization,” Opt. Express 24(9), 9359–9368 (2016).
    [Crossref] [PubMed]
  77. D. E. Brocker, J. P. Turpin, P. L. Werner, and D. H. Werner, “Optimization of gradient index lenses using quasi-conformal contour transformations,” IEEE Antennas Wirel. Propag. Lett. 13, 1787–1791 (2014).
    [Crossref]
  78. B. Huang, Q. Cheng, G. Y. Song, and T. J. Cui, “Design of acoustic metamaterials using the covariance matrix adaptation evolutionary strategy,” Appl. Phys. Express 10(3), 037301 (2017).
    [Crossref]
  79. G. Fujii, Y. Akimoto, and M. Takahashi, “Exploring optimal topology of thermal cloaks by CMA-ES,” Appl. Phys. Lett. 112(6), 061108 (2018).
    [Crossref]
  80. C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21(18), 21693–21701 (2013).
    [Crossref] [PubMed]
  81. D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17(6), 3752–3757 (2017).
    [Crossref] [PubMed]
  82. J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21(11), 13351–13367 (2013).
    [Crossref] [PubMed]
  83. S. Boyd, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3(1), 1–122 (2010).
    [Crossref]
  84. D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
    [Crossref]
  85. F. Wang, J. S. Jensen, and O. Sigmund, “Robust topology optimization of photonic crystal waveguides with tailored dispersion properties,” J. Opt. Soc. Am. B 28(3), 387 (2011).
    [Crossref]
  86. J. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7(1), 12228 (2017).
    [Crossref] [PubMed]
  87. Z. Lin, B. Groever, F. Capasso, A. W. Rodriguez, and M. Lončar, “Topology optimized multi-layered meta-optics,” Phys. Rev. Appl. 9(4), 044030 (2018).
    [Crossref]
  88. T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
    [Crossref]
  89. P. Camayd-Muñoz and A. Faraon, “Scaling laws for inverse-designed metadevices,” in Conference on Lasers and Electro-Optics (OSA, 2018), p. FF3C.7.
  90. F. Callewaert, V. Velev, P. Kumar, A. V. Sahakian, and K. Aydin, “Inverse-designed broadband all-dielectric electromagnetic metadevices,” Sci. Rep. 8(1), 1358 (2018).
    [Crossref] [PubMed]
  91. Y. Censor, “Pareto optimality in multiobjective problems,” Appl. Math. Optim. 4(1), 41–59 (1977).
    [Crossref]
  92. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, Paperback edition (Wiley, 2008).
  93. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
    [Crossref]
  94. C. Igel, N. Hansen, and S. Roth, “Covariance matrix adaptation for multi-objective optimization,” Evol. Comput. 15(1), 1–28 (2007).
    [Crossref] [PubMed]
  95. J. E. Alvarez-Benitez, R. M. Everson, and J. E. Fieldsend, “A MOPSO algorithm based exclusively on Pareto dominance concepts,” in Evolutionary Multi-Criterion Optimization, C. A. Coello Coello, A. Hernández Aguirre, and E. Zitzler, eds. (Springer Berlin Heidelberg, 2005), 3410, pp. 459–473.
  96. J. Fliege, L. M. G. Drummond, and B. F. Svaiter, “Newton’s Method for Multiobjective Optimization,” SIAM J. Optim. 20(2), 602–626 (2009).
    [Crossref]
  97. P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2016).
    [Crossref] [PubMed]
  98. J. Nagar, S. D. Campbell, Q. Ren, J. A. Easum, R. P. Jenkins, and D. H. Werner, “Multiobjective optimization-aided metamaterials-by-design with application to highly directive nanodevices,” IEEE JMMCT 2, 147–158 (2017).
    [Crossref]
  99. D. Gagnon, J. Dumont, and L. J. Dubé, “Multiobjective optimization in integrated photonics design,” Opt. Lett. 38(13), 2181–2184 (2013).
    [Crossref] [PubMed]
  100. S. K. Goudos and J. N. Sahalos, “Microwave absorber optimal design using multi-objective particle swarm optimization,” Microw. Opt. Technol. Lett. 48(8), 1553–1558 (2006).
    [Crossref]
  101. D. Hadka and P. Reed, “Borg: an auto-adaptive many-objective evolutionary computing framework,” Evol. Comput. 21(2), 231–259 (2013).
    [Crossref] [PubMed]
  102. S. M. Mirjalili, S. Mirjalili, and A. Lewis, “A novel multi-objective optimization framework for designing photonic crystal waveguides,” IEEE Photonics Technol. Lett. 26(2), 146–149 (2014).
    [Crossref]
  103. A.-K. S. O. Hassan, A. S. Etman, and E. A. Soliman, “Optimization of a novel nano antenna with two radiation modes using Kriging surrogate models,” IEEE Photonics J. 10(4), 1–17 (2018).
    [Crossref]
  104. S. D. Campbell, J. Nagar, J. A. Easum, D. H. Werner, and P. L. Werner, “Surrogate-assisted transformation optics inspired GRIN lens design and optimization,” in 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES) (IEEE, 2017), pp. 1–2.
    [Crossref]
  105. P. J. Bradley, “Quasi-Newton model-trust region approach to surrogate-based optimisation of planar metamaterial structures,” Prog. Electromagn. Res. B 47, 1–17 (2013).
    [Crossref]
  106. H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12(3), 1683–1689 (2012).
    [Crossref] [PubMed]
  107. M. Kim, A. M. H. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients,” Phys. Rev. X 4(4), 041042 (2014).
    [Crossref]
  108. A. Massa, G. Oliveri, M. Salucci, N. Anselmi, and P. Rocca, “Learning-by-examples techniques as applied to electromagnetics,” J Electromagnet. Wave. 32(4), 516–541 (2018).
  109. C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn. 20(3), 273–297 (1995).
    [Crossref]
  110. M. A. Oliver and R. Webster, “Kriging: a method of interpolation for geographical information systems,” Int. J. Geogr. Inf. Sci. 4(3), 313–332 (1990).
    [Crossref]
  111. S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
    [Crossref]
  112. K.-Y. Kim and J. Jung, “Multiobjective optimization for a plasmonic nanoslit array sensor using Kriging models,” Appl. Opt. 56(21), 5838–5843 (2017).
    [Crossref] [PubMed]
  113. J. A. Easum, S. D. Campbell, J. Nagar, and D. H. Werner, “Analytical surrogate model for the aberrations of an arbitrary GRIN lens,” Opt. Express 24(16), 17805–17818 (2016).
    [Crossref] [PubMed]
  114. G. Oliveri, L. Tenuti, E. Bekele, M. Carlin, and A. Massa, “An SbD-QCTO approach to the synthesis of isotropic metamaterial lenses,” IEEE Antennas Wirel. Propag. Lett. 13, 1783–1786 (2014).
    [Crossref]
  115. “Creative Commons — Attribution 3.0 Unported — CC BY 3.0,” https://creativecommons.org/licenses/by/3.0/ .
  116. C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse design of metal nanoparticles’ morphology,” ACS Photonics 3(1), 68–78 (2016).
    [Crossref]
  117. S. Ogurtsov and S. Koziel, “Fast surrogate-assisted simulation-driven optimisation of add-drop resonators for integrated photonic circuits,” IET Microw. Antennas Propag. 9(7), 672–675 (2015).
    [Crossref]
  118. A. Bekasiewicz and S. Koziel, “Surrogate-assisted design optimization of photonic directional couplers: optimization of photonic couplers,” Int. J. Numer. Model. 30(3–4), e2088 (2017).
    [Crossref]
  119. A. I. J. Forrester, A. Sóbester, and A. J. Keane, “Multi-fidelity optimization via surrogate modelling,” Proc. Math. Phys. Eng. Sci. 463(2088), 3251–3269 (2007).
    [Crossref]
  120. S. Koziel, A. Bekasiewicz, I. Couckuyt, and T. Dhaene, “Efficient multi-objective simulation-driven antenna design using co-Kriging,” IEEE Trans. Antenn. Propag. 62(11), 5900–5905 (2014).
    [Crossref]
  121. S. Koziel and A. Bekasiewicz, “Expedited geometry scaling of compact microwave passives by means of inverse surrogate modeling‎,” IEEE Trans. Microw. Theory Tech. 63(12), 4019–4026 (2015).
    [Crossref]
  122. S. Koziel and J. W. Bandler, “Reliable microwave modeling by means of variable-fidelity response features‎,” IEEE Trans. Microw. Theory Tech. 63(12), 4247–4254 (2015).
    [Crossref]
  123. S. Koziel and S. Ogurtsov, “Rapid design closure of linear microstrip antenna array apertures using response features,” IEEE Antennas Wirel. Propag. Lett. 17(4), 645–648 (2018).
    [Crossref]
  124. S. Koziel and S. D. Unnsteinsson, “Expedited design closure of antennas by means of trust-region-based adaptive response scaling,” IEEE Antennas Wirel. Propag. Lett. 17(6), 1099–1103 (2018).
    [Crossref]
  125. L. Manica, N. Anselmi, P. Rocca, and A. Massa, “Robust mask-constrained linear array synthesis through aninterval-based particle SWARM optimisation,” IET Microw. Antennas Propag. 7(12), 976–984 (2013).
    [Crossref]
  126. P. Rocca, N. Anselmi, and A. Massa, “Optimal synthesis of robust beamformer weights exploiting interval analysis and convex optimization,” IEEE Trans. Evol. Comput. 62(7), 3603–3612 (2014).
  127. M. Salucci and T. Moriyama, “Robust antenna design through a hybrid inversion strategy combining interval analysis and nature-inspired optimization,” J. Phys. Conf. Ser. 904(1), 012007 (2017).
    [Crossref]
  128. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
    [Crossref] [PubMed]
  129. J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), r4206 (2018).
    [Crossref] [PubMed]
  130. S. Inampudi and H. Mosallaei, “Neural network based design of metagratings,” Appl. Phys. Lett. 112(24), 241102 (2018).
    [Crossref]
  131. D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).
    [Crossref]
  132. W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
    [Crossref] [PubMed]
  133. “Creative Commons — Attribution-NonCommercial 4.0 International — CC BY-NC 4.0,” https://creativecommons.org/licenses/by-nc/4.0/ .

2018 (17)

J. A. Easum, J. Nagar, P. L. Werner, and D. H. Werner, “Efficient multi-objective antenna optimization with tolerance analysis through the use of surrogate models,” IEEE Trans. Antenn. Propag. 66(12), 6706–6715 (2018).
[Crossref]

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive genetic algorithm for optical metasurfaces design,” Sci. Rep. 8(1), 11040 (2018).
[Crossref] [PubMed]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

L. R. Ji-Di, X. Y. Cao, Y. Tang, S. M. Wang, Y. Zhao, and X. W. Zhu, “A new coding metasurface for wideband RCS reduction,” Wuxiandian Gongcheng 27(2), 394–401 (2018).
[Crossref]

D. Z. Zhu, M. D. Gregoy, P. L. Werner, and D. H. Werner, “Fabrication and characterization of multi-band polarization independent 3D printed frequency selective structures with ultra-wide fields of view,” IEEE Trans. Antenn. Propag. 66(11), 6096–6105 (2018).
[Crossref]

G. Fujii, Y. Akimoto, and M. Takahashi, “Exploring optimal topology of thermal cloaks by CMA-ES,” Appl. Phys. Lett. 112(6), 061108 (2018).
[Crossref]

Z. Lin, B. Groever, F. Capasso, A. W. Rodriguez, and M. Lončar, “Topology optimized multi-layered meta-optics,” Phys. Rev. Appl. 9(4), 044030 (2018).
[Crossref]

F. Callewaert, V. Velev, P. Kumar, A. V. Sahakian, and K. Aydin, “Inverse-designed broadband all-dielectric electromagnetic metadevices,” Sci. Rep. 8(1), 1358 (2018).
[Crossref] [PubMed]

S. Koziel and S. Ogurtsov, “Rapid design closure of linear microstrip antenna array apertures using response features,” IEEE Antennas Wirel. Propag. Lett. 17(4), 645–648 (2018).
[Crossref]

S. Koziel and S. D. Unnsteinsson, “Expedited design closure of antennas by means of trust-region-based adaptive response scaling,” IEEE Antennas Wirel. Propag. Lett. 17(6), 1099–1103 (2018).
[Crossref]

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), r4206 (2018).
[Crossref] [PubMed]

S. Inampudi and H. Mosallaei, “Neural network based design of metagratings,” Appl. Phys. Lett. 112(24), 241102 (2018).
[Crossref]

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref] [PubMed]

A.-K. S. O. Hassan, A. S. Etman, and E. A. Soliman, “Optimization of a novel nano antenna with two radiation modes using Kriging surrogate models,” IEEE Photonics J. 10(4), 1–17 (2018).
[Crossref]

A. Massa, G. Oliveri, M. Salucci, N. Anselmi, and P. Rocca, “Learning-by-examples techniques as applied to electromagnetics,” J Electromagnet. Wave. 32(4), 516–541 (2018).

J. Nagar, S. D. Campbell, and D. H. Werner, “Apochromatic singlets enabled by metasurface-augmented GRIN lenses,” Optica 5(2), 99–102 (2018).
[Crossref]

2017 (15)

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
[Crossref]

K. Chen, L. Cui, Y. Feng, J. Zhao, T. Jiang, and B. Zhu, “Coding metasurface for broadband microwave scattering reduction with optical transparency,” Opt. Express 25(5), 5571–5579 (2017).
[Crossref] [PubMed]

J. R. Ong, H. S. Chu, V. H. Chen, A. Y. Zhu, and P. Genevet, “Freestanding dielectric nanohole array metasurface for mid-infrared wavelength applications,” Opt. Lett. 42(13), 2639–2642 (2017).
[Crossref] [PubMed]

K.-Y. Kim and J. Jung, “Multiobjective optimization for a plasmonic nanoslit array sensor using Kriging models,” Appl. Opt. 56(21), 5838–5843 (2017).
[Crossref] [PubMed]

S. D. Campbell, J. Nagar, and D. H. Werner, “Multi-element, multi-frequency lens transformations enabled by optical wavefront matching,” Opt. Express 25(15), 17258–17270 (2017).
[Crossref] [PubMed]

K. R. Mahmoud, M. Hussein, M. F. O. Hameed, and S. S. A. Obayya, “Super directive Yagi–Uda nanoantennas with an ellipsoid reflector for optimal radiation emission,” J. Opt. Soc. Am. B 34(10), 2041–2049 (2017).
[Crossref]

M. Salucci and T. Moriyama, “Robust antenna design through a hybrid inversion strategy combining interval analysis and nature-inspired optimization,” J. Phys. Conf. Ser. 904(1), 012007 (2017).
[Crossref]

J. Nagar, S. D. Campbell, Q. Ren, J. A. Easum, R. P. Jenkins, and D. H. Werner, “Multiobjective optimization-aided metamaterials-by-design with application to highly directive nanodevices,” IEEE JMMCT 2, 147–158 (2017).
[Crossref]

A. Bekasiewicz and S. Koziel, “Surrogate-assisted design optimization of photonic directional couplers: optimization of photonic couplers,” Int. J. Numer. Model. 30(3–4), e2088 (2017).
[Crossref]

J. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7(1), 12228 (2017).
[Crossref] [PubMed]

B. Huang, Q. Cheng, G. Y. Song, and T. J. Cui, “Design of acoustic metamaterials using the covariance matrix adaptation evolutionary strategy,” Appl. Phys. Express 10(3), 037301 (2017).
[Crossref]

D. Charbonneau, C. Poff, H. Nguyen, M. C. Shin, K. Kierstead, and A. Dornhaus, “Who are the “lazy” ants? The function of inactivity in social insects and a possible role of constraint: inactive ants are corpulent and may be young and/or selfish,” Integr. Comp. Biol. 57(3), 649–667 (2017).
[Crossref] [PubMed]

T. Han, X.-Y. Cao, J. Gao, Y.-L. Zhao, and Y. Zhao, “A coding metasurface with properties of absorption and diffusion for RCS reduction,” Prog. Electromagn. Res. C 75, 181–191 (2017).
[Crossref]

D. Z. Zhu, P. L. Werner, and D. H. Werner, “Design and optimization of 3-D frequency-selective surfaces based on a multiobjective lazy ant colony optimization algorithm,” IEEE Trans. Antenn. Propag. 65(12), 7137–7149 (2017).
[Crossref]

2016 (9)

J. A. Bossard, C. P. Scarborough, Q. Wu, S. D. Campbell, D. H. Werner, P. L. Werner, S. Griffiths, and M. Ketner, “Mitigating field enhancement in metasurfaces and metamaterials for high-power microwave applications,” IEEE Trans. Antenn. Propag. 64(12), 5309–5319 (2016).
[Crossref]

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse design of metal nanoparticles’ morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2016).
[Crossref] [PubMed]

J. Nagar, D. E. Brocker, S. D. Campbell, J. A. Easum, and D. H. Werner, “Modularization of gradient-index optical design using wavefront matching enabled optimization,” Opt. Express 24(9), 9359–9368 (2016).
[Crossref] [PubMed]

S. D. Campbell, D. E. Brocker, J. Nagar, and D. H. Werner, “SWaP reduction regimes in achromatic GRIN singlets,” Appl. Opt. 55(13), 3594 (2016).
[Crossref] [PubMed]

J. A. Easum, S. D. Campbell, J. Nagar, and D. H. Werner, “Analytical surrogate model for the aberrations of an arbitrary GRIN lens,” Opt. Express 24(16), 17805–17818 (2016).
[Crossref] [PubMed]

S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
[Crossref]

2015 (5)

S. Ogurtsov and S. Koziel, “Fast surrogate-assisted simulation-driven optimisation of add-drop resonators for integrated photonic circuits,” IET Microw. Antennas Propag. 9(7), 672–675 (2015).
[Crossref]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
[Crossref] [PubMed]

S. Koziel and A. Bekasiewicz, “Expedited geometry scaling of compact microwave passives by means of inverse surrogate modeling‎,” IEEE Trans. Microw. Theory Tech. 63(12), 4019–4026 (2015).
[Crossref]

S. Koziel and J. W. Bandler, “Reliable microwave modeling by means of variable-fidelity response features‎,” IEEE Trans. Microw. Theory Tech. 63(12), 4247–4254 (2015).
[Crossref]

M. D. Gregory, S. V. Martin, and D. H. Werner, “Improved electromagnetics optimization: the covariance matrix adaptation evolutionary strategy,” IEEE Antennas Propag. Mag. 57(3), 48–59 (2015).
[Crossref]

2014 (9)

S. H. Martin, I. Martinez, J. P. Turpin, D. H. Werner, E. Lier, and M. G. Bray, “The synthesis of wide- and multi-bandgap electromagnetic surfaces with finite size and nonuniform capacitive loading,” IEEE Trans. Microw. Theory Tech. 62(9), 1962–1972 (2014).
[Crossref]

D. E. Brocker, J. P. Turpin, P. L. Werner, and D. H. Werner, “Optimization of gradient index lenses using quasi-conformal contour transformations,” IEEE Antennas Wirel. Propag. Lett. 13, 1787–1791 (2014).
[Crossref]

S. Koziel, A. Bekasiewicz, I. Couckuyt, and T. Dhaene, “Efficient multi-objective simulation-driven antenna design using co-Kriging,” IEEE Trans. Antenn. Propag. 62(11), 5900–5905 (2014).
[Crossref]

P. Rocca, N. Anselmi, and A. Massa, “Optimal synthesis of robust beamformer weights exploiting interval analysis and convex optimization,” IEEE Trans. Evol. Comput. 62(7), 3603–3612 (2014).

G. Oliveri, L. Tenuti, E. Bekele, M. Carlin, and A. Massa, “An SbD-QCTO approach to the synthesis of isotropic metamaterial lenses,” IEEE Antennas Wirel. Propag. Lett. 13, 1783–1786 (2014).
[Crossref]

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

M. Kim, A. M. H. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients,” Phys. Rev. X 4(4), 041042 (2014).
[Crossref]

S. M. Mirjalili, S. Mirjalili, and A. Lewis, “A novel multi-objective optimization framework for designing photonic crystal waveguides,” IEEE Photonics Technol. Lett. 26(2), 146–149 (2014).
[Crossref]

P. E. Sieber and D. H. Werner, “Infrared broadband quarter-wave and half-wave plates synthesized from anisotropic Bézier metasurfaces,” Opt. Express 22(26), 32371–32383 (2014).
[Crossref] [PubMed]

2013 (9)

R. A. Flynn, E. F. Fleet, G. Beadie, and J. S. Shirk, “Achromatic GRIN singlet lens design,” Opt. Express 21(4), 4970–4978 (2013).
[Crossref] [PubMed]

J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21(11), 13351–13367 (2013).
[Crossref] [PubMed]

D. Gagnon, J. Dumont, and L. J. Dubé, “Multiobjective optimization in integrated photonics design,” Opt. Lett. 38(13), 2181–2184 (2013).
[Crossref] [PubMed]

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21(18), 21693–21701 (2013).
[Crossref] [PubMed]

D. Hadka and P. Reed, “Borg: an auto-adaptive many-objective evolutionary computing framework,” Evol. Comput. 21(2), 231–259 (2013).
[Crossref] [PubMed]

P. J. Bradley, “Quasi-Newton model-trust region approach to surrogate-based optimisation of planar metamaterial structures,” Prog. Electromagn. Res. B 47, 1–17 (2013).
[Crossref]

Z. Bayraktar, M. Komurcu, J. A. Bossard, and D. H. Werner, “The wind driven optimization technique and its application in electromagnetics,” IEEE Trans. Antenn. Propag. 61(5), 2745–2757 (2013).
[Crossref]

L. Manica, N. Anselmi, P. Rocca, and A. Massa, “Robust mask-constrained linear array synthesis through aninterval-based particle SWARM optimisation,” IET Microw. Antennas Propag. 7(12), 976–984 (2013).
[Crossref]

G. Xu, “An adaptive parameter tuning of particle swarm optimization algorithm,” Appl. Math. Comput. 219(9), 4560–4569 (2013).
[Crossref]

2012 (5)

C. Li, S. Yang, and T. T. Nguyen, “A self-learning particle swarm optimizer for global optimization problems,” IEEE Trans. Syst. Man Cybern. B Cybern. 42(3), 627–646 (2012).
[Crossref] [PubMed]

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

J.-A. Désidéri, “Multiple-gradient descent algorithm for multiobjective optimization,” C. R. Math. 350(5), 313–318 (2012).
[Crossref]

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12(3), 1683–1689 (2012).
[Crossref] [PubMed]

2011 (4)

F. Wang, J. S. Jensen, and O. Sigmund, “Robust topology optimization of photonic crystal waveguides with tailored dispersion properties,” J. Opt. Soc. Am. B 28(3), 387 (2011).
[Crossref]

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).
[Crossref]

P. Rocca, G. Oliveri, and A. Massa, “Differential Evolution as Applied to Electromagnetics,” IEEE Antennas Propag. Mag. 53(1), 38–49 (2011).
[Crossref]

M. D. Gregory, Z. Bayraktar, and D. H. Werner, “Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,” IEEE Trans. Antenn. Propag. 59(4), 1275–1285 (2011).
[Crossref]

2010 (2)

L. Li, Q.-H. Wang, X.-Q. Xu, and D.-H. Li, “Two-step method for lens system design,” Opt. Express 18(12), 13285–13300 (2010).
[Crossref] [PubMed]

S. Boyd, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3(1), 1–122 (2010).
[Crossref]

2009 (2)

J. Fliege, L. M. G. Drummond, and B. F. Svaiter, “Newton’s Method for Multiobjective Optimization,” SIAM J. Optim. 20(2), 602–626 (2009).
[Crossref]

D. Karaboga and B. Akay, “A comparative study of artificial bee colony algorithm,” Appl. Math. Comput. 214(1), 108–132 (2009).
[Crossref]

2008 (1)

2007 (4)

A. V. Kildishev, U. K. Chettiar, Z. Liu, V. M. Shalaev, D.-H. Kwon, Z. Bayraktar, and D. H. Werner, “Stochastic optimization of low-loss optical negative-index metamaterial,” J. Opt. Soc. Am. B 24(10), A34–A39 (2007).
[Crossref]

N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations,” IEEE Trans. Antenn. Propag. 55(3), 556–567 (2007).
[Crossref]

A. I. J. Forrester, A. Sóbester, and A. J. Keane, “Multi-fidelity optimization via surrogate modelling,” Proc. Math. Phys. Eng. Sci. 463(2088), 3251–3269 (2007).
[Crossref]

C. Igel, N. Hansen, and S. Roth, “Covariance matrix adaptation for multi-objective optimization,” Evol. Comput. 15(1), 1–28 (2007).
[Crossref] [PubMed]

2006 (2)

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260(2), 716–722 (2006).
[Crossref]

S. K. Goudos and J. N. Sahalos, “Microwave absorber optimal design using multi-objective particle swarm optimization,” Microw. Opt. Technol. Lett. 48(8), 1553–1558 (2006).
[Crossref]

2005 (3)

S. Thibault, C. Gagné, J. Beaulieu, and M. Parizeau, “Evolutionary algorithms applied to lens design: case study and analysis,” in Optical Design and Engineering II (International Society for Optics and Photonics 5962(9), 596209 (2005).

S. Cui and D. S. Weile, “Application of a parallel particle swarm optimization scheme to the design of electromagnetic absorbers,” IEEE Trans. Antenn. Propag. 53(11), 3616–3624 (2005).
[Crossref]

M. A. Gingrich and D. H. Werner, “Synthesis of low/zero index of refraction metamaterials from frequency selective surfaces using genetic algorithms,” Electron. Lett. 41(23), 1266–1267 (2005).
[Crossref]

2004 (2)

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

D. W. Boeringer and D. H. Werner, “Particle swarm optimization versus genetic algorithms for phased array synthesis,” IEEE Trans. Antenn. Propag. 52(3), 771–779 (2004).
[Crossref]

2003 (2)

N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES),” Evol. Comput. 11(1), 1–18 (2003).
[Crossref] [PubMed]

X. Cheng, Y. Wang, Q. Hao, and J. Sasian, “Automatic element addition and deletion in lens optimization,” Appl. Opt. 42(7), 1309–1317 (2003).
[Crossref] [PubMed]

2002 (2)

S. Chakravarty, R. Mittra, and N. R. Williams, “Application of a microgenetic algorithm (MGA) to the design of broadband microwave absorbers using multiple frequency selective surface screens buried in dielectrics,” IEEE Trans. Antenn. Propag. 50(3), 284–296 (2002).
[Crossref]

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
[Crossref]

1997 (2)

D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Comput. 1(1), 67–82 (1997).
[Crossref]

R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
[Crossref]

1996 (1)

M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Trans. Syst. Man Cybern. B Cybern. 26(1), 29–41 (1996).
[Crossref] [PubMed]

1995 (2)

K. Deb and R. B. Agrawal, “Simulated Binary Crossover for Continuous Search Space,” Complex Syst. 9(2), 115–148 (1995).

C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn. 20(3), 273–297 (1995).
[Crossref]

1992 (1)

J. H. Holland, “Genetic algorithms,” Sci. Am. 267(1), 66–72 (1992).
[Crossref]

1990 (1)

M. A. Oliver and R. Webster, “Kriging: a method of interpolation for geographical information systems,” Int. J. Geogr. Inf. Sci. 4(3), 313–332 (1990).
[Crossref]

1986 (1)

J. J. Grefenstette, “Optimization of control parameters for genetic algorithms,” IEEE Trans. Syst. Man Cybern. 16(1), 122–128 (1986).
[Crossref]

1985 (1)

1977 (1)

Y. Censor, “Pareto optimality in multiobjective problems,” Appl. Math. Optim. 4(1), 41–59 (1977).
[Crossref]

1971 (1)

D. K. Cheng, “Optimization techniques for antenna arrays,” Proc. IEEE 59(12), 1664–1674 (1971).
[Crossref]

1963 (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963).
[Crossref]

1952 (1)

M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. Res. Natl. Bur. Stand. 49(6), 409 (1952).
[Crossref]

1847 (1)

M. Augustine Cauchy, “Méthode générale pour la résolution des systemes d’équations simultanées,” Comp. Rend. Sci. Paris 25, 536–538 (1847).

Agarwal, S.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
[Crossref]

Agrawal, R. B.

K. Deb and R. B. Agrawal, “Simulated Binary Crossover for Continuous Search Space,” Complex Syst. 9(2), 115–148 (1995).

Akay, B.

D. Karaboga and B. Akay, “A comparative study of artificial bee colony algorithm,” Appl. Math. Comput. 214(1), 108–132 (2009).
[Crossref]

Akimoto, Y.

G. Fujii, Y. Akimoto, and M. Takahashi, “Exploring optimal topology of thermal cloaks by CMA-ES,” Appl. Phys. Lett. 112(6), 061108 (2018).
[Crossref]

Alphones, A.

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260(2), 716–722 (2006).
[Crossref]

An, S.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Anselmi, N.

A. Massa, G. Oliveri, M. Salucci, N. Anselmi, and P. Rocca, “Learning-by-examples techniques as applied to electromagnetics,” J Electromagnet. Wave. 32(4), 516–541 (2018).

P. Rocca, N. Anselmi, and A. Massa, “Optimal synthesis of robust beamformer weights exploiting interval analysis and convex optimization,” IEEE Trans. Evol. Comput. 62(7), 3603–3612 (2014).

L. Manica, N. Anselmi, P. Rocca, and A. Massa, “Robust mask-constrained linear array synthesis through aninterval-based particle SWARM optimisation,” IET Microw. Antennas Propag. 7(12), 976–984 (2013).
[Crossref]

Arbouet, A.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2016).
[Crossref] [PubMed]

Augustine Cauchy, M.

M. Augustine Cauchy, “Méthode générale pour la résolution des systemes d’équations simultanées,” Comp. Rend. Sci. Paris 25, 536–538 (1847).

Aydin, K.

F. Callewaert, V. Velev, P. Kumar, A. V. Sahakian, and K. Aydin, “Inverse-designed broadband all-dielectric electromagnetic metadevices,” Sci. Rep. 8(1), 1358 (2018).
[Crossref] [PubMed]

Bandler, J. W.

S. Koziel and J. W. Bandler, “Reliable microwave modeling by means of variable-fidelity response features‎,” IEEE Trans. Microw. Theory Tech. 63(12), 4247–4254 (2015).
[Crossref]

Baskar, S.

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260(2), 716–722 (2006).
[Crossref]

Bayraktar, Z.

Z. Bayraktar, M. Komurcu, J. A. Bossard, and D. H. Werner, “The wind driven optimization technique and its application in electromagnetics,” IEEE Trans. Antenn. Propag. 61(5), 2745–2757 (2013).
[Crossref]

M. D. Gregory, Z. Bayraktar, and D. H. Werner, “Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,” IEEE Trans. Antenn. Propag. 59(4), 1275–1285 (2011).
[Crossref]

A. V. Kildishev, U. K. Chettiar, Z. Liu, V. M. Shalaev, D.-H. Kwon, Z. Bayraktar, and D. H. Werner, “Stochastic optimization of low-loss optical negative-index metamaterial,” J. Opt. Soc. Am. B 24(10), A34–A39 (2007).
[Crossref]

Beadie, G.

Beaulieu, J.

S. Thibault, C. Gagné, J. Beaulieu, and M. Parizeau, “Evolutionary algorithms applied to lens design: case study and analysis,” in Optical Design and Engineering II (International Society for Optics and Photonics 5962(9), 596209 (2005).

Bekasiewicz, A.

A. Bekasiewicz and S. Koziel, “Surrogate-assisted design optimization of photonic directional couplers: optimization of photonic couplers,” Int. J. Numer. Model. 30(3–4), e2088 (2017).
[Crossref]

S. Koziel and A. Bekasiewicz, “Expedited geometry scaling of compact microwave passives by means of inverse surrogate modeling‎,” IEEE Trans. Microw. Theory Tech. 63(12), 4019–4026 (2015).
[Crossref]

S. Koziel, A. Bekasiewicz, I. Couckuyt, and T. Dhaene, “Efficient multi-objective simulation-driven antenna design using co-Kriging,” IEEE Trans. Antenn. Propag. 62(11), 5900–5905 (2014).
[Crossref]

Bekele, E.

G. Oliveri, L. Tenuti, E. Bekele, M. Carlin, and A. Massa, “An SbD-QCTO approach to the synthesis of isotropic metamaterial lenses,” IEEE Antennas Wirel. Propag. Lett. 13, 1783–1786 (2014).
[Crossref]

Bengio, Y.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
[Crossref] [PubMed]

Bhargava, S.

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21(18), 21693–21701 (2013).
[Crossref] [PubMed]

Boeringer, D. W.

D. W. Boeringer and D. H. Werner, “Particle swarm optimization versus genetic algorithms for phased array synthesis,” IEEE Trans. Antenn. Propag. 52(3), 771–779 (2004).
[Crossref]

Bosman, M.

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12(3), 1683–1689 (2012).
[Crossref] [PubMed]

Bossard, J. A.

J. A. Bossard, C. P. Scarborough, Q. Wu, S. D. Campbell, D. H. Werner, P. L. Werner, S. Griffiths, and M. Ketner, “Mitigating field enhancement in metasurfaces and metamaterials for high-power microwave applications,” IEEE Trans. Antenn. Propag. 64(12), 5309–5319 (2016).
[Crossref]

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Z. Bayraktar, M. Komurcu, J. A. Bossard, and D. H. Werner, “The wind driven optimization technique and its application in electromagnetics,” IEEE Trans. Antenn. Propag. 61(5), 2745–2757 (2013).
[Crossref]

Boyd, S.

S. Boyd, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3(1), 1–122 (2010).
[Crossref]

Bradley, P. J.

P. J. Bradley, “Quasi-Newton model-trust region approach to surrogate-based optimisation of planar metamaterial structures,” Prog. Electromagn. Res. B 47, 1–17 (2013).
[Crossref]

Braun, P. V.

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Bray, M. G.

S. H. Martin, I. Martinez, J. P. Turpin, D. H. Werner, E. Lier, and M. G. Bray, “The synthesis of wide- and multi-bandgap electromagnetic surfaces with finite size and nonuniform capacitive loading,” IEEE Trans. Microw. Theory Tech. 62(9), 1962–1972 (2014).
[Crossref]

Brocker, D. E.

S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
[Crossref]

J. Nagar, D. E. Brocker, S. D. Campbell, J. A. Easum, and D. H. Werner, “Modularization of gradient-index optical design using wavefront matching enabled optimization,” Opt. Express 24(9), 9359–9368 (2016).
[Crossref] [PubMed]

S. D. Campbell, D. E. Brocker, J. Nagar, and D. H. Werner, “SWaP reduction regimes in achromatic GRIN singlets,” Appl. Opt. 55(13), 3594 (2016).
[Crossref] [PubMed]

D. E. Brocker, J. P. Turpin, P. L. Werner, and D. H. Werner, “Optimization of gradient index lenses using quasi-conformal contour transformations,” IEEE Antennas Wirel. Propag. Lett. 13, 1787–1791 (2014).
[Crossref]

Callewaert, F.

F. Callewaert, V. Velev, P. Kumar, A. V. Sahakian, and K. Aydin, “Inverse-designed broadband all-dielectric electromagnetic metadevices,” Sci. Rep. 8(1), 1358 (2018).
[Crossref] [PubMed]

Camayd-Muñoz, P.

P. Camayd-Muñoz and A. Faraon, “Scaling laws for inverse-designed metadevices,” in Conference on Lasers and Electro-Optics (OSA, 2018), p. FF3C.7.

Campbell, S. D.

J. Nagar, S. D. Campbell, and D. H. Werner, “Apochromatic singlets enabled by metasurface-augmented GRIN lenses,” Optica 5(2), 99–102 (2018).
[Crossref]

S. D. Campbell, J. Nagar, and D. H. Werner, “Multi-element, multi-frequency lens transformations enabled by optical wavefront matching,” Opt. Express 25(15), 17258–17270 (2017).
[Crossref] [PubMed]

J. Nagar, S. D. Campbell, Q. Ren, J. A. Easum, R. P. Jenkins, and D. H. Werner, “Multiobjective optimization-aided metamaterials-by-design with application to highly directive nanodevices,” IEEE JMMCT 2, 147–158 (2017).
[Crossref]

S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
[Crossref]

J. A. Bossard, C. P. Scarborough, Q. Wu, S. D. Campbell, D. H. Werner, P. L. Werner, S. Griffiths, and M. Ketner, “Mitigating field enhancement in metasurfaces and metamaterials for high-power microwave applications,” IEEE Trans. Antenn. Propag. 64(12), 5309–5319 (2016).
[Crossref]

J. Nagar, D. E. Brocker, S. D. Campbell, J. A. Easum, and D. H. Werner, “Modularization of gradient-index optical design using wavefront matching enabled optimization,” Opt. Express 24(9), 9359–9368 (2016).
[Crossref] [PubMed]

S. D. Campbell, D. E. Brocker, J. Nagar, and D. H. Werner, “SWaP reduction regimes in achromatic GRIN singlets,” Appl. Opt. 55(13), 3594 (2016).
[Crossref] [PubMed]

J. A. Easum, S. D. Campbell, J. Nagar, and D. H. Werner, “Analytical surrogate model for the aberrations of an arbitrary GRIN lens,” Opt. Express 24(16), 17805–17818 (2016).
[Crossref] [PubMed]

S. D. Campbell, D. Z. Zhu, J. Nagar, R. P. Jenkins, J. A. Easum, D. H. Werner, and P. L. Werner, “Inverse design of engineered materials for extreme optical devices,” in 2018 International Applied Computational Electromagnetics Society Symposium (ACES) (IEEE, 2018), pp. 1–2.
[Crossref]

S. D. Campbell, J. Nagar, J. A. Easum, D. H. Werner, and P. L. Werner, “Surrogate-assisted transformation optics inspired GRIN lens design and optimization,” in 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES) (IEEE, 2017), pp. 1–2.
[Crossref]

Cano-Renteria, F.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), r4206 (2018).
[Crossref] [PubMed]

Cao, X. Y.

L. R. Ji-Di, X. Y. Cao, Y. Tang, S. M. Wang, Y. Zhao, and X. W. Zhu, “A new coding metasurface for wideband RCS reduction,” Wuxiandian Gongcheng 27(2), 394–401 (2018).
[Crossref]

Cao, X.-Y.

T. Han, X.-Y. Cao, J. Gao, Y.-L. Zhao, and Y. Zhao, “A coding metasurface with properties of absorption and diffusion for RCS reduction,” Prog. Electromagn. Res. C 75, 181–191 (2017).
[Crossref]

Capasso, F.

Z. Lin, B. Groever, F. Capasso, A. W. Rodriguez, and M. Lončar, “Topology optimized multi-layered meta-optics,” Phys. Rev. Appl. 9(4), 044030 (2018).
[Crossref]

Capretti, A.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Carlin, M.

G. Oliveri, L. Tenuti, E. Bekele, M. Carlin, and A. Massa, “An SbD-QCTO approach to the synthesis of isotropic metamaterial lenses,” IEEE Antennas Wirel. Propag. Lett. 13, 1783–1786 (2014).
[Crossref]

Censor, Y.

Y. Censor, “Pareto optimality in multiobjective problems,” Appl. Math. Optim. 4(1), 41–59 (1977).
[Crossref]

Chakravarty, S.

S. Chakravarty, R. Mittra, and N. R. Williams, “Application of a microgenetic algorithm (MGA) to the design of broadband microwave absorbers using multiple frequency selective surface screens buried in dielectrics,” IEEE Trans. Antenn. Propag. 50(3), 284–296 (2002).
[Crossref]

Charbonneau, D.

D. Charbonneau, C. Poff, H. Nguyen, M. C. Shin, K. Kierstead, and A. Dornhaus, “Who are the “lazy” ants? The function of inactivity in social insects and a possible role of constraint: inactive ants are corpulent and may be young and/or selfish,” Integr. Comp. Biol. 57(3), 649–667 (2017).
[Crossref] [PubMed]

Chen, C. H.

Chen, H.

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Chen, K.

Chen, P. Y.

Chen, V. H.

Cheng, D. K.

D. K. Cheng, “Optimization techniques for antenna arrays,” Proc. IEEE 59(12), 1664–1674 (1971).
[Crossref]

Cheng, F.

W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref] [PubMed]

Cheng, J.

J. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7(1), 12228 (2017).
[Crossref] [PubMed]

Cheng, Q.

B. Huang, Q. Cheng, G. Y. Song, and T. J. Cui, “Design of acoustic metamaterials using the covariance matrix adaptation evolutionary strategy,” Appl. Phys. Express 10(3), 037301 (2017).
[Crossref]

Cheng, X.

Chettiar, U. K.

Chu, H. S.

Cifci, O. S.

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Colorni, A.

M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Trans. Syst. Man Cybern. B Cybern. 26(1), 29–41 (1996).
[Crossref] [PubMed]

Cortes, C.

C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn. 20(3), 273–297 (1995).
[Crossref]

Couckuyt, I.

S. Koziel, A. Bekasiewicz, I. Couckuyt, and T. Dhaene, “Efficient multi-objective simulation-driven antenna design using co-Kriging,” IEEE Trans. Antenn. Propag. 62(11), 5900–5905 (2014).
[Crossref]

Cui, L.

Cui, S.

S. Cui and D. S. Weile, “Application of a parallel particle swarm optimization scheme to the design of electromagnetic absorbers,” IEEE Trans. Antenn. Propag. 53(11), 3616–3624 (2005).
[Crossref]

Cui, T. J.

B. Huang, Q. Cheng, G. Y. Song, and T. J. Cui, “Design of acoustic metamaterials using the covariance matrix adaptation evolutionary strategy,” Appl. Phys. Express 10(3), 037301 (2017).
[Crossref]

Dal Negro, L.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse design of metal nanoparticles’ morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Deb, K.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
[Crossref]

K. Deb and R. B. Agrawal, “Simulated Binary Crossover for Continuous Search Space,” Complex Syst. 9(2), 115–148 (1995).

DeLacy, B. G.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), r4206 (2018).
[Crossref] [PubMed]

Deng, L.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Désidéri, J.-A.

J.-A. Désidéri, “Multiple-gradient descent algorithm for multiobjective optimization,” C. R. Math. 350(5), 313–318 (2012).
[Crossref]

Dhaene, T.

S. Koziel, A. Bekasiewicz, I. Couckuyt, and T. Dhaene, “Efficient multi-objective simulation-driven antenna design using co-Kriging,” IEEE Trans. Antenn. Propag. 62(11), 5900–5905 (2014).
[Crossref]

Ding, J.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Dorigo, M.

M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Trans. Syst. Man Cybern. B Cybern. 26(1), 29–41 (1996).
[Crossref] [PubMed]

Dornhaus, A.

D. Charbonneau, C. Poff, H. Nguyen, M. C. Shin, K. Kierstead, and A. Dornhaus, “Who are the “lazy” ants? The function of inactivity in social insects and a possible role of constraint: inactive ants are corpulent and may be young and/or selfish,” Integr. Comp. Biol. 57(3), 649–667 (2017).
[Crossref] [PubMed]

Doshay, S.

D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Drummond, L. M. G.

J. Fliege, L. M. G. Drummond, and B. F. Svaiter, “Newton’s Method for Multiobjective Optimization,” SIAM J. Optim. 20(2), 602–626 (2009).
[Crossref]

Du, Q.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Duan, H.

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12(3), 1683–1689 (2012).
[Crossref] [PubMed]

Dubé, L. J.

Dumont, J.

Easum, J. A.

J. A. Easum, J. Nagar, P. L. Werner, and D. H. Werner, “Efficient multi-objective antenna optimization with tolerance analysis through the use of surrogate models,” IEEE Trans. Antenn. Propag. 66(12), 6706–6715 (2018).
[Crossref]

J. Nagar, S. D. Campbell, Q. Ren, J. A. Easum, R. P. Jenkins, and D. H. Werner, “Multiobjective optimization-aided metamaterials-by-design with application to highly directive nanodevices,” IEEE JMMCT 2, 147–158 (2017).
[Crossref]

J. Nagar, D. E. Brocker, S. D. Campbell, J. A. Easum, and D. H. Werner, “Modularization of gradient-index optical design using wavefront matching enabled optimization,” Opt. Express 24(9), 9359–9368 (2016).
[Crossref] [PubMed]

J. A. Easum, S. D. Campbell, J. Nagar, and D. H. Werner, “Analytical surrogate model for the aberrations of an arbitrary GRIN lens,” Opt. Express 24(16), 17805–17818 (2016).
[Crossref] [PubMed]

S. D. Campbell, J. Nagar, J. A. Easum, D. H. Werner, and P. L. Werner, “Surrogate-assisted transformation optics inspired GRIN lens design and optimization,” in 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES) (IEEE, 2017), pp. 1–2.
[Crossref]

S. D. Campbell, D. Z. Zhu, J. Nagar, R. P. Jenkins, J. A. Easum, D. H. Werner, and P. L. Werner, “Inverse design of engineered materials for extreme optical devices,” in 2018 International Applied Computational Electromagnetics Society Symposium (ACES) (IEEE, 2018), pp. 1–2.
[Crossref]

Eberhart, R.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International Conference on Neural Networks (IEEE, 1995), 4, pp. 1942–1948.
[Crossref]

Eleftheriades, G. V.

M. Kim, A. M. H. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients,” Phys. Rev. X 4(4), 041042 (2014).
[Crossref]

Etman, A. S.

A.-K. S. O. Hassan, A. S. Etman, and E. A. Soliman, “Optimization of a novel nano antenna with two radiation modes using Kriging surrogate models,” IEEE Photonics J. 10(4), 1–17 (2018).
[Crossref]

Fan, J. A.

D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Fang, Z.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Faraon, A.

P. Camayd-Muñoz and A. Faraon, “Scaling laws for inverse-designed metadevices,” in Conference on Lasers and Electro-Optics (OSA, 2018), p. FF3C.7.

Feichtner, T.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

Feng, M.

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Feng, Y.

Fernández-Domínguez, A. I.

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12(3), 1683–1689 (2012).
[Crossref] [PubMed]

Fleet, E. F.

Fliege, J.

J. Fliege, L. M. G. Drummond, and B. F. Svaiter, “Newton’s Method for Multiobjective Optimization,” SIAM J. Optim. 20(2), 602–626 (2009).
[Crossref]

Flynn, R. A.

Forestiere, C.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse design of metal nanoparticles’ morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Forrester, A. I. J.

A. I. J. Forrester, A. Sóbester, and A. J. Keane, “Multi-fidelity optimization via surrogate modelling,” Proc. Math. Phys. Eng. Sci. 463(2088), 3251–3269 (2007).
[Crossref]

Fujii, G.

G. Fujii, Y. Akimoto, and M. Takahashi, “Exploring optimal topology of thermal cloaks by CMA-ES,” Appl. Phys. Lett. 112(6), 061108 (2018).
[Crossref]

Gagné, C.

S. Thibault, C. Gagné, J. Beaulieu, and M. Parizeau, “Evolutionary algorithms applied to lens design: case study and analysis,” in Optical Design and Engineering II (International Society for Optics and Photonics 5962(9), 596209 (2005).

Gagnon, D.

Galehdar, A.

A. Lewis, G. Weis, M. Randall, A. Galehdar, and D. Thiel, “Optimising efficiency and gain of small meander line RFID antennas using ant colony system,” in 2009 IEEE Congress on Evolutionary Computation (2009), pp. 1486–1492.
[Crossref]

Gao, J.

T. Han, X.-Y. Cao, J. Gao, Y.-L. Zhao, and Y. Zhao, “A coding metasurface with properties of absorption and diffusion for RCS reduction,” Prog. Electromagn. Res. C 75, 181–191 (2017).
[Crossref]

Genevet, P.

Giessen, H.

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Gingrich, M. A.

M. A. Gingrich and D. H. Werner, “Synthesis of low/zero index of refraction metamaterials from frequency selective surfaces using genetic algorithms,” Electron. Lett. 41(23), 1266–1267 (2005).
[Crossref]

Girard, C.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2016).
[Crossref] [PubMed]

Gissibl, T.

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Goudos, S. K.

S. K. Goudos and J. N. Sahalos, “Microwave absorber optimal design using multi-objective particle swarm optimization,” Microw. Opt. Technol. Lett. 48(8), 1553–1558 (2006).
[Crossref]

Grefenstette, J. J.

J. J. Grefenstette, “Optimization of control parameters for genetic algorithms,” IEEE Trans. Syst. Man Cybern. 16(1), 122–128 (1986).
[Crossref]

Gregory, M. D.

M. D. Gregory, S. V. Martin, and D. H. Werner, “Improved electromagnetics optimization: the covariance matrix adaptation evolutionary strategy,” IEEE Antennas Propag. Mag. 57(3), 48–59 (2015).
[Crossref]

M. D. Gregory, Z. Bayraktar, and D. H. Werner, “Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,” IEEE Trans. Antenn. Propag. 59(4), 1275–1285 (2011).
[Crossref]

Gregoy, M. D.

D. Z. Zhu, M. D. Gregoy, P. L. Werner, and D. H. Werner, “Fabrication and characterization of multi-band polarization independent 3D printed frequency selective structures with ultra-wide fields of view,” IEEE Trans. Antenn. Propag. 66(11), 6096–6105 (2018).
[Crossref]

Griffiths, S.

J. A. Bossard, C. P. Scarborough, Q. Wu, S. D. Campbell, D. H. Werner, P. L. Werner, S. Griffiths, and M. Ketner, “Mitigating field enhancement in metasurfaces and metamaterials for high-power microwave applications,” IEEE Trans. Antenn. Propag. 64(12), 5309–5319 (2016).
[Crossref]

Groever, B.

Z. Lin, B. Groever, F. Capasso, A. W. Rodriguez, and M. Lončar, “Topology optimized multi-layered meta-optics,” Phys. Rev. Appl. 9(4), 044030 (2018).
[Crossref]

Gu, T.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Hadka, D.

D. Hadka and P. Reed, “Borg: an auto-adaptive many-objective evolutionary computing framework,” Evol. Comput. 21(2), 231–259 (2013).
[Crossref] [PubMed]

Hameed, M. F. O.

Han, T.

T. Han, X.-Y. Cao, J. Gao, Y.-L. Zhao, and Y. Zhao, “A coding metasurface with properties of absorption and diffusion for RCS reduction,” Prog. Electromagn. Res. C 75, 181–191 (2017).
[Crossref]

Hansen, N.

C. Igel, N. Hansen, and S. Roth, “Covariance matrix adaptation for multi-objective optimization,” Evol. Comput. 15(1), 1–28 (2007).
[Crossref] [PubMed]

N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES),” Evol. Comput. 11(1), 1–18 (2003).
[Crossref] [PubMed]

Hao, Q.

Hassan, A.-K. S. O.

A.-K. S. O. Hassan, A. S. Etman, and E. A. Soliman, “Optimization of a novel nano antenna with two radiation modes using Kriging surrogate models,” IEEE Photonics J. 10(4), 1–17 (2018).
[Crossref]

He, Y.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse design of metal nanoparticles’ morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

Hecht, B.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

Hestenes, M. R.

M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. Res. Natl. Bur. Stand. 49(6), 409 (1952).
[Crossref]

Hinton, G.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
[Crossref] [PubMed]

Holland, J. H.

J. H. Holland, “Genetic algorithms,” Sci. Am. 267(1), 66–72 (1992).
[Crossref]

Hu, J.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Huang, B.

B. Huang, Q. Cheng, G. Y. Song, and T. J. Cui, “Design of acoustic metamaterials using the covariance matrix adaptation evolutionary strategy,” Appl. Phys. Express 10(3), 037301 (2017).
[Crossref]

Huber, E. D.

Hussein, M.

Igel, C.

C. Igel, N. Hansen, and S. Roth, “Covariance matrix adaptation for multi-objective optimization,” Evol. Comput. 15(1), 1–28 (2007).
[Crossref] [PubMed]

Inampudi, S.

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive genetic algorithm for optical metasurfaces design,” Sci. Rep. 8(1), 11040 (2018).
[Crossref] [PubMed]

S. Inampudi and H. Mosallaei, “Neural network based design of metagratings,” Appl. Phys. Lett. 112(24), 241102 (2018).
[Crossref]

J. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7(1), 12228 (2017).
[Crossref] [PubMed]

Jafar-Zanjani, S.

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive genetic algorithm for optical metasurfaces design,” Sci. Rep. 8(1), 11040 (2018).
[Crossref] [PubMed]

Jenkins, R. P.

J. Nagar, S. D. Campbell, Q. Ren, J. A. Easum, R. P. Jenkins, and D. H. Werner, “Multiobjective optimization-aided metamaterials-by-design with application to highly directive nanodevices,” IEEE JMMCT 2, 147–158 (2017).
[Crossref]

S. D. Campbell, D. Z. Zhu, J. Nagar, R. P. Jenkins, J. A. Easum, D. H. Werner, and P. L. Werner, “Inverse design of engineered materials for extreme optical devices,” in 2018 International Applied Computational Electromagnetics Society Symposium (ACES) (IEEE, 2018), pp. 1–2.
[Crossref]

Jensen, J. S.

Jiang, T.

Ji-Di, L. R.

L. R. Ji-Di, X. Y. Cao, Y. Tang, S. M. Wang, Y. Zhao, and X. W. Zhu, “A new coding metasurface for wideband RCS reduction,” Wuxiandian Gongcheng 27(2), 394–401 (2018).
[Crossref]

Jin, N.

N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations,” IEEE Trans. Antenn. Propag. 55(3), 556–567 (2007).
[Crossref]

Jing, L.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), r4206 (2018).
[Crossref] [PubMed]

Joannopoulos, J. D.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), r4206 (2018).
[Crossref] [PubMed]

Jung, J.

Karaboga, D.

D. Karaboga and B. Akay, “A comparative study of artificial bee colony algorithm,” Appl. Math. Comput. 214(1), 108–132 (2009).
[Crossref]

Keane, A. J.

A. I. J. Forrester, A. Sóbester, and A. J. Keane, “Multi-fidelity optimization via surrogate modelling,” Proc. Math. Phys. Eng. Sci. 463(2088), 3251–3269 (2007).
[Crossref]

Kennedy, J.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International Conference on Neural Networks (IEEE, 1995), 4, pp. 1942–1948.
[Crossref]

Ketner, M.

J. A. Bossard, C. P. Scarborough, Q. Wu, S. D. Campbell, D. H. Werner, P. L. Werner, S. Griffiths, and M. Ketner, “Mitigating field enhancement in metasurfaces and metamaterials for high-power microwave applications,” IEEE Trans. Antenn. Propag. 64(12), 5309–5319 (2016).
[Crossref]

Khoram, E.

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

Kierstead, K.

D. Charbonneau, C. Poff, H. Nguyen, M. C. Shin, K. Kierstead, and A. Dornhaus, “Who are the “lazy” ants? The function of inactivity in social insects and a possible role of constraint: inactive ants are corpulent and may be young and/or selfish,” Integr. Comp. Biol. 57(3), 649–667 (2017).
[Crossref] [PubMed]

Kildishev, A. V.

Kim, K.-Y.

Kim, M.

M. Kim, A. M. H. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients,” Phys. Rev. X 4(4), 041042 (2014).
[Crossref]

Kirby, R. M.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse design of metal nanoparticles’ morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

Kiunke, M.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

Komurcu, M.

Z. Bayraktar, M. Komurcu, J. A. Bossard, and D. H. Werner, “The wind driven optimization technique and its application in electromagnetics,” IEEE Trans. Antenn. Propag. 61(5), 2745–2757 (2013).
[Crossref]

Koumoutsakos, P.

N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES),” Evol. Comput. 11(1), 1–18 (2003).
[Crossref] [PubMed]

Koziel, S.

S. Koziel and S. Ogurtsov, “Rapid design closure of linear microstrip antenna array apertures using response features,” IEEE Antennas Wirel. Propag. Lett. 17(4), 645–648 (2018).
[Crossref]

S. Koziel and S. D. Unnsteinsson, “Expedited design closure of antennas by means of trust-region-based adaptive response scaling,” IEEE Antennas Wirel. Propag. Lett. 17(6), 1099–1103 (2018).
[Crossref]

A. Bekasiewicz and S. Koziel, “Surrogate-assisted design optimization of photonic directional couplers: optimization of photonic couplers,” Int. J. Numer. Model. 30(3–4), e2088 (2017).
[Crossref]

S. Ogurtsov and S. Koziel, “Fast surrogate-assisted simulation-driven optimisation of add-drop resonators for integrated photonic circuits,” IET Microw. Antennas Propag. 9(7), 672–675 (2015).
[Crossref]

S. Koziel and J. W. Bandler, “Reliable microwave modeling by means of variable-fidelity response features‎,” IEEE Trans. Microw. Theory Tech. 63(12), 4247–4254 (2015).
[Crossref]

S. Koziel and A. Bekasiewicz, “Expedited geometry scaling of compact microwave passives by means of inverse surrogate modeling‎,” IEEE Trans. Microw. Theory Tech. 63(12), 4019–4026 (2015).
[Crossref]

S. Koziel, A. Bekasiewicz, I. Couckuyt, and T. Dhaene, “Efficient multi-objective simulation-driven antenna design using co-Kriging,” IEEE Trans. Antenn. Propag. 62(11), 5900–5905 (2014).
[Crossref]

Kumar, P.

F. Callewaert, V. Velev, P. Kumar, A. V. Sahakian, and K. Aydin, “Inverse-designed broadband all-dielectric electromagnetic metadevices,” Sci. Rep. 8(1), 1358 (2018).
[Crossref] [PubMed]

Kwon, D.-H.

Lalau-Keraly, C. M.

Larrieu, G.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2016).
[Crossref] [PubMed]

Lecestre, A.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2016).
[Crossref] [PubMed]

LeCun, Y.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
[Crossref] [PubMed]

Lee, S. Y.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Lewis, A.

S. M. Mirjalili, S. Mirjalili, and A. Lewis, “A novel multi-objective optimization framework for designing photonic crystal waveguides,” IEEE Photonics Technol. Lett. 26(2), 146–149 (2014).
[Crossref]

A. Lewis, G. Weis, M. Randall, A. Galehdar, and D. Thiel, “Optimising efficiency and gain of small meander line RFID antennas using ant colony system,” in 2009 IEEE Congress on Evolutionary Computation (2009), pp. 1486–1492.
[Crossref]

Li, C.

C. Li, S. Yang, and T. T. Nguyen, “A self-learning particle swarm optimizer for global optimization problems,” IEEE Trans. Syst. Man Cybern. B Cybern. 42(3), 627–646 (2012).
[Crossref] [PubMed]

Li, D.-H.

Li, L.

Lier, E.

S. H. Martin, I. Martinez, J. P. Turpin, D. H. Werner, E. Lier, and M. G. Bray, “The synthesis of wide- and multi-bandgap electromagnetic surfaces with finite size and nonuniform capacitive loading,” IEEE Trans. Microw. Theory Tech. 62(9), 1962–1972 (2014).
[Crossref]

Lin, H.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Lin, L.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Lin, Z.

Z. Lin, B. Groever, F. Capasso, A. W. Rodriguez, and M. Lončar, “Topology optimized multi-layered meta-optics,” Phys. Rev. Appl. 9(4), 044030 (2018).
[Crossref]

Liu, D.

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

Liu, L.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Liu, Y.

W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref] [PubMed]

Liu, Z.

Loncar, M.

Z. Lin, B. Groever, F. Capasso, A. W. Rodriguez, and M. Lončar, “Topology optimized multi-layered meta-optics,” Phys. Rev. Appl. 9(4), 044030 (2018).
[Crossref]

Lu, J.

Ma, H.

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Ma, W.

W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref] [PubMed]

Macready, W. G.

D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Comput. 1(1), 67–82 (1997).
[Crossref]

Mahmoud, K. R.

Maier, S. A.

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12(3), 1683–1689 (2012).
[Crossref] [PubMed]

Manica, L.

L. Manica, N. Anselmi, P. Rocca, and A. Massa, “Robust mask-constrained linear array synthesis through aninterval-based particle SWARM optimisation,” IET Microw. Antennas Propag. 7(12), 976–984 (2013).
[Crossref]

Maniezzo, V.

M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Trans. Syst. Man Cybern. B Cybern. 26(1), 29–41 (1996).
[Crossref] [PubMed]

Marquardt, D. W.

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963).
[Crossref]

Martin, S. H.

S. H. Martin, I. Martinez, J. P. Turpin, D. H. Werner, E. Lier, and M. G. Bray, “The synthesis of wide- and multi-bandgap electromagnetic surfaces with finite size and nonuniform capacitive loading,” IEEE Trans. Microw. Theory Tech. 62(9), 1962–1972 (2014).
[Crossref]

Martin, S. V.

M. D. Gregory, S. V. Martin, and D. H. Werner, “Improved electromagnetics optimization: the covariance matrix adaptation evolutionary strategy,” IEEE Antennas Propag. Mag. 57(3), 48–59 (2015).
[Crossref]

Martinez, I.

S. H. Martin, I. Martinez, J. P. Turpin, D. H. Werner, E. Lier, and M. G. Bray, “The synthesis of wide- and multi-bandgap electromagnetic surfaces with finite size and nonuniform capacitive loading,” IEEE Trans. Microw. Theory Tech. 62(9), 1962–1972 (2014).
[Crossref]

Massa, A.

A. Massa, G. Oliveri, M. Salucci, N. Anselmi, and P. Rocca, “Learning-by-examples techniques as applied to electromagnetics,” J Electromagnet. Wave. 32(4), 516–541 (2018).

G. Oliveri, L. Tenuti, E. Bekele, M. Carlin, and A. Massa, “An SbD-QCTO approach to the synthesis of isotropic metamaterial lenses,” IEEE Antennas Wirel. Propag. Lett. 13, 1783–1786 (2014).
[Crossref]

P. Rocca, N. Anselmi, and A. Massa, “Optimal synthesis of robust beamformer weights exploiting interval analysis and convex optimization,” IEEE Trans. Evol. Comput. 62(7), 3603–3612 (2014).

L. Manica, N. Anselmi, P. Rocca, and A. Massa, “Robust mask-constrained linear array synthesis through aninterval-based particle SWARM optimisation,” IET Microw. Antennas Propag. 7(12), 976–984 (2013).
[Crossref]

P. Rocca, G. Oliveri, and A. Massa, “Differential Evolution as Applied to Electromagnetics,” IEEE Antennas Propag. Mag. 53(1), 38–49 (2011).
[Crossref]

A. Massa, G. Oliveri, P. Rocca, and F. Viani, “System-by-design: A new paradigm for handling design complexity,” in The 8th European Conference on Antennas and Propagation (EuCAP 2014) (IEEE, 2014), pp. 1180–1183.
[Crossref]

Mayer, T. S.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Meyarivan, T.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
[Crossref]

Miano, G.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Michon, J.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Miller, O. D.

Mirjalili, S.

S. M. Mirjalili, S. Mirjalili, and A. Lewis, “A novel multi-objective optimization framework for designing photonic crystal waveguides,” IEEE Photonics Technol. Lett. 26(2), 146–149 (2014).
[Crossref]

Mirjalili, S. M.

S. M. Mirjalili, S. Mirjalili, and A. Lewis, “A novel multi-objective optimization framework for designing photonic crystal waveguides,” IEEE Photonics Technol. Lett. 26(2), 146–149 (2014).
[Crossref]

Mittra, R.

S. Chakravarty, R. Mittra, and N. R. Williams, “Application of a microgenetic algorithm (MGA) to the design of broadband microwave absorbers using multiple frequency selective surface screens buried in dielectrics,” IEEE Trans. Antenn. Propag. 50(3), 284–296 (2002).
[Crossref]

Moriyama, T.

M. Salucci and T. Moriyama, “Robust antenna design through a hybrid inversion strategy combining interval analysis and nature-inspired optimization,” J. Phys. Conf. Ser. 904(1), 012007 (2017).
[Crossref]

Mosallaei, H.

S. Inampudi and H. Mosallaei, “Neural network based design of metagratings,” Appl. Phys. Lett. 112(24), 241102 (2018).
[Crossref]

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive genetic algorithm for optical metasurfaces design,” Sci. Rep. 8(1), 11040 (2018).
[Crossref] [PubMed]

J. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7(1), 12228 (2017).
[Crossref] [PubMed]

Müller, S. D.

N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES),” Evol. Comput. 11(1), 1–18 (2003).
[Crossref] [PubMed]

Nagar, J.

J. A. Easum, J. Nagar, P. L. Werner, and D. H. Werner, “Efficient multi-objective antenna optimization with tolerance analysis through the use of surrogate models,” IEEE Trans. Antenn. Propag. 66(12), 6706–6715 (2018).
[Crossref]

J. Nagar, S. D. Campbell, and D. H. Werner, “Apochromatic singlets enabled by metasurface-augmented GRIN lenses,” Optica 5(2), 99–102 (2018).
[Crossref]

S. D. Campbell, J. Nagar, and D. H. Werner, “Multi-element, multi-frequency lens transformations enabled by optical wavefront matching,” Opt. Express 25(15), 17258–17270 (2017).
[Crossref] [PubMed]

J. Nagar, S. D. Campbell, Q. Ren, J. A. Easum, R. P. Jenkins, and D. H. Werner, “Multiobjective optimization-aided metamaterials-by-design with application to highly directive nanodevices,” IEEE JMMCT 2, 147–158 (2017).
[Crossref]

S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
[Crossref]

J. A. Easum, S. D. Campbell, J. Nagar, and D. H. Werner, “Analytical surrogate model for the aberrations of an arbitrary GRIN lens,” Opt. Express 24(16), 17805–17818 (2016).
[Crossref] [PubMed]

J. Nagar, D. E. Brocker, S. D. Campbell, J. A. Easum, and D. H. Werner, “Modularization of gradient-index optical design using wavefront matching enabled optimization,” Opt. Express 24(9), 9359–9368 (2016).
[Crossref] [PubMed]

S. D. Campbell, D. E. Brocker, J. Nagar, and D. H. Werner, “SWaP reduction regimes in achromatic GRIN singlets,” Appl. Opt. 55(13), 3594 (2016).
[Crossref] [PubMed]

S. D. Campbell, J. Nagar, J. A. Easum, D. H. Werner, and P. L. Werner, “Surrogate-assisted transformation optics inspired GRIN lens design and optimization,” in 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES) (IEEE, 2017), pp. 1–2.
[Crossref]

S. D. Campbell, D. Z. Zhu, J. Nagar, R. P. Jenkins, J. A. Easum, D. H. Werner, and P. L. Werner, “Inverse design of engineered materials for extreme optical devices,” in 2018 International Applied Computational Electromagnetics Society Symposium (ACES) (IEEE, 2018), pp. 1–2.
[Crossref]

Ngo, N. Q.

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260(2), 716–722 (2006).
[Crossref]

Nguyen, H.

D. Charbonneau, C. Poff, H. Nguyen, M. C. Shin, K. Kierstead, and A. Dornhaus, “Who are the “lazy” ants? The function of inactivity in social insects and a possible role of constraint: inactive ants are corpulent and may be young and/or selfish,” Integr. Comp. Biol. 57(3), 649–667 (2017).
[Crossref] [PubMed]

Nguyen, T. T.

C. Li, S. Yang, and T. T. Nguyen, “A self-learning particle swarm optimizer for global optimization problems,” IEEE Trans. Syst. Man Cybern. B Cybern. 42(3), 627–646 (2012).
[Crossref] [PubMed]

Ni, W. X.

Obayya, S. S. A.

Ogurtsov, S.

S. Koziel and S. Ogurtsov, “Rapid design closure of linear microstrip antenna array apertures using response features,” IEEE Antennas Wirel. Propag. Lett. 17(4), 645–648 (2018).
[Crossref]

S. Ogurtsov and S. Koziel, “Fast surrogate-assisted simulation-driven optimisation of add-drop resonators for integrated photonic circuits,” IET Microw. Antennas Propag. 9(7), 672–675 (2015).
[Crossref]

Oliver, M. A.

M. A. Oliver and R. Webster, “Kriging: a method of interpolation for geographical information systems,” Int. J. Geogr. Inf. Sci. 4(3), 313–332 (1990).
[Crossref]

Oliveri, G.

A. Massa, G. Oliveri, M. Salucci, N. Anselmi, and P. Rocca, “Learning-by-examples techniques as applied to electromagnetics,” J Electromagnet. Wave. 32(4), 516–541 (2018).

G. Oliveri, L. Tenuti, E. Bekele, M. Carlin, and A. Massa, “An SbD-QCTO approach to the synthesis of isotropic metamaterial lenses,” IEEE Antennas Wirel. Propag. Lett. 13, 1783–1786 (2014).
[Crossref]

P. Rocca, G. Oliveri, and A. Massa, “Differential Evolution as Applied to Electromagnetics,” IEEE Antennas Propag. Mag. 53(1), 38–49 (2011).
[Crossref]

A. Massa, G. Oliveri, P. Rocca, and F. Viani, “System-by-design: A new paradigm for handling design complexity,” in The 8th European Conference on Antennas and Propagation (EuCAP 2014) (IEEE, 2014), pp. 1180–1183.
[Crossref]

Ong, J. R.

Paillard, V.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2016).
[Crossref] [PubMed]

Pang, Y.

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Parizeau, M.

S. Thibault, C. Gagné, J. Beaulieu, and M. Parizeau, “Evolutionary algorithms applied to lens design: case study and analysis,” in Optical Design and Engineering II (International Society for Optics and Photonics 5962(9), 596209 (2005).

Pasquale, A. J.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Peurifoy, J.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), r4206 (2018).
[Crossref] [PubMed]

Poff, C.

D. Charbonneau, C. Poff, H. Nguyen, M. C. Shin, K. Kierstead, and A. Dornhaus, “Who are the “lazy” ants? The function of inactivity in social insects and a possible role of constraint: inactive ants are corpulent and may be young and/or selfish,” Integr. Comp. Biol. 57(3), 649–667 (2017).
[Crossref] [PubMed]

Pratap, A.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
[Crossref]

Price, K.

R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
[Crossref]

Qu, S.

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Rahmat-Samii, Y.

N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations,” IEEE Trans. Antenn. Propag. 55(3), 556–567 (2007).
[Crossref]

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

Randall, M.

A. Lewis, G. Weis, M. Randall, A. Galehdar, and D. Thiel, “Optimising efficiency and gain of small meander line RFID antennas using ant colony system,” in 2009 IEEE Congress on Evolutionary Computation (2009), pp. 1486–1492.
[Crossref]

Raphson, J.

J. Raphson, “Analysis aequationum universalis seu ad aequationes algebraicas resolvendas methodus generalis, & expedita, ex nova infinitarum serierum methodo, deducta ac demonstrata: cui annexum est de spatio reali, seu ente infinito conamen mathematico-metaphysicum,” (1697).

Reed, P.

D. Hadka and P. Reed, “Borg: an auto-adaptive many-objective evolutionary computing framework,” Evol. Comput. 21(2), 231–259 (2013).
[Crossref] [PubMed]

Reinhard, B. M.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Ren, Q.

J. Nagar, S. D. Campbell, Q. Ren, J. A. Easum, R. P. Jenkins, and D. H. Werner, “Multiobjective optimization-aided metamaterials-by-design with application to highly directive nanodevices,” IEEE JMMCT 2, 147–158 (2017).
[Crossref]

Robinson, J.

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

Rocca, P.

A. Massa, G. Oliveri, M. Salucci, N. Anselmi, and P. Rocca, “Learning-by-examples techniques as applied to electromagnetics,” J Electromagnet. Wave. 32(4), 516–541 (2018).

P. Rocca, N. Anselmi, and A. Massa, “Optimal synthesis of robust beamformer weights exploiting interval analysis and convex optimization,” IEEE Trans. Evol. Comput. 62(7), 3603–3612 (2014).

L. Manica, N. Anselmi, P. Rocca, and A. Massa, “Robust mask-constrained linear array synthesis through aninterval-based particle SWARM optimisation,” IET Microw. Antennas Propag. 7(12), 976–984 (2013).
[Crossref]

P. Rocca, G. Oliveri, and A. Massa, “Differential Evolution as Applied to Electromagnetics,” IEEE Antennas Propag. Mag. 53(1), 38–49 (2011).
[Crossref]

A. Massa, G. Oliveri, P. Rocca, and F. Viani, “System-by-design: A new paradigm for handling design complexity,” in The 8th European Conference on Antennas and Propagation (EuCAP 2014) (IEEE, 2014), pp. 1180–1183.
[Crossref]

Rodriguez, A. W.

Z. Lin, B. Groever, F. Capasso, A. W. Rodriguez, and M. Lončar, “Topology optimized multi-layered meta-optics,” Phys. Rev. Appl. 9(4), 044030 (2018).
[Crossref]

Roth, S.

C. Igel, N. Hansen, and S. Roth, “Covariance matrix adaptation for multi-objective optimization,” Evol. Comput. 15(1), 1–28 (2007).
[Crossref] [PubMed]

Sahakian, A. V.

F. Callewaert, V. Velev, P. Kumar, A. V. Sahakian, and K. Aydin, “Inverse-designed broadband all-dielectric electromagnetic metadevices,” Sci. Rep. 8(1), 1358 (2018).
[Crossref] [PubMed]

Sahalos, J. N.

S. K. Goudos and J. N. Sahalos, “Microwave absorber optimal design using multi-objective particle swarm optimization,” Microw. Opt. Technol. Lett. 48(8), 1553–1558 (2006).
[Crossref]

Salucci, M.

A. Massa, G. Oliveri, M. Salucci, N. Anselmi, and P. Rocca, “Learning-by-examples techniques as applied to electromagnetics,” J Electromagnet. Wave. 32(4), 516–541 (2018).

M. Salucci and T. Moriyama, “Robust antenna design through a hybrid inversion strategy combining interval analysis and nature-inspired optimization,” J. Phys. Conf. Ser. 904(1), 012007 (2017).
[Crossref]

Sasian, J.

Scarborough, C. P.

J. A. Bossard, C. P. Scarborough, Q. Wu, S. D. Campbell, D. H. Werner, P. L. Werner, S. Griffiths, and M. Ketner, “Mitigating field enhancement in metasurfaces and metamaterials for high-power microwave applications,” IEEE Trans. Antenn. Propag. 64(12), 5309–5319 (2016).
[Crossref]

Selig, O.

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

Sell, D.

D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
[Crossref]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Shalaev, V. M.

Shalaginov, M. Y.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Shen, Y.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), r4206 (2018).
[Crossref] [PubMed]

Shin, M. C.

D. Charbonneau, C. Poff, H. Nguyen, M. C. Shin, K. Kierstead, and A. Dornhaus, “Who are the “lazy” ants? The function of inactivity in social insects and a possible role of constraint: inactive ants are corpulent and may be young and/or selfish,” Integr. Comp. Biol. 57(3), 649–667 (2017).
[Crossref] [PubMed]

Shirk, J. S.

Sieber, P. E.

Sigmund, O.

Sóbester, A.

A. I. J. Forrester, A. Sóbester, and A. J. Keane, “Multi-fidelity optimization via surrogate modelling,” Proc. Math. Phys. Eng. Sci. 463(2088), 3251–3269 (2007).
[Crossref]

Soliman, E. A.

A.-K. S. O. Hassan, A. S. Etman, and E. A. Soliman, “Optimization of a novel nano antenna with two radiation modes using Kriging surrogate models,” IEEE Photonics J. 10(4), 1–17 (2018).
[Crossref]

Soljacic, M.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), r4206 (2018).
[Crossref] [PubMed]

Song, G. Y.

B. Huang, Q. Cheng, G. Y. Song, and T. J. Cui, “Design of acoustic metamaterials using the covariance matrix adaptation evolutionary strategy,” Appl. Phys. Express 10(3), 037301 (2017).
[Crossref]

Stiefel, E.

M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. Res. Natl. Bur. Stand. 49(6), 409 (1952).
[Crossref]

Storn, R.

R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
[Crossref]

Suganthan, P. N.

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260(2), 716–722 (2006).
[Crossref]

Sui, S.

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Svaiter, B. F.

J. Fliege, L. M. G. Drummond, and B. F. Svaiter, “Newton’s Method for Multiobjective Optimization,” SIAM J. Optim. 20(2), 602–626 (2009).
[Crossref]

Takahashi, M.

G. Fujii, Y. Akimoto, and M. Takahashi, “Exploring optimal topology of thermal cloaks by CMA-ES,” Appl. Phys. Lett. 112(6), 061108 (2018).
[Crossref]

Tamburrino, A.

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Tan, Y.

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

Tang, Y.

L. R. Ji-Di, X. Y. Cao, Y. Tang, S. M. Wang, Y. Zhao, and X. W. Zhu, “A new coding metasurface for wideband RCS reduction,” Wuxiandian Gongcheng 27(2), 394–401 (2018).
[Crossref]

Tegmark, M.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), r4206 (2018).
[Crossref] [PubMed]

Tenuti, L.

G. Oliveri, L. Tenuti, E. Bekele, M. Carlin, and A. Massa, “An SbD-QCTO approach to the synthesis of isotropic metamaterial lenses,” IEEE Antennas Wirel. Propag. Lett. 13, 1783–1786 (2014).
[Crossref]

Thibault, S.

S. Thibault, C. Gagné, J. Beaulieu, and M. Parizeau, “Evolutionary algorithms applied to lens design: case study and analysis,” in Optical Design and Engineering II (International Society for Optics and Photonics 5962(9), 596209 (2005).

Thiel, D.

A. Lewis, G. Weis, M. Randall, A. Galehdar, and D. Thiel, “Optimising efficiency and gain of small meander line RFID antennas using ant colony system,” in 2009 IEEE Congress on Evolutionary Computation (2009), pp. 1486–1492.
[Crossref]

Toussaint, K. C.

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Tsai, J. H.

Turpin, J. P.

D. E. Brocker, J. P. Turpin, P. L. Werner, and D. H. Werner, “Optimization of gradient index lenses using quasi-conformal contour transformations,” IEEE Antennas Wirel. Propag. Lett. 13, 1787–1791 (2014).
[Crossref]

S. H. Martin, I. Martinez, J. P. Turpin, D. H. Werner, E. Lier, and M. G. Bray, “The synthesis of wide- and multi-bandgap electromagnetic surfaces with finite size and nonuniform capacitive loading,” IEEE Trans. Microw. Theory Tech. 62(9), 1962–1972 (2014).
[Crossref]

Unnsteinsson, S. D.

S. Koziel and S. D. Unnsteinsson, “Expedited design closure of antennas by means of trust-region-based adaptive response scaling,” IEEE Antennas Wirel. Propag. Lett. 17(6), 1099–1103 (2018).
[Crossref]

Vapnik, V.

C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn. 20(3), 273–297 (1995).
[Crossref]

Velev, V.

F. Callewaert, V. Velev, P. Kumar, A. V. Sahakian, and K. Aydin, “Inverse-designed broadband all-dielectric electromagnetic metadevices,” Sci. Rep. 8(1), 1358 (2018).
[Crossref] [PubMed]

Viani, F.

A. Massa, G. Oliveri, P. Rocca, and F. Viani, “System-by-design: A new paradigm for handling design complexity,” in The 8th European Conference on Antennas and Propagation (EuCAP 2014) (IEEE, 2014), pp. 1180–1183.
[Crossref]

Vuckovic, J.

Wang, F.

Wang, H.

Wang, J.

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Wang, Q.-H.

Wang, R.

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse design of metal nanoparticles’ morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

Wang, S. M.

L. R. Ji-Di, X. Y. Cao, Y. Tang, S. M. Wang, Y. Zhao, and X. W. Zhu, “A new coding metasurface for wideband RCS reduction,” Wuxiandian Gongcheng 27(2), 394–401 (2018).
[Crossref]

Wang, Y.

Webster, R.

M. A. Oliver and R. Webster, “Kriging: a method of interpolation for geographical information systems,” Int. J. Geogr. Inf. Sci. 4(3), 313–332 (1990).
[Crossref]

Weile, D. S.

S. Cui and D. S. Weile, “Application of a parallel particle swarm optimization scheme to the design of electromagnetic absorbers,” IEEE Trans. Antenn. Propag. 53(11), 3616–3624 (2005).
[Crossref]

Weis, G.

A. Lewis, G. Weis, M. Randall, A. Galehdar, and D. Thiel, “Optimising efficiency and gain of small meander line RFID antennas using ant colony system,” in 2009 IEEE Congress on Evolutionary Computation (2009), pp. 1486–1492.
[Crossref]

Werner, D. H.

D. Z. Zhu, M. D. Gregoy, P. L. Werner, and D. H. Werner, “Fabrication and characterization of multi-band polarization independent 3D printed frequency selective structures with ultra-wide fields of view,” IEEE Trans. Antenn. Propag. 66(11), 6096–6105 (2018).
[Crossref]

J. A. Easum, J. Nagar, P. L. Werner, and D. H. Werner, “Efficient multi-objective antenna optimization with tolerance analysis through the use of surrogate models,” IEEE Trans. Antenn. Propag. 66(12), 6706–6715 (2018).
[Crossref]

J. Nagar, S. D. Campbell, and D. H. Werner, “Apochromatic singlets enabled by metasurface-augmented GRIN lenses,” Optica 5(2), 99–102 (2018).
[Crossref]

S. D. Campbell, J. Nagar, and D. H. Werner, “Multi-element, multi-frequency lens transformations enabled by optical wavefront matching,” Opt. Express 25(15), 17258–17270 (2017).
[Crossref] [PubMed]

D. Z. Zhu, P. L. Werner, and D. H. Werner, “Design and optimization of 3-D frequency-selective surfaces based on a multiobjective lazy ant colony optimization algorithm,” IEEE Trans. Antenn. Propag. 65(12), 7137–7149 (2017).
[Crossref]

J. Nagar, S. D. Campbell, Q. Ren, J. A. Easum, R. P. Jenkins, and D. H. Werner, “Multiobjective optimization-aided metamaterials-by-design with application to highly directive nanodevices,” IEEE JMMCT 2, 147–158 (2017).
[Crossref]

S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
[Crossref]

J. A. Bossard, C. P. Scarborough, Q. Wu, S. D. Campbell, D. H. Werner, P. L. Werner, S. Griffiths, and M. Ketner, “Mitigating field enhancement in metasurfaces and metamaterials for high-power microwave applications,” IEEE Trans. Antenn. Propag. 64(12), 5309–5319 (2016).
[Crossref]

S. D. Campbell, D. E. Brocker, J. Nagar, and D. H. Werner, “SWaP reduction regimes in achromatic GRIN singlets,” Appl. Opt. 55(13), 3594 (2016).
[Crossref] [PubMed]

J. Nagar, D. E. Brocker, S. D. Campbell, J. A. Easum, and D. H. Werner, “Modularization of gradient-index optical design using wavefront matching enabled optimization,” Opt. Express 24(9), 9359–9368 (2016).
[Crossref] [PubMed]

J. A. Easum, S. D. Campbell, J. Nagar, and D. H. Werner, “Analytical surrogate model for the aberrations of an arbitrary GRIN lens,” Opt. Express 24(16), 17805–17818 (2016).
[Crossref] [PubMed]

M. D. Gregory, S. V. Martin, and D. H. Werner, “Improved electromagnetics optimization: the covariance matrix adaptation evolutionary strategy,” IEEE Antennas Propag. Mag. 57(3), 48–59 (2015).
[Crossref]

D. E. Brocker, J. P. Turpin, P. L. Werner, and D. H. Werner, “Optimization of gradient index lenses using quasi-conformal contour transformations,” IEEE Antennas Wirel. Propag. Lett. 13, 1787–1791 (2014).
[Crossref]

S. H. Martin, I. Martinez, J. P. Turpin, D. H. Werner, E. Lier, and M. G. Bray, “The synthesis of wide- and multi-bandgap electromagnetic surfaces with finite size and nonuniform capacitive loading,” IEEE Trans. Microw. Theory Tech. 62(9), 1962–1972 (2014).
[Crossref]

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

P. E. Sieber and D. H. Werner, “Infrared broadband quarter-wave and half-wave plates synthesized from anisotropic Bézier metasurfaces,” Opt. Express 22(26), 32371–32383 (2014).
[Crossref] [PubMed]

Z. Bayraktar, M. Komurcu, J. A. Bossard, and D. H. Werner, “The wind driven optimization technique and its application in electromagnetics,” IEEE Trans. Antenn. Propag. 61(5), 2745–2757 (2013).
[Crossref]

M. D. Gregory, Z. Bayraktar, and D. H. Werner, “Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,” IEEE Trans. Antenn. Propag. 59(4), 1275–1285 (2011).
[Crossref]

A. V. Kildishev, U. K. Chettiar, Z. Liu, V. M. Shalaev, D.-H. Kwon, Z. Bayraktar, and D. H. Werner, “Stochastic optimization of low-loss optical negative-index metamaterial,” J. Opt. Soc. Am. B 24(10), A34–A39 (2007).
[Crossref]

M. A. Gingrich and D. H. Werner, “Synthesis of low/zero index of refraction metamaterials from frequency selective surfaces using genetic algorithms,” Electron. Lett. 41(23), 1266–1267 (2005).
[Crossref]

D. W. Boeringer and D. H. Werner, “Particle swarm optimization versus genetic algorithms for phased array synthesis,” IEEE Trans. Antenn. Propag. 52(3), 771–779 (2004).
[Crossref]

S. D. Campbell, D. Z. Zhu, J. Nagar, R. P. Jenkins, J. A. Easum, D. H. Werner, and P. L. Werner, “Inverse design of engineered materials for extreme optical devices,” in 2018 International Applied Computational Electromagnetics Society Symposium (ACES) (IEEE, 2018), pp. 1–2.
[Crossref]

S. D. Campbell, J. Nagar, J. A. Easum, D. H. Werner, and P. L. Werner, “Surrogate-assisted transformation optics inspired GRIN lens design and optimization,” in 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES) (IEEE, 2017), pp. 1–2.
[Crossref]

Werner, P. L.

D. Z. Zhu, M. D. Gregoy, P. L. Werner, and D. H. Werner, “Fabrication and characterization of multi-band polarization independent 3D printed frequency selective structures with ultra-wide fields of view,” IEEE Trans. Antenn. Propag. 66(11), 6096–6105 (2018).
[Crossref]

J. A. Easum, J. Nagar, P. L. Werner, and D. H. Werner, “Efficient multi-objective antenna optimization with tolerance analysis through the use of surrogate models,” IEEE Trans. Antenn. Propag. 66(12), 6706–6715 (2018).
[Crossref]

D. Z. Zhu, P. L. Werner, and D. H. Werner, “Design and optimization of 3-D frequency-selective surfaces based on a multiobjective lazy ant colony optimization algorithm,” IEEE Trans. Antenn. Propag. 65(12), 7137–7149 (2017).
[Crossref]

J. A. Bossard, C. P. Scarborough, Q. Wu, S. D. Campbell, D. H. Werner, P. L. Werner, S. Griffiths, and M. Ketner, “Mitigating field enhancement in metasurfaces and metamaterials for high-power microwave applications,” IEEE Trans. Antenn. Propag. 64(12), 5309–5319 (2016).
[Crossref]

D. E. Brocker, J. P. Turpin, P. L. Werner, and D. H. Werner, “Optimization of gradient index lenses using quasi-conformal contour transformations,” IEEE Antennas Wirel. Propag. Lett. 13, 1787–1791 (2014).
[Crossref]

S. D. Campbell, J. Nagar, J. A. Easum, D. H. Werner, and P. L. Werner, “Surrogate-assisted transformation optics inspired GRIN lens design and optimization,” in 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES) (IEEE, 2017), pp. 1–2.
[Crossref]

S. D. Campbell, D. Z. Zhu, J. Nagar, R. P. Jenkins, J. A. Easum, D. H. Werner, and P. L. Werner, “Inverse design of engineered materials for extreme optical devices,” in 2018 International Applied Computational Electromagnetics Society Symposium (ACES) (IEEE, 2018), pp. 1–2.
[Crossref]

Wiecha, P. R.

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2016).
[Crossref] [PubMed]

Williams, N. R.

S. Chakravarty, R. Mittra, and N. R. Williams, “Application of a microgenetic algorithm (MGA) to the design of broadband microwave absorbers using multiple frequency selective surface screens buried in dielectrics,” IEEE Trans. Antenn. Propag. 50(3), 284–296 (2002).
[Crossref]

Wolpert, D. H.

D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Comput. 1(1), 67–82 (1997).
[Crossref]

Wong, A. M. H.

M. Kim, A. M. H. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients,” Phys. Rev. X 4(4), 041042 (2014).
[Crossref]

Wu, Q.

J. A. Bossard, C. P. Scarborough, Q. Wu, S. D. Campbell, D. H. Werner, P. L. Werner, S. Griffiths, and M. Ketner, “Mitigating field enhancement in metasurfaces and metamaterials for high-power microwave applications,” IEEE Trans. Antenn. Propag. 64(12), 5309–5319 (2016).
[Crossref]

Xia, S.

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Xiao, T. P.

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Xu, G.

G. Xu, “An adaptive parameter tuning of particle swarm optimization algorithm,” Appl. Math. Comput. 219(9), 4560–4569 (2013).
[Crossref]

Xu, X.-Q.

Xu, Z.

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

Yablonovitch, E.

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21(18), 21693–21701 (2013).
[Crossref] [PubMed]

Yang, J.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
[Crossref]

Yang, J. K. W.

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12(3), 1683–1689 (2012).
[Crossref] [PubMed]

Yang, R.

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

Yang, S.

C. Li, S. Yang, and T. T. Nguyen, “A self-learning particle swarm optimizer for global optimization problems,” IEEE Trans. Syst. Man Cybern. B Cybern. 42(3), 627–646 (2012).
[Crossref] [PubMed]

Yang, Y.

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), r4206 (2018).
[Crossref] [PubMed]

Yin, G.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Yu, Z.

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

Yun, S.

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

Zhang, H.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Zhang, Y.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Zhao, J.

Zhao, Y.

L. R. Ji-Di, X. Y. Cao, Y. Tang, S. M. Wang, Y. Zhao, and X. W. Zhu, “A new coding metasurface for wideband RCS reduction,” Wuxiandian Gongcheng 27(2), 394–401 (2018).
[Crossref]

T. Han, X.-Y. Cao, J. Gao, Y.-L. Zhao, and Y. Zhao, “A coding metasurface with properties of absorption and diffusion for RCS reduction,” Prog. Electromagn. Res. C 75, 181–191 (2017).
[Crossref]

Zhao, Y.-L.

T. Han, X.-Y. Cao, J. Gao, Y.-L. Zhao, and Y. Zhao, “A coding metasurface with properties of absorption and diffusion for RCS reduction,” Prog. Electromagn. Res. C 75, 181–191 (2017).
[Crossref]

Zheng, B.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Zheng, H.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Zheng, R. T.

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260(2), 716–722 (2006).
[Crossref]

Zhou, W.

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Zhu, A. Y.

Zhu, B.

Zhu, D. Z.

D. Z. Zhu, M. D. Gregoy, P. L. Werner, and D. H. Werner, “Fabrication and characterization of multi-band polarization independent 3D printed frequency selective structures with ultra-wide fields of view,” IEEE Trans. Antenn. Propag. 66(11), 6096–6105 (2018).
[Crossref]

D. Z. Zhu, P. L. Werner, and D. H. Werner, “Design and optimization of 3-D frequency-selective surfaces based on a multiobjective lazy ant colony optimization algorithm,” IEEE Trans. Antenn. Propag. 65(12), 7137–7149 (2017).
[Crossref]

S. D. Campbell, D. Z. Zhu, J. Nagar, R. P. Jenkins, J. A. Easum, D. H. Werner, and P. L. Werner, “Inverse design of engineered materials for extreme optical devices,” in 2018 International Applied Computational Electromagnetics Society Symposium (ACES) (IEEE, 2018), pp. 1–2.
[Crossref]

Zhu, X. W.

L. R. Ji-Di, X. Y. Cao, Y. Tang, S. M. Wang, Y. Zhao, and X. W. Zhu, “A new coding metasurface for wideband RCS reduction,” Wuxiandian Gongcheng 27(2), 394–401 (2018).
[Crossref]

ACS Nano (2)

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, and T. S. Mayer, “Near-ideal optical metamaterial absorbers with super-octave bandwidth,” ACS Nano 8(2), 1517–1524 (2014).
[Crossref] [PubMed]

W. Ma, F. Cheng, and Y. Liu, “Deep-learning-enabled on-demand design of chiral metamaterials,” ACS Nano 12(6), 6326–6334 (2018).
[Crossref] [PubMed]

ACS Photonics (3)

D. Liu, Y. Tan, E. Khoram, and Z. Yu, “Training deep neural networks for the inverse design of nanophotonic structures,” ACS Photonics 5(4), 1365–1369 (2018).
[Crossref]

C. Forestiere, Y. He, R. Wang, R. M. Kirby, and L. Dal Negro, “Inverse design of metal nanoparticles’ morphology,” ACS Photonics 3(1), 68–78 (2016).
[Crossref]

T. P. Xiao, O. S. Cifci, S. Bhargava, H. Chen, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint, E. Yablonovitch, and P. V. Braun, “Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing,” ACS Photonics 3(5), 886–894 (2016).
[Crossref]

Adv. Opt. Mater. (1)

D. Sell, J. Yang, S. Doshay, and J. A. Fan, “Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities,” Adv. Opt. Mater. 5(23), 1700645 (2017).
[Crossref]

Appl. Math. Comput. (2)

D. Karaboga and B. Akay, “A comparative study of artificial bee colony algorithm,” Appl. Math. Comput. 214(1), 108–132 (2009).
[Crossref]

G. Xu, “An adaptive parameter tuning of particle swarm optimization algorithm,” Appl. Math. Comput. 219(9), 4560–4569 (2013).
[Crossref]

Appl. Math. Optim. (1)

Y. Censor, “Pareto optimality in multiobjective problems,” Appl. Math. Optim. 4(1), 41–59 (1977).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Express (1)

B. Huang, Q. Cheng, G. Y. Song, and T. J. Cui, “Design of acoustic metamaterials using the covariance matrix adaptation evolutionary strategy,” Appl. Phys. Express 10(3), 037301 (2017).
[Crossref]

Appl. Phys. Lett. (3)

G. Fujii, Y. Akimoto, and M. Takahashi, “Exploring optimal topology of thermal cloaks by CMA-ES,” Appl. Phys. Lett. 112(6), 061108 (2018).
[Crossref]

S. Inampudi and H. Mosallaei, “Neural network based design of metagratings,” Appl. Phys. Lett. 112(24), 241102 (2018).
[Crossref]

S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, S. Xia, Z. Xu, and S. Qu, “Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces,” Appl. Phys. Lett. 109(1), 014104 (2016).
[Crossref]

C. R. Math. (1)

J.-A. Désidéri, “Multiple-gradient descent algorithm for multiobjective optimization,” C. R. Math. 350(5), 313–318 (2012).
[Crossref]

Comp. Rend. Sci. Paris (1)

M. Augustine Cauchy, “Méthode générale pour la résolution des systemes d’équations simultanées,” Comp. Rend. Sci. Paris 25, 536–538 (1847).

Complex Syst. (1)

K. Deb and R. B. Agrawal, “Simulated Binary Crossover for Continuous Search Space,” Complex Syst. 9(2), 115–148 (1995).

Electron. Lett. (1)

M. A. Gingrich and D. H. Werner, “Synthesis of low/zero index of refraction metamaterials from frequency selective surfaces using genetic algorithms,” Electron. Lett. 41(23), 1266–1267 (2005).
[Crossref]

Evol. Comput. (3)

N. Hansen, S. D. Müller, and P. Koumoutsakos, “Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES),” Evol. Comput. 11(1), 1–18 (2003).
[Crossref] [PubMed]

C. Igel, N. Hansen, and S. Roth, “Covariance matrix adaptation for multi-objective optimization,” Evol. Comput. 15(1), 1–28 (2007).
[Crossref] [PubMed]

D. Hadka and P. Reed, “Borg: an auto-adaptive many-objective evolutionary computing framework,” Evol. Comput. 21(2), 231–259 (2013).
[Crossref] [PubMed]

Found. Trends Mach. Learn. (1)

S. Boyd, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn. 3(1), 1–122 (2010).
[Crossref]

IEEE Antennas Propag. Mag. (2)

M. D. Gregory, S. V. Martin, and D. H. Werner, “Improved electromagnetics optimization: the covariance matrix adaptation evolutionary strategy,” IEEE Antennas Propag. Mag. 57(3), 48–59 (2015).
[Crossref]

P. Rocca, G. Oliveri, and A. Massa, “Differential Evolution as Applied to Electromagnetics,” IEEE Antennas Propag. Mag. 53(1), 38–49 (2011).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (4)

D. E. Brocker, J. P. Turpin, P. L. Werner, and D. H. Werner, “Optimization of gradient index lenses using quasi-conformal contour transformations,” IEEE Antennas Wirel. Propag. Lett. 13, 1787–1791 (2014).
[Crossref]

G. Oliveri, L. Tenuti, E. Bekele, M. Carlin, and A. Massa, “An SbD-QCTO approach to the synthesis of isotropic metamaterial lenses,” IEEE Antennas Wirel. Propag. Lett. 13, 1783–1786 (2014).
[Crossref]

S. Koziel and S. Ogurtsov, “Rapid design closure of linear microstrip antenna array apertures using response features,” IEEE Antennas Wirel. Propag. Lett. 17(4), 645–648 (2018).
[Crossref]

S. Koziel and S. D. Unnsteinsson, “Expedited design closure of antennas by means of trust-region-based adaptive response scaling,” IEEE Antennas Wirel. Propag. Lett. 17(6), 1099–1103 (2018).
[Crossref]

IEEE JMMCT (1)

J. Nagar, S. D. Campbell, Q. Ren, J. A. Easum, R. P. Jenkins, and D. H. Werner, “Multiobjective optimization-aided metamaterials-by-design with application to highly directive nanodevices,” IEEE JMMCT 2, 147–158 (2017).
[Crossref]

IEEE Photonics J. (1)

A.-K. S. O. Hassan, A. S. Etman, and E. A. Soliman, “Optimization of a novel nano antenna with two radiation modes using Kriging surrogate models,” IEEE Photonics J. 10(4), 1–17 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. M. Mirjalili, S. Mirjalili, and A. Lewis, “A novel multi-objective optimization framework for designing photonic crystal waveguides,” IEEE Photonics Technol. Lett. 26(2), 146–149 (2014).
[Crossref]

IEEE Trans. Antenn. Propag. (12)

S. Koziel, A. Bekasiewicz, I. Couckuyt, and T. Dhaene, “Efficient multi-objective simulation-driven antenna design using co-Kriging,” IEEE Trans. Antenn. Propag. 62(11), 5900–5905 (2014).
[Crossref]

J. A. Easum, J. Nagar, P. L. Werner, and D. H. Werner, “Efficient multi-objective antenna optimization with tolerance analysis through the use of surrogate models,” IEEE Trans. Antenn. Propag. 66(12), 6706–6715 (2018).
[Crossref]

S. Chakravarty, R. Mittra, and N. R. Williams, “Application of a microgenetic algorithm (MGA) to the design of broadband microwave absorbers using multiple frequency selective surface screens buried in dielectrics,” IEEE Trans. Antenn. Propag. 50(3), 284–296 (2002).
[Crossref]

J. A. Bossard, C. P. Scarborough, Q. Wu, S. D. Campbell, D. H. Werner, P. L. Werner, S. Griffiths, and M. Ketner, “Mitigating field enhancement in metasurfaces and metamaterials for high-power microwave applications,” IEEE Trans. Antenn. Propag. 64(12), 5309–5319 (2016).
[Crossref]

D. Z. Zhu, P. L. Werner, and D. H. Werner, “Design and optimization of 3-D frequency-selective surfaces based on a multiobjective lazy ant colony optimization algorithm,” IEEE Trans. Antenn. Propag. 65(12), 7137–7149 (2017).
[Crossref]

Z. Bayraktar, M. Komurcu, J. A. Bossard, and D. H. Werner, “The wind driven optimization technique and its application in electromagnetics,” IEEE Trans. Antenn. Propag. 61(5), 2745–2757 (2013).
[Crossref]

M. D. Gregory, Z. Bayraktar, and D. H. Werner, “Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,” IEEE Trans. Antenn. Propag. 59(4), 1275–1285 (2011).
[Crossref]

D. Z. Zhu, M. D. Gregoy, P. L. Werner, and D. H. Werner, “Fabrication and characterization of multi-band polarization independent 3D printed frequency selective structures with ultra-wide fields of view,” IEEE Trans. Antenn. Propag. 66(11), 6096–6105 (2018).
[Crossref]

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

D. W. Boeringer and D. H. Werner, “Particle swarm optimization versus genetic algorithms for phased array synthesis,” IEEE Trans. Antenn. Propag. 52(3), 771–779 (2004).
[Crossref]

S. Cui and D. S. Weile, “Application of a parallel particle swarm optimization scheme to the design of electromagnetic absorbers,” IEEE Trans. Antenn. Propag. 53(11), 3616–3624 (2005).
[Crossref]

N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations,” IEEE Trans. Antenn. Propag. 55(3), 556–567 (2007).
[Crossref]

IEEE Trans. Evol. Comput. (3)

D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Comput. 1(1), 67–82 (1997).
[Crossref]

P. Rocca, N. Anselmi, and A. Massa, “Optimal synthesis of robust beamformer weights exploiting interval analysis and convex optimization,” IEEE Trans. Evol. Comput. 62(7), 3603–3612 (2014).

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
[Crossref]

IEEE Trans. Microw. Theory Tech. (3)

S. Koziel and A. Bekasiewicz, “Expedited geometry scaling of compact microwave passives by means of inverse surrogate modeling‎,” IEEE Trans. Microw. Theory Tech. 63(12), 4019–4026 (2015).
[Crossref]

S. Koziel and J. W. Bandler, “Reliable microwave modeling by means of variable-fidelity response features‎,” IEEE Trans. Microw. Theory Tech. 63(12), 4247–4254 (2015).
[Crossref]

S. H. Martin, I. Martinez, J. P. Turpin, D. H. Werner, E. Lier, and M. G. Bray, “The synthesis of wide- and multi-bandgap electromagnetic surfaces with finite size and nonuniform capacitive loading,” IEEE Trans. Microw. Theory Tech. 62(9), 1962–1972 (2014).
[Crossref]

IEEE Trans. Syst. Man Cybern. (1)

J. J. Grefenstette, “Optimization of control parameters for genetic algorithms,” IEEE Trans. Syst. Man Cybern. 16(1), 122–128 (1986).
[Crossref]

IEEE Trans. Syst. Man Cybern. B Cybern. (2)

C. Li, S. Yang, and T. T. Nguyen, “A self-learning particle swarm optimizer for global optimization problems,” IEEE Trans. Syst. Man Cybern. B Cybern. 42(3), 627–646 (2012).
[Crossref] [PubMed]

M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Trans. Syst. Man Cybern. B Cybern. 26(1), 29–41 (1996).
[Crossref] [PubMed]

IET Microw. Antennas Propag. (2)

L. Manica, N. Anselmi, P. Rocca, and A. Massa, “Robust mask-constrained linear array synthesis through aninterval-based particle SWARM optimisation,” IET Microw. Antennas Propag. 7(12), 976–984 (2013).
[Crossref]

S. Ogurtsov and S. Koziel, “Fast surrogate-assisted simulation-driven optimisation of add-drop resonators for integrated photonic circuits,” IET Microw. Antennas Propag. 9(7), 672–675 (2015).
[Crossref]

in Optical Design and Engineering II (International Society for Optics and Photonics (1)

S. Thibault, C. Gagné, J. Beaulieu, and M. Parizeau, “Evolutionary algorithms applied to lens design: case study and analysis,” in Optical Design and Engineering II (International Society for Optics and Photonics 5962(9), 596209 (2005).

Int. J. Geogr. Inf. Sci. (1)

M. A. Oliver and R. Webster, “Kriging: a method of interpolation for geographical information systems,” Int. J. Geogr. Inf. Sci. 4(3), 313–332 (1990).
[Crossref]

Int. J. Numer. Model. (1)

A. Bekasiewicz and S. Koziel, “Surrogate-assisted design optimization of photonic directional couplers: optimization of photonic couplers,” Int. J. Numer. Model. 30(3–4), e2088 (2017).
[Crossref]

Integr. Comp. Biol. (1)

D. Charbonneau, C. Poff, H. Nguyen, M. C. Shin, K. Kierstead, and A. Dornhaus, “Who are the “lazy” ants? The function of inactivity in social insects and a possible role of constraint: inactive ants are corpulent and may be young and/or selfish,” Integr. Comp. Biol. 57(3), 649–667 (2017).
[Crossref] [PubMed]

J Electromagnet. Wave. (1)

A. Massa, G. Oliveri, M. Salucci, N. Anselmi, and P. Rocca, “Learning-by-examples techniques as applied to electromagnetics,” J Electromagnet. Wave. 32(4), 516–541 (2018).

J. Glob. Optim. (1)

R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces,” J. Glob. Optim. 11(4), 341–359 (1997).
[Crossref]

J. Opt. (1)

S. D. Campbell, J. Nagar, D. E. Brocker, and D. H. Werner, “On the use of surrogate models in the analytical decompositions of refractive index gradients obtained through quasiconformal transformation optics,” J. Opt. 18(4), 044019 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

J. Phys. Conf. Ser. (1)

M. Salucci and T. Moriyama, “Robust antenna design through a hybrid inversion strategy combining interval analysis and nature-inspired optimization,” J. Phys. Conf. Ser. 904(1), 012007 (2017).
[Crossref]

J. Res. Natl. Bur. Stand. (1)

M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear systems,” J. Res. Natl. Bur. Stand. 49(6), 409 (1952).
[Crossref]

J. Soc. Ind. Appl. Math. (1)

D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963).
[Crossref]

Laser Photonics Rev. (1)

J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser Photonics Rev. 5(2), 308–321 (2011).
[Crossref]

Mach. Learn. (1)

C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn. 20(3), 273–297 (1995).
[Crossref]

Microw. Opt. Technol. Lett. (1)

S. K. Goudos and J. N. Sahalos, “Microwave absorber optimal design using multi-objective particle swarm optimization,” Microw. Opt. Technol. Lett. 48(8), 1553–1558 (2006).
[Crossref]

Nano Lett. (3)

H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, and J. K. W. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12(3), 1683–1689 (2012).
[Crossref] [PubMed]

D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, “Large-angle, multifunctional metagratings based on freeform multimode geometries,” Nano Lett. 17(6), 3752–3757 (2017).
[Crossref] [PubMed]

C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett. 12(4), 2037–2044 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, Y. Zhang, Z. Fang, M. Y. Shalaginov, L. Deng, T. Gu, H. Zhang, and J. Hu, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

P. R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, and V. Paillard, “Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas,” Nat. Nanotechnol. 12(2), 163–169 (2016).
[Crossref] [PubMed]

Nature (1)

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
[Crossref] [PubMed]

Opt. Commun. (1)

S. Baskar, P. N. Suganthan, N. Q. Ngo, A. Alphones, and R. T. Zheng, “Design of triangular FBG filter for sensor applications using covariance matrix adapted evolution algorithm,” Opt. Commun. 260(2), 716–722 (2006).
[Crossref]

Opt. Express (10)

J. Nagar, D. E. Brocker, S. D. Campbell, J. A. Easum, and D. H. Werner, “Modularization of gradient-index optical design using wavefront matching enabled optimization,” Opt. Express 24(9), 9359–9368 (2016).
[Crossref] [PubMed]

J. Lu and J. Vučković, “Nanophotonic computational design,” Opt. Express 21(11), 13351–13367 (2013).
[Crossref] [PubMed]

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21(18), 21693–21701 (2013).
[Crossref] [PubMed]

J. A. Easum, S. D. Campbell, J. Nagar, and D. H. Werner, “Analytical surrogate model for the aberrations of an arbitrary GRIN lens,” Opt. Express 24(16), 17805–17818 (2016).
[Crossref] [PubMed]

R. A. Flynn, E. F. Fleet, G. Beadie, and J. S. Shirk, “Achromatic GRIN singlet lens design,” Opt. Express 21(4), 4970–4978 (2013).
[Crossref] [PubMed]

L. Li, Q.-H. Wang, X.-Q. Xu, and D.-H. Li, “Two-step method for lens system design,” Opt. Express 18(12), 13285–13300 (2010).
[Crossref] [PubMed]

K. Chen, L. Cui, Y. Feng, J. Zhao, T. Jiang, and B. Zhu, “Coding metasurface for broadband microwave scattering reduction with optical transparency,” Opt. Express 25(5), 5571–5579 (2017).
[Crossref] [PubMed]

P. Y. Chen, C. H. Chen, H. Wang, J. H. Tsai, and W. X. Ni, “Synthesis design of artificial magnetic metamaterials using a genetic algorithm,” Opt. Express 16(17), 12806–12818 (2008).
[Crossref] [PubMed]

S. D. Campbell, J. Nagar, and D. H. Werner, “Multi-element, multi-frequency lens transformations enabled by optical wavefront matching,” Opt. Express 25(15), 17258–17270 (2017).
[Crossref] [PubMed]

P. E. Sieber and D. H. Werner, “Infrared broadband quarter-wave and half-wave plates synthesized from anisotropic Bézier metasurfaces,” Opt. Express 22(26), 32371–32383 (2014).
[Crossref] [PubMed]

Opt. Lett. (2)

Optica (1)

Phys. Rev. Appl. (1)

Z. Lin, B. Groever, F. Capasso, A. W. Rodriguez, and M. Lončar, “Topology optimized multi-layered meta-optics,” Phys. Rev. Appl. 9(4), 044030 (2018).
[Crossref]

Phys. Rev. Lett. (1)

T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett. 109(12), 127701 (2012).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. Kim, A. M. H. Wong, and G. V. Eleftheriades, “Optical Huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients,” Phys. Rev. X 4(4), 041042 (2014).
[Crossref]

Proc. IEEE (1)

D. K. Cheng, “Optimization techniques for antenna arrays,” Proc. IEEE 59(12), 1664–1674 (1971).
[Crossref]

Proc. Math. Phys. Eng. Sci. (1)

A. I. J. Forrester, A. Sóbester, and A. J. Keane, “Multi-fidelity optimization via surrogate modelling,” Proc. Math. Phys. Eng. Sci. 463(2088), 3251–3269 (2007).
[Crossref]

Prog. Electromagn. Res. B (1)

P. J. Bradley, “Quasi-Newton model-trust region approach to surrogate-based optimisation of planar metamaterial structures,” Prog. Electromagn. Res. B 47, 1–17 (2013).
[Crossref]

Prog. Electromagn. Res. C (1)

T. Han, X.-Y. Cao, J. Gao, Y.-L. Zhao, and Y. Zhao, “A coding metasurface with properties of absorption and diffusion for RCS reduction,” Prog. Electromagn. Res. C 75, 181–191 (2017).
[Crossref]

Sci. Adv. (1)

J. Peurifoy, Y. Shen, L. Jing, Y. Yang, F. Cano-Renteria, B. G. DeLacy, J. D. Joannopoulos, M. Tegmark, and M. Soljačić, “Nanophotonic particle simulation and inverse design using artificial neural networks,” Sci. Adv. 4(6), r4206 (2018).
[Crossref] [PubMed]

Sci. Am. (1)

J. H. Holland, “Genetic algorithms,” Sci. Am. 267(1), 66–72 (1992).
[Crossref]

Sci. Rep. (3)

S. Jafar-Zanjani, S. Inampudi, and H. Mosallaei, “Adaptive genetic algorithm for optical metasurfaces design,” Sci. Rep. 8(1), 11040 (2018).
[Crossref] [PubMed]

F. Callewaert, V. Velev, P. Kumar, A. V. Sahakian, and K. Aydin, “Inverse-designed broadband all-dielectric electromagnetic metadevices,” Sci. Rep. 8(1), 1358 (2018).
[Crossref] [PubMed]

J. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7(1), 12228 (2017).
[Crossref] [PubMed]

SIAM J. Optim. (1)

J. Fliege, L. M. G. Drummond, and B. F. Svaiter, “Newton’s Method for Multiobjective Optimization,” SIAM J. Optim. 20(2), 602–626 (2009).
[Crossref]

Wuxiandian Gongcheng (1)

L. R. Ji-Di, X. Y. Cao, Y. Tang, S. M. Wang, Y. Zhao, and X. W. Zhu, “A new coding metasurface for wideband RCS reduction,” Wuxiandian Gongcheng 27(2), 394–401 (2018).
[Crossref]

Other (26)

A. Lewis, G. Weis, M. Randall, A. Galehdar, and D. Thiel, “Optimising efficiency and gain of small meander line RFID antennas using ant colony system,” in 2009 IEEE Congress on Evolutionary Computation (2009), pp. 1486–1492.
[Crossref]

X.-S. Yang, “A new metaheuristic bat-inspired algorithm,” in Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), J. R. González, D. A. Pelta, C. Cruz, G. Terrazas, and N. Krasnogor, eds., Studies in Computational Intelligence (Springer Berlin Heidelberg, 2010), pp. 65–74.

J. Kennedy, “Swarm intelligence,” in Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies, A. Y. Zomaya, ed. (Springer US, 2006), pp. 187–219.

X.-S. Yang, Nature-Inspired Metaheuristic Algorithms (Luniver Press, 2008).

D. H. Werner, J. A. Bossard, Z. Bayraktar, Z. H. Jiang, M. D. Gregory, and P. L. Werner, “Nature inspired optimization techniques for metamaterial design,” in Numerical Methods for Metamaterial Design, K. Diest, ed., Topics in Applied Physics (Springer Netherlands, 2013), pp. 97–146.

A. El-Gallad, M. El-Hawary, A. Sallam, and A. Kalas, “Enhancing the particle swarm optimizer via proper parameters selection,” in IEEE CCECE2002. Canadian Conference on Electrical and Computer Engineering. Conference Proceedings (Cat. No.02CH37373)2, 792–797 (2002).
[Crossref]

E. L. Lawler, ed., The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, Wiley-Interscience Series in Discrete Mathematics (Wiley, 1985).

S. D. Campbell, D. Z. Zhu, J. Nagar, R. P. Jenkins, J. A. Easum, D. H. Werner, and P. L. Werner, “Inverse design of engineered materials for extreme optical devices,” in 2018 International Applied Computational Electromagnetics Society Symposium (ACES) (IEEE, 2018), pp. 1–2.
[Crossref]

“Creative Commons — Attribution 4.0 International — CC BY 4.0,” https://creativecommons.org/licenses/by/4.0/ .

R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics (IEEE Press : Wiley-Interscience, 2007).

K. Deb, “Multi-objective optimization,” in Search Methodologies (Springer US, 2014), pp. 403–449.

J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, 1st MIT Press ed, Complex Adaptive Systems (MIT Press, 1992).

Genetic and Evolutionary Computation Conference, International Conference on Genetic Algorithms, and Genetic and Evolutionary Computation Conference, GECCO 2018, the Genetic and Evolutionary Computation Conference Companium [a Recombination of the 27th International Conference on Genetic Algorithms (ICGA) and the 23rd Annual Genetic Programming Conference (GP)], July 15th - 19th 2018, Kyoto, Japan (Association for Computing Machinery, 2018).

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International Conference on Neural Networks (IEEE, 1995), 4, pp. 1942–1948.
[Crossref]

A. Massa, G. Oliveri, P. Rocca, and F. Viani, “System-by-design: A new paradigm for handling design complexity,” in The 8th European Conference on Antennas and Propagation (EuCAP 2014) (IEEE, 2014), pp. 1180–1183.
[Crossref]

T. H. Jamieson, Optimization Techniques in Lens Design, Monographs on Applied Optics, No. 5 (American Elsevier Pub. Co, 1971).

J. Raphson, “Analysis aequationum universalis seu ad aequationes algebraicas resolvendas methodus generalis, & expedita, ex nova infinitarum serierum methodo, deducta ac demonstrata: cui annexum est de spatio reali, seu ente infinito conamen mathematico-metaphysicum,” (1697).

I. Newton, The Method of Fluxions and Infinite Series: With its Application to the Geometry of Curve-Lines (London, 1736).

A. Yabe, Optimization in Lens Design (SPIE Press, 2018).

J. E. Alvarez-Benitez, R. M. Everson, and J. E. Fieldsend, “A MOPSO algorithm based exclusively on Pareto dominance concepts,” in Evolutionary Multi-Criterion Optimization, C. A. Coello Coello, A. Hernández Aguirre, and E. Zitzler, eds. (Springer Berlin Heidelberg, 2005), 3410, pp. 459–473.

K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, Paperback edition (Wiley, 2008).

S. D. Campbell, J. Nagar, J. A. Easum, D. H. Werner, and P. L. Werner, “Surrogate-assisted transformation optics inspired GRIN lens design and optimization,” in 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES) (IEEE, 2017), pp. 1–2.
[Crossref]

P. Camayd-Muñoz and A. Faraon, “Scaling laws for inverse-designed metadevices,” in Conference on Lasers and Electro-Optics (OSA, 2018), p. FF3C.7.

P. Petropoulos and X. Yang, “Nonlinear sculpturing of optical spectra,” in 2012 14th International Conference on Transparent Optical Networks (ICTON) (2012), pp. 1–4.
[Crossref]

“Creative Commons — Attribution-NonCommercial 4.0 International — CC BY-NC 4.0,” https://creativecommons.org/licenses/by-nc/4.0/ .

“Creative Commons — Attribution 3.0 Unported — CC BY 3.0,” https://creativecommons.org/licenses/by/3.0/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Flowchart for optical, nanophotonic, and meta-device optimization. By following the flowchart a designer can quickly determine what optimization category (i.e., continuous or combinatorial) and algorithm may be best suited for their type of problem.
Fig. 2
Fig. 2 Several meta-devices optimized by the GA: (a) Multilayer genetically-optimized unit cell with large and broadband absorption over wide field-of-view. (Left) Unit cell geometry. (Middle) top-down views of unit cell as simulated and fabricated. (Right) Measured absorption spectra. (Reprinted (adapted) with permission from [29]. Copyright 2014 American Chemical Society). (b) Plasmonic nanoparticle array that is optimized with the GA (right) and a comparison of its field enhancement performance against periodic- and dimer-based array tilings. (Reprinted (adapted) with permission from [30]. Copyright 2012 American Chemical Society). (c) Genetically optimized nanoantenna with large field enhancement in the vicinity of a quantum emitter. (Reprinted figure with permission from [31]. Copyright 2012 by the American Physical Society). (d) Depiction of GA binary encoding (top) and (bottom) various imposed symmetry conditions. (Reprinted with permission from [32]). (e) Genetically-optimized unit cells (right-inset) patterned into a phase-gradient metasurface (middle) to achieve large directivity into a desired steering angle (left). (Reprinted (adapted) from [33] licensed under CC BY 4.0 [34]).
Fig. 3
Fig. 3 Additional global optimization examples. (a) (Top) example meander-line electromagnetic structures generated by ACO- (reprinted with permissions from [43], IEEE) and (bottom) MOLACO-based techniques (reprinted with permissions from [44], IEEE). (b) An ellipsoidal nano-particle Yadi-Uda antenna array for super-directive applications (Reprinted/adapted with permission from [45], OSA). (c) A nano-hole array-based beam steering metasurface (Reprinted /adapted with permission from [46], OSA). (d) Polarization-converting metasurface optimized by (top) CMA-ES for broadband operation and compared to the (bottom) best GA design (reprinted/adapted with permission from [47], OSA). (e) Electromagnetic band-gap structures optimized via a combined port-reduction and global optimization strategy (reprinted with permission from [48], IEEE). (f) Gaussian to top-hat beam converting (top) homogeneous and (bottom) GRIN lens systems (reprinted/adapted with permission from [49], OSA).
Fig. 4
Fig. 4 Freeform nanophotonic design using topology optimization. (a) Schematic of the adjoint method in which the merit function gradient is calculated using forward and adjoint simulations (reprinted/adapted with permission from [80], OSA). (b) A freeform fiber coupler, designed using objective-first topology optimization, which sends 1310nm and 1550nm light from a fiber into different silicon waveguides. (Reprinted/adapted with permission from [82], OSA). (c) Plot showing the evolution of the geometry and diffraction efficiency of a meta-grating during optimization (reprinted/adapted with permission from [81]. Copyright 2017 American Chemical Society). (d) Scanning electron microscope (SEM) image and experimental efficiencies of the device from (c) (reprinted/adapted with permission from [81]. Copyright 2017 American Chemical Society). (e) Experimental efficiencies versus the number of split wavelengths (N) for multi-functional meta-gratings designed to split different wavelengths of TM light into different diffraction channels. Right: schematics and SEM images of the 2- and 5-wavelength devices (reprinted with permissions from [84], Copyright 2017 John Wiley and Sons).
Fig. 5
Fig. 5 Topology-optimized devices extending beyond a single layer of binary materials. (a) A 2-layer meta-grating designed to reflect or transmit light dependent on input angle (reprinted (adapted) from [86] licensed under CC BY 4.0 [34]). (b) A 23λ-wide cylindrical lens with a 30λ focal length that is optimized to be field-flatness corrected for incidence angles of 0°, ± 7.5°, ± 15°, and ± 20° (reprinted with permission from [87]. Copyright (2018) by the American Physical Society). (c) A spectral splitter for solar cells created by optimizing heights in textured resist (Reprinted (adapted) with permissions from [88]. Copyright (2016) American Chemical Society). (d) Schematic and simulation of a 3-wavelength polymer lens. The device is proposed to be fabricated using 3D printing based on two photon polymerization (reprinted with permissions from [89]). (e) Image and experimental results of a 3D-printed polarization splitter, with millimeter-scale features, designed for 33 GHz microwaves (reprinted (adapted) from [90] licensed under CC BY 4.0 [34]).
Fig. 6
Fig. 6 Summary of MOO concepts and device examples. (a) Example Pareto front showcasing the tradeoffs between performance and SWaP for a hypothetical problem. (b) (Top) Scattering efficiency spectra for the three design configurations (bottom) called out in the figure below (reprinted with permissions from [97], Springer Nature). (c) (Top-left) Pareto set of optimal design showing the tradeoffs between design objectives in the high and low frequency pass and stop bands, respectively, and their corresponding unit cell geometries (top-right). (Bottom) Measured transmission data for the fabricated unit cell based on geometry 8 for (left) TE and (right) TM polarizations (reprinted with permissions from [58], IEEE). (d) Two-layer coated nano-particle (CNP) multi-objective optimization results when trying to maximize scattering efficiency (left-top) and FTBR (left-bottom) while minimizing the CNP electrical size ka. Their near- and far-field behaviors are given in the top-right (Design 1) and bottom-right (Design 2) figures, respectively (reprinted with permission from [98], IEEE). (e) Si-Air hole based photonic crystal waveguide (top-left). A multi-objective Parallel Tabu Search is used to generate a Pareto front (top-right) of the tradeoffs between phase and amplitude metrics of a generated Hermite-Gaussian beam (reprinted with permission from [99], OSA).
Fig. 7
Fig. 7 Surrogate-model assisted optimized meta-devices. (a) Plasmonic bow-tie nanoantenna configurations and their corresponding equivalent circuit models (reprinted (adapted) with permission from [106]. Copyright (2012) American Chemical Society). (b) Huygens nanoantenna unit cell geometry (left) and corresponding equivalent-circuit model (right) (Reprinted (adapted) from [107] licensed under CC BY 3.0 [115]). (c) Example nanoparticle morphologies which have been optimized to maximize field enhancement at various wavelengths (reprinted (adapted) with permission from [116]. Copyright 2016 American Chemical Society). (d) Example lens geometry transformation and resulting index map generated from quasiconformal transformation optics (top) and (bottom) a comparison of resulting polynomial coefficients from lens transformation employing full qTO and a Kriging surrogate model (reprinted (adapted) with permission from [111]). (e) (Top) Sampled lenses with varying levels of optical aberrations used to train surrogate model and (bottom) a comparison between time required to optimize using the surrogate model (green) and ray tracer (red) (reprinted (adapted) with permission from [113], OSA). (f) (Top-Left) A two-dimensional response surface reconstructed by the surrogate model with the nominal design indicated by the magenta dot. (Top-right) The largest possible tolerance hypervolume box is constructed around the sample and this tolerance estimate is validated with additional samples in the vicinity of the nominal design. (Bottom) The Pareto-set of optimal design showing the tradeoffs between realized gain and the estimated design tolerance (reprinted (adapted) with permission from [27], IEEE).
Fig. 8
Fig. 8 Inverse nanophotonic design with deep learning. Neural networks can relate: (a) the scattering profile from concentric dielectric spheres with the sphere dimensions (reprinted/adapted from [129]. © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution Non Commercial License 4.0 (CC BY-NC) [133]), (b) diffraction efficiencies with the detailed unit cell geometry of a meta-grating (reprinted from [130], with the permission of AIP publishing), (c) optical filtering spectrum with the geometry of a thin film dielectric stack. (reprinted (adapted) with permission from [131]. Copyright (2018) American Chemical Society). (d) the chiroptical spectral response with the relative orientations of two split rings (reprinted (adapted) with permission from [132]. Copyright (2018) American Chemical Society).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϵ( r )=( ϵ high ϵ low )a( r )+ ϵ low

Metrics