Abstract

Capacitively coupled atmospheric pressure plasma processing (CCAPPP) has been developed as a sub-aperture figuring tool for high precision fused silica optics, due to deterministic high rate material removal, small tool spot and no induced subsurface damage. In order to carry out an in-depth understanding on the removal and surface morphology formation mechanism of CCAPPP, this study aims to model the plasma discharge process and surface chemical reaction using the multi-physics simulation. The discharge characteristics such as electron density, electron temperature and particle density in the plasma are firstly obtained. Reaction gas components (CF4 and O2) are also added, and the main chemical reactions are analyzed by zero-dimensional modelling. Then the distribution of active atoms (active F atoms, O atoms and CFx molecules) related to the removal process is simulated in the full CCAPPP model. Finally, experiments are carried out to verify the simulation results, indicating that the distribution of active F atoms on the workpiece surface determines the Gaussian removal profile and the ratio of O/CFx is the key factor affecting the surface morphology formation of CCAPPP.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Removal characteristics of plasma chemical vaporization machining with a pipe electrode for optical fabrication

Hideo Takino, Kazuya Yamamura, Yasuhisa Sano, and Yuzo Mori
Appl. Opt. 49(23) 4434-4440 (2010)

Computer numerically controlled plasma chemical vaporization machining with a pipe electrode for optical fabrication

Hideo Takino, Norio Shibata, Hiroshi Itoh, Teruki Kobayashi, Hiroaki Tanaka, Masami Ebi, Kazuya Yamamura, Yasuhisa Sano, and Yuzo Mori
Appl. Opt. 37(22) 5198-5210 (1998)

Transverse-Flow Quasi-cw HF Chemical Laser: Design and Preliminary Performance

J. M. Gagne, S. Q. Mah, and Y. Conturie
Appl. Opt. 13(12) 2835-2839 (1974)

References

  • View by:
  • |
  • |
  • |

  1. P. Baisden, L. Atherton, R. Hawley, T. Land, J. Menapace, P. Miller, M. Runkel, M. Spaeth, C. Stolz, and T. Suratwala, “Large optics for the national ignition facility,” Fusion Sci. Technol. 69(1), 295–351 (2016).
    [Crossref]
  2. B. D. Seery, “The james webb space telescope (JWST): hubble's scientific and technological successor,” in IR Space Telescopes and Instruments, (International Society for Optics and Photonics, 2003), pp. 170–179.
  3. P. Shore and R. May-Miller, “Production challenge of the optical segments for extra large telescopes,” in International Progress on Advanced Optics and Sensors (SPIE,2003), p. 25.
  4. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, and C. W. Carr, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
    [Crossref]
  5. D. D. Walker, D. Brooks, A. King, R. Freeman, R. Morton, G. McCavana, and S.-W. Kim, “The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces,” Opt. Express 11(8), 958–964 (2003).
    [Crossref]
  6. H. Li, D. Walker, G. Yu, and W. Zhang, “Modeling and validation of polishing tool influence functions for manufacturing segments for an extremely large telescope,” Appl. Opt. 52(23), 5781–5787 (2013).
    [Crossref]
  7. D. Golini, W. I. Kordonski, P. Dumas, and S. J. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” in SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, (International Society for Optics and Photonics, 1999), pp. 80–91.
  8. S. Jha and V. Jain, “Design and development of the magnetorheological abrasive flow finishing (MRAFF) process,” Int. J. Mach. Tools Manuf. 44(10), 1019–1029 (2004).
    [Crossref]
  9. O. W. Fähnle, H. V. Brug, and H. J. Frankena, “Fluid jet polishing of optical surfaces,” Appl. Opt. 37(28), 6771–6773 (1998).
    [Crossref]
  10. P. M. Shanbhag, M. R. Feinberg, G. Sandri, M. N. Horenstein, and T. G. Bifano, “Ion-beam machining of millimeter scale optics,” Appl. Opt. 39(4), 599–611 (2000).
    [Crossref]
  11. M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res., Sect. B 267(8-9), 1390–1393 (2009).
    [Crossref]
  12. R. Jourdain, M. Castelli, P. Shore, P. Sommer, and D. Proscia, “Reactive atom plasma (RAP) figuring machine for meter class optical surfaces,” Prod. Eng. 7(6), 665–673 (2013).
    [Crossref]
  13. X. Su, L. Xia, K. Liu, P. Zhang, P. Li, R. Zhao, and B. Wang, “Fabrication of a large-aperture continuous phase plate in two modes using atmospheric pressure plasma processing,” Chin. Opt. Lett. 16(10), 102201 (2018).
    [Crossref]
  14. J. Meister and T. Arnold, “New process simulation procedure for high-rate plasma jet machining,” Plasma Chem. Plasma Process. 31(1), 91–107 (2011).
    [Crossref]
  15. H. Takino, K. Yamamura, Y. Sano, and Y. Mori, “Shape correction of optical surfaces using plasma chemical vaporization machining with a hemispherical tip electrode,” Appl. Opt. 51(3), 401–407 (2012).
    [Crossref]
  16. M. Castelli, R. Jourdain, P. Morantz, and P. Shore, “Rapid optical surface figuring using reactive atom plasma,” Precis. Eng. 36(3), 467–476 (2012).
    [Crossref]
  17. Y. Mori, Y. Yamauchi, K. Yamamura, H. Mimura, A. Saito, H. Kishimoto, Y. Sekito, M. Kanaoka, A. Souvorov, and M. Yabashi, “Development of plasma chemical vaporization machining and elastic emission machining systems for coherent X-ray optics,” in X-Ray Mirrors, Crystals, and Multilayers, (International Society for Optics and Photonics, 2001), pp. 30–43.
  18. T. Arnold, G. Boehm, I. M. Eichentopf, M. Janietz, J. Meister, and A. Schindler, “Plasma Jet Machining: A novel technology for precision machining of optical elements,” Vak. Forsch. Prax. 22(4), 10–16 (2010).
    [Crossref]
  19. Q. Xin, N. Li, J. Wang, B. Wang, G. Li, F. Ding, and H. Jin, “Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma,” Appl. Surf. Sci. 341, 142–148 (2015).
    [Crossref]
  20. Q. Xin, X. Su, and B. Wang, “Modeling study on the surface morphology evolution during removing the optics surface/subsurface damage using atmospheric pressure plasma processing,” Appl. Surf. Sci. 382, 260–267 (2016).
    [Crossref]
  21. Y. Yao, B. Wang, J. Wang, H. Jin, Y. Zhang, and S. Dong, “Chemical machining of Zerodur material with atmospheric pressure plasma jet,” CIRP Ann. 59(1), 337–340 (2010).
    [Crossref]
  22. C. Jiao, S. Li, and X. Xie, “Algorithm for ion beam figuring of low-gradient mirrors,” Appl. Opt. 48(21), 4090–4096 (2009).
    [Crossref]
  23. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (John Wiley & Sons, 2005).

2018 (1)

2016 (2)

P. Baisden, L. Atherton, R. Hawley, T. Land, J. Menapace, P. Miller, M. Runkel, M. Spaeth, C. Stolz, and T. Suratwala, “Large optics for the national ignition facility,” Fusion Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Q. Xin, X. Su, and B. Wang, “Modeling study on the surface morphology evolution during removing the optics surface/subsurface damage using atmospheric pressure plasma processing,” Appl. Surf. Sci. 382, 260–267 (2016).
[Crossref]

2015 (1)

Q. Xin, N. Li, J. Wang, B. Wang, G. Li, F. Ding, and H. Jin, “Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma,” Appl. Surf. Sci. 341, 142–148 (2015).
[Crossref]

2013 (2)

R. Jourdain, M. Castelli, P. Shore, P. Sommer, and D. Proscia, “Reactive atom plasma (RAP) figuring machine for meter class optical surfaces,” Prod. Eng. 7(6), 665–673 (2013).
[Crossref]

H. Li, D. Walker, G. Yu, and W. Zhang, “Modeling and validation of polishing tool influence functions for manufacturing segments for an extremely large telescope,” Appl. Opt. 52(23), 5781–5787 (2013).
[Crossref]

2012 (2)

H. Takino, K. Yamamura, Y. Sano, and Y. Mori, “Shape correction of optical surfaces using plasma chemical vaporization machining with a hemispherical tip electrode,” Appl. Opt. 51(3), 401–407 (2012).
[Crossref]

M. Castelli, R. Jourdain, P. Morantz, and P. Shore, “Rapid optical surface figuring using reactive atom plasma,” Precis. Eng. 36(3), 467–476 (2012).
[Crossref]

2011 (2)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, and C. W. Carr, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

J. Meister and T. Arnold, “New process simulation procedure for high-rate plasma jet machining,” Plasma Chem. Plasma Process. 31(1), 91–107 (2011).
[Crossref]

2010 (2)

T. Arnold, G. Boehm, I. M. Eichentopf, M. Janietz, J. Meister, and A. Schindler, “Plasma Jet Machining: A novel technology for precision machining of optical elements,” Vak. Forsch. Prax. 22(4), 10–16 (2010).
[Crossref]

Y. Yao, B. Wang, J. Wang, H. Jin, Y. Zhang, and S. Dong, “Chemical machining of Zerodur material with atmospheric pressure plasma jet,” CIRP Ann. 59(1), 337–340 (2010).
[Crossref]

2009 (2)

C. Jiao, S. Li, and X. Xie, “Algorithm for ion beam figuring of low-gradient mirrors,” Appl. Opt. 48(21), 4090–4096 (2009).
[Crossref]

M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res., Sect. B 267(8-9), 1390–1393 (2009).
[Crossref]

2004 (1)

S. Jha and V. Jain, “Design and development of the magnetorheological abrasive flow finishing (MRAFF) process,” Int. J. Mach. Tools Manuf. 44(10), 1019–1029 (2004).
[Crossref]

2003 (1)

2000 (1)

1998 (1)

Arnold, T.

J. Meister and T. Arnold, “New process simulation procedure for high-rate plasma jet machining,” Plasma Chem. Plasma Process. 31(1), 91–107 (2011).
[Crossref]

T. Arnold, G. Boehm, I. M. Eichentopf, M. Janietz, J. Meister, and A. Schindler, “Plasma Jet Machining: A novel technology for precision machining of optical elements,” Vak. Forsch. Prax. 22(4), 10–16 (2010).
[Crossref]

Atherton, L.

P. Baisden, L. Atherton, R. Hawley, T. Land, J. Menapace, P. Miller, M. Runkel, M. Spaeth, C. Stolz, and T. Suratwala, “Large optics for the national ignition facility,” Fusion Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Baisden, P.

P. Baisden, L. Atherton, R. Hawley, T. Land, J. Menapace, P. Miller, M. Runkel, M. Spaeth, C. Stolz, and T. Suratwala, “Large optics for the national ignition facility,” Fusion Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Bifano, T. G.

Boehm, G.

T. Arnold, G. Boehm, I. M. Eichentopf, M. Janietz, J. Meister, and A. Schindler, “Plasma Jet Machining: A novel technology for precision machining of optical elements,” Vak. Forsch. Prax. 22(4), 10–16 (2010).
[Crossref]

Brooks, D.

Brug, H. V.

Bude, J. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, and C. W. Carr, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Carr, C. W.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, and C. W. Carr, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Castelli, M.

R. Jourdain, M. Castelli, P. Shore, P. Sommer, and D. Proscia, “Reactive atom plasma (RAP) figuring machine for meter class optical surfaces,” Prod. Eng. 7(6), 665–673 (2013).
[Crossref]

M. Castelli, R. Jourdain, P. Morantz, and P. Shore, “Rapid optical surface figuring using reactive atom plasma,” Precis. Eng. 36(3), 467–476 (2012).
[Crossref]

Ding, F.

Q. Xin, N. Li, J. Wang, B. Wang, G. Li, F. Ding, and H. Jin, “Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma,” Appl. Surf. Sci. 341, 142–148 (2015).
[Crossref]

Dong, S.

Y. Yao, B. Wang, J. Wang, H. Jin, Y. Zhang, and S. Dong, “Chemical machining of Zerodur material with atmospheric pressure plasma jet,” CIRP Ann. 59(1), 337–340 (2010).
[Crossref]

Dumas, P.

D. Golini, W. I. Kordonski, P. Dumas, and S. J. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” in SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, (International Society for Optics and Photonics, 1999), pp. 80–91.

Eichentopf, I. M.

T. Arnold, G. Boehm, I. M. Eichentopf, M. Janietz, J. Meister, and A. Schindler, “Plasma Jet Machining: A novel technology for precision machining of optical elements,” Vak. Forsch. Prax. 22(4), 10–16 (2010).
[Crossref]

Fähnle, O. W.

Feinberg, M. R.

Feit, M. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, and C. W. Carr, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Frankena, H. J.

Freeman, R.

Golini, D.

D. Golini, W. I. Kordonski, P. Dumas, and S. J. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” in SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, (International Society for Optics and Photonics, 1999), pp. 80–91.

Hawley, R.

P. Baisden, L. Atherton, R. Hawley, T. Land, J. Menapace, P. Miller, M. Runkel, M. Spaeth, C. Stolz, and T. Suratwala, “Large optics for the national ignition facility,” Fusion Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Hogan, S. J.

D. Golini, W. I. Kordonski, P. Dumas, and S. J. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” in SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, (International Society for Optics and Photonics, 1999), pp. 80–91.

Horenstein, M. N.

Jain, V.

S. Jha and V. Jain, “Design and development of the magnetorheological abrasive flow finishing (MRAFF) process,” Int. J. Mach. Tools Manuf. 44(10), 1019–1029 (2004).
[Crossref]

Janietz, M.

T. Arnold, G. Boehm, I. M. Eichentopf, M. Janietz, J. Meister, and A. Schindler, “Plasma Jet Machining: A novel technology for precision machining of optical elements,” Vak. Forsch. Prax. 22(4), 10–16 (2010).
[Crossref]

Jha, S.

S. Jha and V. Jain, “Design and development of the magnetorheological abrasive flow finishing (MRAFF) process,” Int. J. Mach. Tools Manuf. 44(10), 1019–1029 (2004).
[Crossref]

Jiao, C.

Jin, H.

Q. Xin, N. Li, J. Wang, B. Wang, G. Li, F. Ding, and H. Jin, “Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma,” Appl. Surf. Sci. 341, 142–148 (2015).
[Crossref]

Y. Yao, B. Wang, J. Wang, H. Jin, Y. Zhang, and S. Dong, “Chemical machining of Zerodur material with atmospheric pressure plasma jet,” CIRP Ann. 59(1), 337–340 (2010).
[Crossref]

Jourdain, R.

R. Jourdain, M. Castelli, P. Shore, P. Sommer, and D. Proscia, “Reactive atom plasma (RAP) figuring machine for meter class optical surfaces,” Prod. Eng. 7(6), 665–673 (2013).
[Crossref]

M. Castelli, R. Jourdain, P. Morantz, and P. Shore, “Rapid optical surface figuring using reactive atom plasma,” Precis. Eng. 36(3), 467–476 (2012).
[Crossref]

Kanaoka, M.

Y. Mori, Y. Yamauchi, K. Yamamura, H. Mimura, A. Saito, H. Kishimoto, Y. Sekito, M. Kanaoka, A. Souvorov, and M. Yabashi, “Development of plasma chemical vaporization machining and elastic emission machining systems for coherent X-ray optics,” in X-Ray Mirrors, Crystals, and Multilayers, (International Society for Optics and Photonics, 2001), pp. 30–43.

Kim, S.-W.

King, A.

Kishimoto, H.

Y. Mori, Y. Yamauchi, K. Yamamura, H. Mimura, A. Saito, H. Kishimoto, Y. Sekito, M. Kanaoka, A. Souvorov, and M. Yabashi, “Development of plasma chemical vaporization machining and elastic emission machining systems for coherent X-ray optics,” in X-Ray Mirrors, Crystals, and Multilayers, (International Society for Optics and Photonics, 2001), pp. 30–43.

Kordonski, W. I.

D. Golini, W. I. Kordonski, P. Dumas, and S. J. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” in SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, (International Society for Optics and Photonics, 1999), pp. 80–91.

Land, T.

P. Baisden, L. Atherton, R. Hawley, T. Land, J. Menapace, P. Miller, M. Runkel, M. Spaeth, C. Stolz, and T. Suratwala, “Large optics for the national ignition facility,” Fusion Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Laurence, T. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, and C. W. Carr, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Li, G.

Q. Xin, N. Li, J. Wang, B. Wang, G. Li, F. Ding, and H. Jin, “Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma,” Appl. Surf. Sci. 341, 142–148 (2015).
[Crossref]

Li, H.

Li, N.

Q. Xin, N. Li, J. Wang, B. Wang, G. Li, F. Ding, and H. Jin, “Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma,” Appl. Surf. Sci. 341, 142–148 (2015).
[Crossref]

Li, P.

Li, S.

Lichtenberg, A. J.

M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (John Wiley & Sons, 2005).

Lieberman, M. A.

M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (John Wiley & Sons, 2005).

Liu, K.

May-Miller, R.

P. Shore and R. May-Miller, “Production challenge of the optical segments for extra large telescopes,” in International Progress on Advanced Optics and Sensors (SPIE,2003), p. 25.

McCavana, G.

Meister, J.

J. Meister and T. Arnold, “New process simulation procedure for high-rate plasma jet machining,” Plasma Chem. Plasma Process. 31(1), 91–107 (2011).
[Crossref]

T. Arnold, G. Boehm, I. M. Eichentopf, M. Janietz, J. Meister, and A. Schindler, “Plasma Jet Machining: A novel technology for precision machining of optical elements,” Vak. Forsch. Prax. 22(4), 10–16 (2010).
[Crossref]

Menapace, J.

P. Baisden, L. Atherton, R. Hawley, T. Land, J. Menapace, P. Miller, M. Runkel, M. Spaeth, C. Stolz, and T. Suratwala, “Large optics for the national ignition facility,” Fusion Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Miller, P.

P. Baisden, L. Atherton, R. Hawley, T. Land, J. Menapace, P. Miller, M. Runkel, M. Spaeth, C. Stolz, and T. Suratwala, “Large optics for the national ignition facility,” Fusion Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Miller, P. E.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, and C. W. Carr, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Mimura, H.

Y. Mori, Y. Yamauchi, K. Yamamura, H. Mimura, A. Saito, H. Kishimoto, Y. Sekito, M. Kanaoka, A. Souvorov, and M. Yabashi, “Development of plasma chemical vaporization machining and elastic emission machining systems for coherent X-ray optics,” in X-Ray Mirrors, Crystals, and Multilayers, (International Society for Optics and Photonics, 2001), pp. 30–43.

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, and C. W. Carr, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Morantz, P.

M. Castelli, R. Jourdain, P. Morantz, and P. Shore, “Rapid optical surface figuring using reactive atom plasma,” Precis. Eng. 36(3), 467–476 (2012).
[Crossref]

Mori, Y.

H. Takino, K. Yamamura, Y. Sano, and Y. Mori, “Shape correction of optical surfaces using plasma chemical vaporization machining with a hemispherical tip electrode,” Appl. Opt. 51(3), 401–407 (2012).
[Crossref]

Y. Mori, Y. Yamauchi, K. Yamamura, H. Mimura, A. Saito, H. Kishimoto, Y. Sekito, M. Kanaoka, A. Souvorov, and M. Yabashi, “Development of plasma chemical vaporization machining and elastic emission machining systems for coherent X-ray optics,” in X-Ray Mirrors, Crystals, and Multilayers, (International Society for Optics and Photonics, 2001), pp. 30–43.

Morton, R.

Norton, M. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, and C. W. Carr, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Proscia, D.

R. Jourdain, M. Castelli, P. Shore, P. Sommer, and D. Proscia, “Reactive atom plasma (RAP) figuring machine for meter class optical surfaces,” Prod. Eng. 7(6), 665–673 (2013).
[Crossref]

Runkel, M.

P. Baisden, L. Atherton, R. Hawley, T. Land, J. Menapace, P. Miller, M. Runkel, M. Spaeth, C. Stolz, and T. Suratwala, “Large optics for the national ignition facility,” Fusion Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Saito, A.

Y. Mori, Y. Yamauchi, K. Yamamura, H. Mimura, A. Saito, H. Kishimoto, Y. Sekito, M. Kanaoka, A. Souvorov, and M. Yabashi, “Development of plasma chemical vaporization machining and elastic emission machining systems for coherent X-ray optics,” in X-Ray Mirrors, Crystals, and Multilayers, (International Society for Optics and Photonics, 2001), pp. 30–43.

Sandri, G.

Sano, Y.

Schindler, A.

T. Arnold, G. Boehm, I. M. Eichentopf, M. Janietz, J. Meister, and A. Schindler, “Plasma Jet Machining: A novel technology for precision machining of optical elements,” Vak. Forsch. Prax. 22(4), 10–16 (2010).
[Crossref]

Seery, B. D.

B. D. Seery, “The james webb space telescope (JWST): hubble's scientific and technological successor,” in IR Space Telescopes and Instruments, (International Society for Optics and Photonics, 2003), pp. 170–179.

Sekito, Y.

Y. Mori, Y. Yamauchi, K. Yamamura, H. Mimura, A. Saito, H. Kishimoto, Y. Sekito, M. Kanaoka, A. Souvorov, and M. Yabashi, “Development of plasma chemical vaporization machining and elastic emission machining systems for coherent X-ray optics,” in X-Ray Mirrors, Crystals, and Multilayers, (International Society for Optics and Photonics, 2001), pp. 30–43.

Shanbhag, P. M.

Shen, N.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, and C. W. Carr, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Shore, P.

R. Jourdain, M. Castelli, P. Shore, P. Sommer, and D. Proscia, “Reactive atom plasma (RAP) figuring machine for meter class optical surfaces,” Prod. Eng. 7(6), 665–673 (2013).
[Crossref]

M. Castelli, R. Jourdain, P. Morantz, and P. Shore, “Rapid optical surface figuring using reactive atom plasma,” Precis. Eng. 36(3), 467–476 (2012).
[Crossref]

P. Shore and R. May-Miller, “Production challenge of the optical segments for extra large telescopes,” in International Progress on Advanced Optics and Sensors (SPIE,2003), p. 25.

Sommer, P.

R. Jourdain, M. Castelli, P. Shore, P. Sommer, and D. Proscia, “Reactive atom plasma (RAP) figuring machine for meter class optical surfaces,” Prod. Eng. 7(6), 665–673 (2013).
[Crossref]

Souvorov, A.

Y. Mori, Y. Yamauchi, K. Yamamura, H. Mimura, A. Saito, H. Kishimoto, Y. Sekito, M. Kanaoka, A. Souvorov, and M. Yabashi, “Development of plasma chemical vaporization machining and elastic emission machining systems for coherent X-ray optics,” in X-Ray Mirrors, Crystals, and Multilayers, (International Society for Optics and Photonics, 2001), pp. 30–43.

Spaeth, M.

P. Baisden, L. Atherton, R. Hawley, T. Land, J. Menapace, P. Miller, M. Runkel, M. Spaeth, C. Stolz, and T. Suratwala, “Large optics for the national ignition facility,” Fusion Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Steele, W. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, and C. W. Carr, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Stolz, C.

P. Baisden, L. Atherton, R. Hawley, T. Land, J. Menapace, P. Miller, M. Runkel, M. Spaeth, C. Stolz, and T. Suratwala, “Large optics for the national ignition facility,” Fusion Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Su, X.

X. Su, L. Xia, K. Liu, P. Zhang, P. Li, R. Zhao, and B. Wang, “Fabrication of a large-aperture continuous phase plate in two modes using atmospheric pressure plasma processing,” Chin. Opt. Lett. 16(10), 102201 (2018).
[Crossref]

Q. Xin, X. Su, and B. Wang, “Modeling study on the surface morphology evolution during removing the optics surface/subsurface damage using atmospheric pressure plasma processing,” Appl. Surf. Sci. 382, 260–267 (2016).
[Crossref]

Suratwala, T.

P. Baisden, L. Atherton, R. Hawley, T. Land, J. Menapace, P. Miller, M. Runkel, M. Spaeth, C. Stolz, and T. Suratwala, “Large optics for the national ignition facility,” Fusion Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, and C. W. Carr, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Takino, H.

Walker, D.

Walker, D. D.

Wang, B.

X. Su, L. Xia, K. Liu, P. Zhang, P. Li, R. Zhao, and B. Wang, “Fabrication of a large-aperture continuous phase plate in two modes using atmospheric pressure plasma processing,” Chin. Opt. Lett. 16(10), 102201 (2018).
[Crossref]

Q. Xin, X. Su, and B. Wang, “Modeling study on the surface morphology evolution during removing the optics surface/subsurface damage using atmospheric pressure plasma processing,” Appl. Surf. Sci. 382, 260–267 (2016).
[Crossref]

Q. Xin, N. Li, J. Wang, B. Wang, G. Li, F. Ding, and H. Jin, “Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma,” Appl. Surf. Sci. 341, 142–148 (2015).
[Crossref]

Y. Yao, B. Wang, J. Wang, H. Jin, Y. Zhang, and S. Dong, “Chemical machining of Zerodur material with atmospheric pressure plasma jet,” CIRP Ann. 59(1), 337–340 (2010).
[Crossref]

Wang, J.

Q. Xin, N. Li, J. Wang, B. Wang, G. Li, F. Ding, and H. Jin, “Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma,” Appl. Surf. Sci. 341, 142–148 (2015).
[Crossref]

Y. Yao, B. Wang, J. Wang, H. Jin, Y. Zhang, and S. Dong, “Chemical machining of Zerodur material with atmospheric pressure plasma jet,” CIRP Ann. 59(1), 337–340 (2010).
[Crossref]

Weiser, M.

M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res., Sect. B 267(8-9), 1390–1393 (2009).
[Crossref]

Xia, L.

Xie, X.

Xin, Q.

Q. Xin, X. Su, and B. Wang, “Modeling study on the surface morphology evolution during removing the optics surface/subsurface damage using atmospheric pressure plasma processing,” Appl. Surf. Sci. 382, 260–267 (2016).
[Crossref]

Q. Xin, N. Li, J. Wang, B. Wang, G. Li, F. Ding, and H. Jin, “Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma,” Appl. Surf. Sci. 341, 142–148 (2015).
[Crossref]

Yabashi, M.

Y. Mori, Y. Yamauchi, K. Yamamura, H. Mimura, A. Saito, H. Kishimoto, Y. Sekito, M. Kanaoka, A. Souvorov, and M. Yabashi, “Development of plasma chemical vaporization machining and elastic emission machining systems for coherent X-ray optics,” in X-Ray Mirrors, Crystals, and Multilayers, (International Society for Optics and Photonics, 2001), pp. 30–43.

Yamamura, K.

H. Takino, K. Yamamura, Y. Sano, and Y. Mori, “Shape correction of optical surfaces using plasma chemical vaporization machining with a hemispherical tip electrode,” Appl. Opt. 51(3), 401–407 (2012).
[Crossref]

Y. Mori, Y. Yamauchi, K. Yamamura, H. Mimura, A. Saito, H. Kishimoto, Y. Sekito, M. Kanaoka, A. Souvorov, and M. Yabashi, “Development of plasma chemical vaporization machining and elastic emission machining systems for coherent X-ray optics,” in X-Ray Mirrors, Crystals, and Multilayers, (International Society for Optics and Photonics, 2001), pp. 30–43.

Yamauchi, Y.

Y. Mori, Y. Yamauchi, K. Yamamura, H. Mimura, A. Saito, H. Kishimoto, Y. Sekito, M. Kanaoka, A. Souvorov, and M. Yabashi, “Development of plasma chemical vaporization machining and elastic emission machining systems for coherent X-ray optics,” in X-Ray Mirrors, Crystals, and Multilayers, (International Society for Optics and Photonics, 2001), pp. 30–43.

Yao, Y.

Y. Yao, B. Wang, J. Wang, H. Jin, Y. Zhang, and S. Dong, “Chemical machining of Zerodur material with atmospheric pressure plasma jet,” CIRP Ann. 59(1), 337–340 (2010).
[Crossref]

Yu, G.

Zhang, P.

Zhang, W.

Zhang, Y.

Y. Yao, B. Wang, J. Wang, H. Jin, Y. Zhang, and S. Dong, “Chemical machining of Zerodur material with atmospheric pressure plasma jet,” CIRP Ann. 59(1), 337–340 (2010).
[Crossref]

Zhao, R.

Appl. Opt. (5)

Appl. Surf. Sci. (2)

Q. Xin, N. Li, J. Wang, B. Wang, G. Li, F. Ding, and H. Jin, “Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma,” Appl. Surf. Sci. 341, 142–148 (2015).
[Crossref]

Q. Xin, X. Su, and B. Wang, “Modeling study on the surface morphology evolution during removing the optics surface/subsurface damage using atmospheric pressure plasma processing,” Appl. Surf. Sci. 382, 260–267 (2016).
[Crossref]

Chin. Opt. Lett. (1)

CIRP Ann. (1)

Y. Yao, B. Wang, J. Wang, H. Jin, Y. Zhang, and S. Dong, “Chemical machining of Zerodur material with atmospheric pressure plasma jet,” CIRP Ann. 59(1), 337–340 (2010).
[Crossref]

Fusion Sci. Technol. (1)

P. Baisden, L. Atherton, R. Hawley, T. Land, J. Menapace, P. Miller, M. Runkel, M. Spaeth, C. Stolz, and T. Suratwala, “Large optics for the national ignition facility,” Fusion Sci. Technol. 69(1), 295–351 (2016).
[Crossref]

Int. J. Mach. Tools Manuf. (1)

S. Jha and V. Jain, “Design and development of the magnetorheological abrasive flow finishing (MRAFF) process,” Int. J. Mach. Tools Manuf. 44(10), 1019–1029 (2004).
[Crossref]

J. Am. Ceram. Soc. (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, and C. W. Carr, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. B (1)

M. Weiser, “Ion beam figuring for lithography optics,” Nucl. Instrum. Methods Phys. Res., Sect. B 267(8-9), 1390–1393 (2009).
[Crossref]

Opt. Express (1)

Plasma Chem. Plasma Process. (1)

J. Meister and T. Arnold, “New process simulation procedure for high-rate plasma jet machining,” Plasma Chem. Plasma Process. 31(1), 91–107 (2011).
[Crossref]

Precis. Eng. (1)

M. Castelli, R. Jourdain, P. Morantz, and P. Shore, “Rapid optical surface figuring using reactive atom plasma,” Precis. Eng. 36(3), 467–476 (2012).
[Crossref]

Prod. Eng. (1)

R. Jourdain, M. Castelli, P. Shore, P. Sommer, and D. Proscia, “Reactive atom plasma (RAP) figuring machine for meter class optical surfaces,” Prod. Eng. 7(6), 665–673 (2013).
[Crossref]

Vak. Forsch. Prax. (1)

T. Arnold, G. Boehm, I. M. Eichentopf, M. Janietz, J. Meister, and A. Schindler, “Plasma Jet Machining: A novel technology for precision machining of optical elements,” Vak. Forsch. Prax. 22(4), 10–16 (2010).
[Crossref]

Other (5)

Y. Mori, Y. Yamauchi, K. Yamamura, H. Mimura, A. Saito, H. Kishimoto, Y. Sekito, M. Kanaoka, A. Souvorov, and M. Yabashi, “Development of plasma chemical vaporization machining and elastic emission machining systems for coherent X-ray optics,” in X-Ray Mirrors, Crystals, and Multilayers, (International Society for Optics and Photonics, 2001), pp. 30–43.

D. Golini, W. I. Kordonski, P. Dumas, and S. J. Hogan, “Magnetorheological finishing (MRF) in commercial precision optics manufacturing,” in SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, (International Society for Optics and Photonics, 1999), pp. 80–91.

B. D. Seery, “The james webb space telescope (JWST): hubble's scientific and technological successor,” in IR Space Telescopes and Instruments, (International Society for Optics and Photonics, 2003), pp. 170–179.

P. Shore and R. May-Miller, “Production challenge of the optical segments for extra large telescopes,” in International Progress on Advanced Optics and Sensors (SPIE,2003), p. 25.

M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (John Wiley & Sons, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1. Schematic diagram of a needle electrode plasma torch for CCAPPP
Fig. 2.
Fig. 2. U-I curve and Lissajous figure of the needle electrode plasma torch
Fig. 3.
Fig. 3. Gaussian removal profile of CCAPPP
Fig. 4.
Fig. 4. Fused silica surface morphology before and after CCAPPP
Fig. 5.
Fig. 5. 2D capacitively coupled He plasma discharge model for needle electrode
Fig. 6.
Fig. 6. Electron density and temperature distribution in He plasma discharge
Fig. 7.
Fig. 7. Density distributions of He* and He+ in He plasma discharge
Fig. 8.
Fig. 8. Radial distribution of heavy particle on substrate surface in He plasma
Fig. 9.
Fig. 9. Number density of all species in zero-dimensional model
Fig. 10.
Fig. 10. 2D full model for CCAPPP
Fig. 11.
Fig. 11. Flow field analysis of needle electrode plasma torch
Fig. 12.
Fig. 12. Molar ratio spatial distributions of He, CF4 and O2.
Fig. 13.
Fig. 13. Electron density and temperature distributions.
Fig. 14.
Fig. 14. Density distributions of F, O, CF3 and CF2.
Fig. 15.
Fig. 15. Molar concentrations of F on the substrate surface.
Fig. 16.
Fig. 16. Pictures of etching points with different flow rates of He.
Fig. 17.
Fig. 17. Molar ratios of O/CFx on the substrate surface.

Tables (3)

Tables Icon

Table 1. Atmospheric plasma processing parameters

Tables Icon

Table 2. Reactions, reaction rate constants & reaction energy in He/CF4/O2 plasma

Tables Icon

Table 3. Experimental results of CCAPPP removal spot under different flow rates of He

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SiO2+CF4SiF4+CO2

Metrics