Abstract

In this contribution, a comprehensive experimental study of photoluminescence from Pr3+/Dy3+ co-doped selenide-chalcogenide multimode fiber samples is discussed. The selenide-chalcogenide multimode fiber samples co-doped with 500 ppm of Pr3+ ions and 500 ppm of Dy3+ ions are prepared using conventional melt-quenching. The main objective of the study is the analysis of the pumping wavelength selection on the shape of the output spectrum. For this purpose, the Pr3+/Dy3+ co-doped selenide-chalcogenide multimode fiber samples are illuminated at one end using pump lasers operating at the wavelengths of 1.32 µm, 1.511 µm and 1.7 µm. The results obtained show that the Pr3+/Dy3+ ion co-doped selenide-chalcogenide multimode fiber emits photoluminescence spanning from 2 µm to 6 µm. Also it is demonstrated that, by varying the output power and wavelength of the pump sources, the spectral shape of the emitted luminescence can be modified to either reduce or enhance the contribution of radiation within a particular wavelength band. The presented results confirm that Pr3+/Dy3+ co-doped selenide-chalcogenide multimode fiber is a good candidate for the realization of broadband spontaneous emission fiber sources with shaped output spectrum for the mid-infrared wavelength region.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber

H. Sakr, D. Furniss, Z. Tang, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon
Opt. Express 22(18) 21236-21252 (2014)

Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass

Zhuoqi Tang, David Furniss, Michael Fay, Hesham Sakr, Lukasz Sójka, Nigel Neate, Nicola Weston, Slawomir Sujecki, Trevor M. Benson, and Angela B. Seddon
Opt. Mater. Express 5(4) 870-886 (2015)

Mid-infrared emission in Tb3+-doped selenide glass fiber

L. Sojka, Z. Tang, D. Furniss, H. Sakr, Y. Fang, E. Beres-Pawlik, T. M. Benson, A. B. Seddon, and S. Sujecki
J. Opt. Soc. Am. B 34(3) A70-A79 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
    [Crossref]
  2. M. Kumar, M. Islam, F. Terry, M. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51(15), 2794–2807 (2012).
    [Crossref]
  3. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  4. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
    [Crossref]
  5. M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 µm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
    [Crossref]
  6. E. A. Anashkina, “Design and numerical modeling of broadband mid-IR rare-earth-doped chalcogenide fiber amplifiers,” IEEE Photon. Technol. Lett. 30(13), 1190–1193 (2018).
    [Crossref]
  7. M. Shen, D. Furniss, Z. Tang, E. Barny, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Modeling of resonantly pumped mid-infrared Pr3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express 26(18), 23641–23660 (2018).
    [Crossref]
  8. J. Hu, C. R. Menyuk, C. Wei, L. B. shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+-doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40(16), 3687–3690 (2015).
    [Crossref]
  9. M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
    [Crossref]
  10. A. B. Seddon, D. Furniss, Z. Tang, T. Benson, R. Caspary, and S. Sujecki, “True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass,” in 18th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2016), paper 7550709.
  11. Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
    [Crossref]
  12. R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuators, B 229, 209–216 (2016).
    [Crossref]
  13. J. Ari, F. Starecki, C. Boussard-Plédel, Y. Ledemi, Y. Messaddeq, J.-L. Doualan, A. Braud, B. Bureau, and V. Nazabal, “Co-doped Dy3+ and Pr3+ Ga5Ge20Sb10S65 fibers for mid-infrared broad emission,” Opt. Lett. 43(12), 2893–2896 (2018).
    [Crossref]
  14. A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 µm for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
    [Crossref]
  15. F. Starecki, S. Morais, R. Chahal, C. Boussard-Plédel, B. Bureau, F. Palencia, C. Lecoutre, Y. Garrabos, S. Marre, and V. Nazabal, “IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems,” Int. J. Greenhouse Gas Control 55, 36–41 (2016).
    [Crossref]
  16. B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, J. Heo, and W. J. Chung, “Dy3+ doped Ge-Ga-Sb-Se glases and optical fibers for the mid-IR gain media,” J. Ceram. Soc. Jpn. 116(1358), 1087–1091 (2008).
    [Crossref]
  17. L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
    [Crossref]
  18. E. Karaksina, V. Shiryaev, M. Churbanov, E. Anashkina, T. Kotereva, and G. Snopatin, “Core-clad Pr3+-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
    [Crossref]
  19. M. Li, Y. Xu, X. Jia, L. Yang, N. Long, Z. Liu, and S. Dai, “Mid-infrared emission properties of Pr3+-doped Ge-Sb-Se-Ga-I chalcogenide glasses,” Opt. Mater. Express 8, 992–1000 (2018).
    [Crossref]
  20. Z. Tang, L. Sojka, D. Furniss, J. Nunes, H. Sakr, E. Barney, S. Sujecki, T. Benson, and A. Seddon, “Comparative study of praseodymium additives in active selenide chalcogenide optical fibers,” Opt. Mater. Express 8(12), 3910–3926 (2018).
    [Crossref]
  21. Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. Benson, and A. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
    [Crossref]
  22. N. Abdellaoui, F. Starecki, C. Boussard-Pledel, Y. Shpotyuk, J.-L. Doualan, A. Braud, E. Baudet, P. Nemec, F. Cheviré, and M. Dussauze, “Tb3+ doped Ga5Ge20Sb10S65-xTex (x = 0-37.5) chalcogenide glasses and fibers for MWIR and LWIR emissions,” Opt. Mater. Express 8(9), 2887–2900 (2018).
    [Crossref]
  23. F. Starecki, A. Braud, N. Abdellaoui, J.-L. Doualan, C. Boussard-Plédel, B. Bureau, P. Camy, and V. Nazabal, “7 to 8 µm emission from Sm3+ doped selenide fibers,” Opt. Express 26(20), 26462–26469 (2018).
    [Crossref]
  24. Z. Tang, D. Furniss, N. C. Neate, T. M. Benson, and A. B. Seddon, “Low gallium-content, dysprosium III-doped, Ge–As–Ga–Se chalcogenide glasses for active mid-infrared fiber optics,” J. Am. Ceram. Soc. 102(1), 195–206 (2019).
    [Crossref]
  25. V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, and A. V. Nezhdanov, “Special pure Pr3+ doped Ga3Ge31As18Se48 glass for active mid-IR optics,” J. Lumin. 209, 225–231 (2019).
    [Crossref]
  26. B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 µm) spectroscopic properties of Pr3+doped Ge-Ga-Sb-Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
    [Crossref]
  27. Y. G. Choi, B. J. Park, K. H. Kim, and J. Heo, “Pr3+- and Pr3+/Er3+-Doped Selenide Glasses for Potential 1.6 µm Optical Amplifier Materials,” ETRI Journal 23(3), 97–105 (2001).
    [Crossref]
  28. Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
    [Crossref]
  29. L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. B. Seddon, T. M. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), 21 (2017).
    [Crossref]
  30. P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
    [Crossref]
  31. Z. Liu, J. Bian, Y. Huang, T. Xu, X. Wang, and S. Dai, “Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres,” RSC Adv. 7(66), 41520–41526 (2017).
    [Crossref]
  32. J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As/sub 40/S/sub(60-x)/Se/sub x/ glass fibers,” J. Lightwave Technol. 14(5), 743–748 (1996).
    [Crossref]
  33. I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5 µm,” Opt. Express 22(16), 19169–19182 (2014).
    [Crossref]
  34. H. Sakr, Z. Tang, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Promising emission behavior in Pr3+/In selenide-chalcogenide-glass small-core step index fiber (SIF),” Opt. Mater. 67, 98–107 (2017).
    [Crossref]
  35. M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
    [Crossref]

2019 (2)

Z. Tang, D. Furniss, N. C. Neate, T. M. Benson, and A. B. Seddon, “Low gallium-content, dysprosium III-doped, Ge–As–Ga–Se chalcogenide glasses for active mid-infrared fiber optics,” J. Am. Ceram. Soc. 102(1), 195–206 (2019).
[Crossref]

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, and A. V. Nezhdanov, “Special pure Pr3+ doped Ga3Ge31As18Se48 glass for active mid-IR optics,” J. Lumin. 209, 225–231 (2019).
[Crossref]

2018 (8)

N. Abdellaoui, F. Starecki, C. Boussard-Pledel, Y. Shpotyuk, J.-L. Doualan, A. Braud, E. Baudet, P. Nemec, F. Cheviré, and M. Dussauze, “Tb3+ doped Ga5Ge20Sb10S65-xTex (x = 0-37.5) chalcogenide glasses and fibers for MWIR and LWIR emissions,” Opt. Mater. Express 8(9), 2887–2900 (2018).
[Crossref]

F. Starecki, A. Braud, N. Abdellaoui, J.-L. Doualan, C. Boussard-Plédel, B. Bureau, P. Camy, and V. Nazabal, “7 to 8 µm emission from Sm3+ doped selenide fibers,” Opt. Express 26(20), 26462–26469 (2018).
[Crossref]

C. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

E. A. Anashkina, “Design and numerical modeling of broadband mid-IR rare-earth-doped chalcogenide fiber amplifiers,” IEEE Photon. Technol. Lett. 30(13), 1190–1193 (2018).
[Crossref]

M. Shen, D. Furniss, Z. Tang, E. Barny, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Modeling of resonantly pumped mid-infrared Pr3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express 26(18), 23641–23660 (2018).
[Crossref]

J. Ari, F. Starecki, C. Boussard-Plédel, Y. Ledemi, Y. Messaddeq, J.-L. Doualan, A. Braud, B. Bureau, and V. Nazabal, “Co-doped Dy3+ and Pr3+ Ga5Ge20Sb10S65 fibers for mid-infrared broad emission,” Opt. Lett. 43(12), 2893–2896 (2018).
[Crossref]

M. Li, Y. Xu, X. Jia, L. Yang, N. Long, Z. Liu, and S. Dai, “Mid-infrared emission properties of Pr3+-doped Ge-Sb-Se-Ga-I chalcogenide glasses,” Opt. Mater. Express 8, 992–1000 (2018).
[Crossref]

Z. Tang, L. Sojka, D. Furniss, J. Nunes, H. Sakr, E. Barney, S. Sujecki, T. Benson, and A. Seddon, “Comparative study of praseodymium additives in active selenide chalcogenide optical fibers,” Opt. Mater. Express 8(12), 3910–3926 (2018).
[Crossref]

2017 (4)

E. Karaksina, V. Shiryaev, M. Churbanov, E. Anashkina, T. Kotereva, and G. Snopatin, “Core-clad Pr3+-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. B. Seddon, T. M. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), 21 (2017).
[Crossref]

Z. Liu, J. Bian, Y. Huang, T. Xu, X. Wang, and S. Dai, “Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres,” RSC Adv. 7(66), 41520–41526 (2017).
[Crossref]

H. Sakr, Z. Tang, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Promising emission behavior in Pr3+/In selenide-chalcogenide-glass small-core step index fiber (SIF),” Opt. Mater. 67, 98–107 (2017).
[Crossref]

2016 (4)

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuators, B 229, 209–216 (2016).
[Crossref]

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 µm for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

F. Starecki, S. Morais, R. Chahal, C. Boussard-Plédel, B. Bureau, F. Palencia, C. Lecoutre, Y. Garrabos, S. Marre, and V. Nazabal, “IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems,” Int. J. Greenhouse Gas Control 55, 36–41 (2016).
[Crossref]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

2015 (3)

2014 (3)

2012 (2)

2010 (1)

2009 (1)

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

2008 (2)

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 µm) spectroscopic properties of Pr3+doped Ge-Ga-Sb-Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, J. Heo, and W. J. Chung, “Dy3+ doped Ge-Ga-Sb-Se glases and optical fibers for the mid-IR gain media,” J. Ceram. Soc. Jpn. 116(1358), 1087–1091 (2008).
[Crossref]

2001 (2)

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Y. G. Choi, B. J. Park, K. H. Kim, and J. Heo, “Pr3+- and Pr3+/Er3+-Doped Selenide Glasses for Potential 1.6 µm Optical Amplifier Materials,” ETRI Journal 23(3), 97–105 (2001).
[Crossref]

1998 (1)

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
[Crossref]

1996 (1)

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As/sub 40/S/sub(60-x)/Se/sub x/ glass fibers,” J. Lightwave Technol. 14(5), 743–748 (1996).
[Crossref]

Abdellaoui, N.

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Aggarwal, I.

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Aggarwal, I. D.

J. Hu, C. R. Menyuk, C. Wei, L. B. shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+-doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40(16), 3687–3690 (2015).
[Crossref]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As/sub 40/S/sub(60-x)/Se/sub x/ glass fibers,” J. Lightwave Technol. 14(5), 743–748 (1996).
[Crossref]

Agger, C. S.

Ahn, J. T.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 µm) spectroscopic properties of Pr3+doped Ge-Ga-Sb-Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, J. Heo, and W. J. Chung, “Dy3+ doped Ge-Ga-Sb-Se glases and optical fibers for the mid-IR gain media,” J. Ceram. Soc. Jpn. 116(1358), 1087–1091 (2008).
[Crossref]

Anashkina, E.

E. Karaksina, V. Shiryaev, M. Churbanov, E. Anashkina, T. Kotereva, and G. Snopatin, “Core-clad Pr3+-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Anashkina, E. A.

E. A. Anashkina, “Design and numerical modeling of broadband mid-IR rare-earth-doped chalcogenide fiber amplifiers,” IEEE Photon. Technol. Lett. 30(13), 1190–1193 (2018).
[Crossref]

Ari, J.

Bang, O.

Barney, E.

Barny, E.

Baudet, E.

Benson, T.

Z. Tang, L. Sojka, D. Furniss, J. Nunes, H. Sakr, E. Barney, S. Sujecki, T. Benson, and A. Seddon, “Comparative study of praseodymium additives in active selenide chalcogenide optical fibers,” Opt. Mater. Express 8(12), 3910–3926 (2018).
[Crossref]

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. Benson, and A. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

A. B. Seddon, D. Furniss, Z. Tang, T. Benson, R. Caspary, and S. Sujecki, “True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass,” in 18th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2016), paper 7550709.

Benson, T. M.

Z. Tang, D. Furniss, N. C. Neate, T. M. Benson, and A. B. Seddon, “Low gallium-content, dysprosium III-doped, Ge–As–Ga–Se chalcogenide glasses for active mid-infrared fiber optics,” J. Am. Ceram. Soc. 102(1), 195–206 (2019).
[Crossref]

M. Shen, D. Furniss, Z. Tang, E. Barny, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Modeling of resonantly pumped mid-infrared Pr3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express 26(18), 23641–23660 (2018).
[Crossref]

L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. B. Seddon, T. M. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), 21 (2017).
[Crossref]

H. Sakr, Z. Tang, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Promising emission behavior in Pr3+/In selenide-chalcogenide-glass small-core step index fiber (SIF),” Opt. Mater. 67, 98–107 (2017).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5 µm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref]

Beres-Pawlik, E.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. B. Seddon, T. M. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), 21 (2017).
[Crossref]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

Bernier, M.

Bian, J.

Z. Liu, J. Bian, Y. Huang, T. Xu, X. Wang, and S. Dai, “Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres,” RSC Adv. 7(66), 41520–41526 (2017).
[Crossref]

Boussard-Pledel, C.

Boussard-Plédel, C.

F. Starecki, A. Braud, N. Abdellaoui, J.-L. Doualan, C. Boussard-Plédel, B. Bureau, P. Camy, and V. Nazabal, “7 to 8 µm emission from Sm3+ doped selenide fibers,” Opt. Express 26(20), 26462–26469 (2018).
[Crossref]

J. Ari, F. Starecki, C. Boussard-Plédel, Y. Ledemi, Y. Messaddeq, J.-L. Doualan, A. Braud, B. Bureau, and V. Nazabal, “Co-doped Dy3+ and Pr3+ Ga5Ge20Sb10S65 fibers for mid-infrared broad emission,” Opt. Lett. 43(12), 2893–2896 (2018).
[Crossref]

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuators, B 229, 209–216 (2016).
[Crossref]

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 µm for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

F. Starecki, S. Morais, R. Chahal, C. Boussard-Plédel, B. Bureau, F. Palencia, C. Lecoutre, Y. Garrabos, S. Marre, and V. Nazabal, “IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems,” Int. J. Greenhouse Gas Control 55, 36–41 (2016).
[Crossref]

Braud, A.

J. Ari, F. Starecki, C. Boussard-Plédel, Y. Ledemi, Y. Messaddeq, J.-L. Doualan, A. Braud, B. Bureau, and V. Nazabal, “Co-doped Dy3+ and Pr3+ Ga5Ge20Sb10S65 fibers for mid-infrared broad emission,” Opt. Lett. 43(12), 2893–2896 (2018).
[Crossref]

N. Abdellaoui, F. Starecki, C. Boussard-Pledel, Y. Shpotyuk, J.-L. Doualan, A. Braud, E. Baudet, P. Nemec, F. Cheviré, and M. Dussauze, “Tb3+ doped Ga5Ge20Sb10S65-xTex (x = 0-37.5) chalcogenide glasses and fibers for MWIR and LWIR emissions,” Opt. Mater. Express 8(9), 2887–2900 (2018).
[Crossref]

F. Starecki, A. Braud, N. Abdellaoui, J.-L. Doualan, C. Boussard-Plédel, B. Bureau, P. Camy, and V. Nazabal, “7 to 8 µm emission from Sm3+ doped selenide fibers,” Opt. Express 26(20), 26462–26469 (2018).
[Crossref]

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 µm for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuators, B 229, 209–216 (2016).
[Crossref]

Brilland, L.

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuators, B 229, 209–216 (2016).
[Crossref]

Bureau, B.

J. Ari, F. Starecki, C. Boussard-Plédel, Y. Ledemi, Y. Messaddeq, J.-L. Doualan, A. Braud, B. Bureau, and V. Nazabal, “Co-doped Dy3+ and Pr3+ Ga5Ge20Sb10S65 fibers for mid-infrared broad emission,” Opt. Lett. 43(12), 2893–2896 (2018).
[Crossref]

F. Starecki, A. Braud, N. Abdellaoui, J.-L. Doualan, C. Boussard-Plédel, B. Bureau, P. Camy, and V. Nazabal, “7 to 8 µm emission from Sm3+ doped selenide fibers,” Opt. Express 26(20), 26462–26469 (2018).
[Crossref]

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 µm for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuators, B 229, 209–216 (2016).
[Crossref]

F. Starecki, S. Morais, R. Chahal, C. Boussard-Plédel, B. Bureau, F. Palencia, C. Lecoutre, Y. Garrabos, S. Marre, and V. Nazabal, “IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems,” Int. J. Greenhouse Gas Control 55, 36–41 (2016).
[Crossref]

Camy, P.

F. Starecki, A. Braud, N. Abdellaoui, J.-L. Doualan, C. Boussard-Plédel, B. Bureau, P. Camy, and V. Nazabal, “7 to 8 µm emission from Sm3+ doped selenide fibers,” Opt. Express 26(20), 26462–26469 (2018).
[Crossref]

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuators, B 229, 209–216 (2016).
[Crossref]

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 µm for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

Caspary, R.

A. B. Seddon, D. Furniss, Z. Tang, T. Benson, R. Caspary, and S. Sujecki, “True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass,” in 18th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2016), paper 7550709.

Chahal, R.

F. Starecki, S. Morais, R. Chahal, C. Boussard-Plédel, B. Bureau, F. Palencia, C. Lecoutre, Y. Garrabos, S. Marre, and V. Nazabal, “IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems,” Int. J. Greenhouse Gas Control 55, 36–41 (2016).
[Crossref]

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 µm for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuators, B 229, 209–216 (2016).
[Crossref]

Chan, A.

Cheviré, F.

Choi, Y. G.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 µm) spectroscopic properties of Pr3+doped Ge-Ga-Sb-Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, J. Heo, and W. J. Chung, “Dy3+ doped Ge-Ga-Sb-Se glases and optical fibers for the mid-IR gain media,” J. Ceram. Soc. Jpn. 116(1358), 1087–1091 (2008).
[Crossref]

Y. G. Choi, B. J. Park, K. H. Kim, and J. Heo, “Pr3+- and Pr3+/Er3+-Doped Selenide Glasses for Potential 1.6 µm Optical Amplifier Materials,” ETRI Journal 23(3), 97–105 (2001).
[Crossref]

Chung, W. J.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 µm) spectroscopic properties of Pr3+doped Ge-Ga-Sb-Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, J. Heo, and W. J. Chung, “Dy3+ doped Ge-Ga-Sb-Se glases and optical fibers for the mid-IR gain media,” J. Ceram. Soc. Jpn. 116(1358), 1087–1091 (2008).
[Crossref]

Churbanov, M.

E. Karaksina, V. Shiryaev, M. Churbanov, E. Anashkina, T. Kotereva, and G. Snopatin, “Core-clad Pr3+-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Churbanov, M. F.

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, and A. V. Nezhdanov, “Special pure Pr3+ doped Ga3Ge31As18Se48 glass for active mid-IR optics,” J. Lumin. 209, 225–231 (2019).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

Clarkson, W. A.

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
[Crossref]

Cole, B.

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Dai, S.

M. Li, Y. Xu, X. Jia, L. Yang, N. Long, Z. Liu, and S. Dai, “Mid-infrared emission properties of Pr3+-doped Ge-Sb-Se-Ga-I chalcogenide glasses,” Opt. Mater. Express 8, 992–1000 (2018).
[Crossref]

Z. Liu, J. Bian, Y. Huang, T. Xu, X. Wang, and S. Dai, “Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres,” RSC Adv. 7(66), 41520–41526 (2017).
[Crossref]

Doualan, J. L.

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 µm for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

Doualan, J.-L.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Dussauze, M.

El-Amraoui, M.

Falconi, M. C.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Farries, M.

Fay, M.

Ferrari, M.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Fortin, V.

Freeman, M.

Frumar, M.

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

Frumarova, B.

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

Fuhrberg, P.

Furniss, D.

Z. Tang, D. Furniss, N. C. Neate, T. M. Benson, and A. B. Seddon, “Low gallium-content, dysprosium III-doped, Ge–As–Ga–Se chalcogenide glasses for active mid-infrared fiber optics,” J. Am. Ceram. Soc. 102(1), 195–206 (2019).
[Crossref]

M. Shen, D. Furniss, Z. Tang, E. Barny, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Modeling of resonantly pumped mid-infrared Pr3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express 26(18), 23641–23660 (2018).
[Crossref]

Z. Tang, L. Sojka, D. Furniss, J. Nunes, H. Sakr, E. Barney, S. Sujecki, T. Benson, and A. Seddon, “Comparative study of praseodymium additives in active selenide chalcogenide optical fibers,” Opt. Mater. Express 8(12), 3910–3926 (2018).
[Crossref]

L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. B. Seddon, T. M. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), 21 (2017).
[Crossref]

H. Sakr, Z. Tang, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Promising emission behavior in Pr3+/In selenide-chalcogenide-glass small-core step index fiber (SIF),” Opt. Mater. 67, 98–107 (2017).
[Crossref]

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. Benson, and A. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5 µm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref]

A. B. Seddon, D. Furniss, Z. Tang, T. Benson, R. Caspary, and S. Sujecki, “True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass,” in 18th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2016), paper 7550709.

Garrabos, Y.

F. Starecki, S. Morais, R. Chahal, C. Boussard-Plédel, B. Bureau, F. Palencia, C. Lecoutre, Y. Garrabos, S. Marre, and V. Nazabal, “IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems,” Int. J. Greenhouse Gas Control 55, 36–41 (2016).
[Crossref]

Hanna, D. C.

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
[Crossref]

Hardman, P. J.

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
[Crossref]

Heo, J.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, J. Heo, and W. J. Chung, “Dy3+ doped Ge-Ga-Sb-Se glases and optical fibers for the mid-IR gain media,” J. Ceram. Soc. Jpn. 116(1358), 1087–1091 (2008).
[Crossref]

Y. G. Choi, B. J. Park, K. H. Kim, and J. Heo, “Pr3+- and Pr3+/Er3+-Doped Selenide Glasses for Potential 1.6 µm Optical Amplifier Materials,” ETRI Journal 23(3), 97–105 (2001).
[Crossref]

Hu, J.

Huang, Y.

Z. Liu, J. Bian, Y. Huang, T. Xu, X. Wang, and S. Dai, “Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres,” RSC Adv. 7(66), 41520–41526 (2017).
[Crossref]

Islam, M.

Jeon, D. Y.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 µm) spectroscopic properties of Pr3+doped Ge-Ga-Sb-Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

Jia, X.

Karaksina, E.

E. Karaksina, V. Shiryaev, M. Churbanov, E. Anashkina, T. Kotereva, and G. Snopatin, “Core-clad Pr3+-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Karaksina, E. V.

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, and A. V. Nezhdanov, “Special pure Pr3+ doped Ga3Ge31As18Se48 glass for active mid-IR optics,” J. Lumin. 209, 225–231 (2019).
[Crossref]

Kim, K. H.

Y. G. Choi, B. J. Park, K. H. Kim, and J. Heo, “Pr3+- and Pr3+/Er3+-Doped Selenide Glasses for Potential 1.6 µm Optical Amplifier Materials,” ETRI Journal 23(3), 97–105 (2001).
[Crossref]

Kincl, M.

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

Kotereva, T.

E. Karaksina, V. Shiryaev, M. Churbanov, E. Anashkina, T. Kotereva, and G. Snopatin, “Core-clad Pr3+-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Kotereva, T. V.

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, and A. V. Nezhdanov, “Special pure Pr3+ doped Ga3Ge31As18Se48 glass for active mid-IR optics,” J. Lumin. 209, 225–231 (2019).
[Crossref]

Kubat, I.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5 µm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Kumar, M.

Kung, F. H.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As/sub 40/S/sub(60-x)/Se/sub x/ glass fibers,” J. Lightwave Technol. 14(5), 743–748 (1996).
[Crossref]

Lamrini, S.

Lecoutre, C.

F. Starecki, S. Morais, R. Chahal, C. Boussard-Plédel, B. Bureau, F. Palencia, C. Lecoutre, Y. Garrabos, S. Marre, and V. Nazabal, “IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems,” Int. J. Greenhouse Gas Control 55, 36–41 (2016).
[Crossref]

Ledemi, Y.

Li, M.

Liu, Z.

M. Li, Y. Xu, X. Jia, L. Yang, N. Long, Z. Liu, and S. Dai, “Mid-infrared emission properties of Pr3+-doped Ge-Sb-Se-Ga-I chalcogenide glasses,” Opt. Mater. Express 8, 992–1000 (2018).
[Crossref]

Z. Liu, J. Bian, Y. Huang, T. Xu, X. Wang, and S. Dai, “Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres,” RSC Adv. 7(66), 41520–41526 (2017).
[Crossref]

Lloyd, G.

Long, N.

Manzur, T.

Marre, S.

F. Starecki, S. Morais, R. Chahal, C. Boussard-Plédel, B. Bureau, F. Palencia, C. Lecoutre, Y. Garrabos, S. Marre, and V. Nazabal, “IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems,” Int. J. Greenhouse Gas Control 55, 36–41 (2016).
[Crossref]

Menyuk, C. R.

Messaddeq, Y.

Michel, K.

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuators, B 229, 209–216 (2016).
[Crossref]

Miklos, R. E.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As/sub 40/S/sub(60-x)/Se/sub x/ glass fibers,” J. Lightwave Technol. 14(5), 743–748 (1996).
[Crossref]

Moizan, V.

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

Møller, U.

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5 µm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Moncorgé, R.

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 µm for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

Morais, S.

F. Starecki, S. Morais, R. Chahal, C. Boussard-Plédel, B. Bureau, F. Palencia, C. Lecoutre, Y. Garrabos, S. Marre, and V. Nazabal, “IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems,” Int. J. Greenhouse Gas Control 55, 36–41 (2016).
[Crossref]

Moselund, P. M.

Nallala, J.

Napier, B.

Nazabal, V.

F. Starecki, A. Braud, N. Abdellaoui, J.-L. Doualan, C. Boussard-Plédel, B. Bureau, P. Camy, and V. Nazabal, “7 to 8 µm emission from Sm3+ doped selenide fibers,” Opt. Express 26(20), 26462–26469 (2018).
[Crossref]

J. Ari, F. Starecki, C. Boussard-Plédel, Y. Ledemi, Y. Messaddeq, J.-L. Doualan, A. Braud, B. Bureau, and V. Nazabal, “Co-doped Dy3+ and Pr3+ Ga5Ge20Sb10S65 fibers for mid-infrared broad emission,” Opt. Lett. 43(12), 2893–2896 (2018).
[Crossref]

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 µm for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuators, B 229, 209–216 (2016).
[Crossref]

F. Starecki, S. Morais, R. Chahal, C. Boussard-Plédel, B. Bureau, F. Palencia, C. Lecoutre, Y. Garrabos, S. Marre, and V. Nazabal, “IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems,” Int. J. Greenhouse Gas Control 55, 36–41 (2016).
[Crossref]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

Neate, N.

Neate, N. C.

Z. Tang, D. Furniss, N. C. Neate, T. M. Benson, and A. B. Seddon, “Low gallium-content, dysprosium III-doped, Ge–As–Ga–Se chalcogenide glasses for active mid-infrared fiber optics,” J. Am. Ceram. Soc. 102(1), 195–206 (2019).
[Crossref]

Neelakandan, M.

Nemec, P.

N. Abdellaoui, F. Starecki, C. Boussard-Pledel, Y. Shpotyuk, J.-L. Doualan, A. Braud, E. Baudet, P. Nemec, F. Cheviré, and M. Dussauze, “Tb3+ doped Ga5Ge20Sb10S65-xTex (x = 0-37.5) chalcogenide glasses and fibers for MWIR and LWIR emissions,” Opt. Mater. Express 8(9), 2887–2900 (2018).
[Crossref]

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

Nezhdanov, A. V.

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, and A. V. Nezhdanov, “Special pure Pr3+ doped Ga3Ge31As18Se48 glass for active mid-IR optics,” J. Lumin. 209, 225–231 (2019).
[Crossref]

Nguyen, V. Q.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As/sub 40/S/sub(60-x)/Se/sub x/ glass fibers,” J. Lightwave Technol. 14(5), 743–748 (1996).
[Crossref]

Nunes, J.

Palencia, F.

F. Starecki, S. Morais, R. Chahal, C. Boussard-Plédel, B. Bureau, F. Palencia, C. Lecoutre, Y. Garrabos, S. Marre, and V. Nazabal, “IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems,” Int. J. Greenhouse Gas Control 55, 36–41 (2016).
[Crossref]

Palma, G.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Park, B. J.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, J. Heo, and W. J. Chung, “Dy3+ doped Ge-Ga-Sb-Se glases and optical fibers for the mid-IR gain media,” J. Ceram. Soc. Jpn. 116(1358), 1087–1091 (2008).
[Crossref]

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 µm) spectroscopic properties of Pr3+doped Ge-Ga-Sb-Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

Y. G. Choi, B. J. Park, K. H. Kim, and J. Heo, “Pr3+- and Pr3+/Er3+-Doped Selenide Glasses for Potential 1.6 µm Optical Amplifier Materials,” ETRI Journal 23(3), 97–105 (2001).
[Crossref]

Pelé, A. L.

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 µm for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

Petersen, C.

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Pollnau, M.

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
[Crossref]

Prtljaga, N.

Prudenzano, F.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Pureza, P. C.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As/sub 40/S/sub(60-x)/Se/sub x/ glass fibers,” J. Lightwave Technol. 14(5), 743–748 (1996).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sakr, H.

Z. Tang, L. Sojka, D. Furniss, J. Nunes, H. Sakr, E. Barney, S. Sujecki, T. Benson, and A. Seddon, “Comparative study of praseodymium additives in active selenide chalcogenide optical fibers,” Opt. Mater. Express 8(12), 3910–3926 (2018).
[Crossref]

H. Sakr, Z. Tang, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Promising emission behavior in Pr3+/In selenide-chalcogenide-glass small-core step index fiber (SIF),” Opt. Mater. 67, 98–107 (2017).
[Crossref]

L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. B. Seddon, T. M. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), 21 (2017).
[Crossref]

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. Benson, and A. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
[Crossref]

Sanghera, J.

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Sanghera, J. S.

J. Hu, C. R. Menyuk, C. Wei, L. B. shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+-doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40(16), 3687–3690 (2015).
[Crossref]

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As/sub 40/S/sub(60-x)/Se/sub x/ glass fibers,” J. Lightwave Technol. 14(5), 743–748 (1996).
[Crossref]

Scholle, K.

Seddon, A.

Seddon, A. B.

Z. Tang, D. Furniss, N. C. Neate, T. M. Benson, and A. B. Seddon, “Low gallium-content, dysprosium III-doped, Ge–As–Ga–Se chalcogenide glasses for active mid-infrared fiber optics,” J. Am. Ceram. Soc. 102(1), 195–206 (2019).
[Crossref]

M. Shen, D. Furniss, Z. Tang, E. Barny, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Modeling of resonantly pumped mid-infrared Pr3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express 26(18), 23641–23660 (2018).
[Crossref]

L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. B. Seddon, T. M. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), 21 (2017).
[Crossref]

H. Sakr, Z. Tang, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Promising emission behavior in Pr3+/In selenide-chalcogenide-glass small-core step index fiber (SIF),” Opt. Mater. 67, 98–107 (2017).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5 µm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref]

A. B. Seddon, D. Furniss, Z. Tang, T. Benson, R. Caspary, and S. Sujecki, “True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass,” in 18th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2016), paper 7550709.

Seo, H. S.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, J. Heo, and W. J. Chung, “Dy3+ doped Ge-Ga-Sb-Se glases and optical fibers for the mid-IR gain media,” J. Ceram. Soc. Jpn. 116(1358), 1087–1091 (2008).
[Crossref]

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 µm) spectroscopic properties of Pr3+doped Ge-Ga-Sb-Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

Shaw, L.

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

shaw, L. B.

Shen, M.

Shiryaev, V.

E. Karaksina, V. Shiryaev, M. Churbanov, E. Anashkina, T. Kotereva, and G. Snopatin, “Core-clad Pr3+-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Shiryaev, V. S.

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, and A. V. Nezhdanov, “Special pure Pr3+ doped Ga3Ge31As18Se48 glass for active mid-IR optics,” J. Lumin. 209, 225–231 (2019).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

Shpotyuk, Y.

Snopatin, G.

E. Karaksina, V. Shiryaev, M. Churbanov, E. Anashkina, T. Kotereva, and G. Snopatin, “Core-clad Pr3+-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Sojka, L.

Sójka, L.

Sourková, P.

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

Starecki, F.

N. Abdellaoui, F. Starecki, C. Boussard-Pledel, Y. Shpotyuk, J.-L. Doualan, A. Braud, E. Baudet, P. Nemec, F. Cheviré, and M. Dussauze, “Tb3+ doped Ga5Ge20Sb10S65-xTex (x = 0-37.5) chalcogenide glasses and fibers for MWIR and LWIR emissions,” Opt. Mater. Express 8(9), 2887–2900 (2018).
[Crossref]

F. Starecki, A. Braud, N. Abdellaoui, J.-L. Doualan, C. Boussard-Plédel, B. Bureau, P. Camy, and V. Nazabal, “7 to 8 µm emission from Sm3+ doped selenide fibers,” Opt. Express 26(20), 26462–26469 (2018).
[Crossref]

J. Ari, F. Starecki, C. Boussard-Plédel, Y. Ledemi, Y. Messaddeq, J.-L. Doualan, A. Braud, B. Bureau, and V. Nazabal, “Co-doped Dy3+ and Pr3+ Ga5Ge20Sb10S65 fibers for mid-infrared broad emission,” Opt. Lett. 43(12), 2893–2896 (2018).
[Crossref]

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuators, B 229, 209–216 (2016).
[Crossref]

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 µm for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

F. Starecki, S. Morais, R. Chahal, C. Boussard-Plédel, B. Bureau, F. Palencia, C. Lecoutre, Y. Garrabos, S. Marre, and V. Nazabal, “IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems,” Int. J. Greenhouse Gas Control 55, 36–41 (2016).
[Crossref]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Stone, N.

Sujecki, S.

M. Shen, D. Furniss, Z. Tang, E. Barny, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Modeling of resonantly pumped mid-infrared Pr3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express 26(18), 23641–23660 (2018).
[Crossref]

Z. Tang, L. Sojka, D. Furniss, J. Nunes, H. Sakr, E. Barney, S. Sujecki, T. Benson, and A. Seddon, “Comparative study of praseodymium additives in active selenide chalcogenide optical fibers,” Opt. Mater. Express 8(12), 3910–3926 (2018).
[Crossref]

L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. B. Seddon, T. M. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), 21 (2017).
[Crossref]

H. Sakr, Z. Tang, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Promising emission behavior in Pr3+/In selenide-chalcogenide-glass small-core step index fiber (SIF),” Opt. Mater. 67, 98–107 (2017).
[Crossref]

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. Benson, and A. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5 µm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref]

A. B. Seddon, D. Furniss, Z. Tang, T. Benson, R. Caspary, and S. Sujecki, “True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass,” in 18th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2016), paper 7550709.

Taccheo, S.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Tang, Z.

Z. Tang, D. Furniss, N. C. Neate, T. M. Benson, and A. B. Seddon, “Low gallium-content, dysprosium III-doped, Ge–As–Ga–Se chalcogenide glasses for active mid-infrared fiber optics,” J. Am. Ceram. Soc. 102(1), 195–206 (2019).
[Crossref]

M. Shen, D. Furniss, Z. Tang, E. Barny, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Modeling of resonantly pumped mid-infrared Pr3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express 26(18), 23641–23660 (2018).
[Crossref]

Z. Tang, L. Sojka, D. Furniss, J. Nunes, H. Sakr, E. Barney, S. Sujecki, T. Benson, and A. Seddon, “Comparative study of praseodymium additives in active selenide chalcogenide optical fibers,” Opt. Mater. Express 8(12), 3910–3926 (2018).
[Crossref]

L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. B. Seddon, T. M. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), 21 (2017).
[Crossref]

H. Sakr, Z. Tang, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Promising emission behavior in Pr3+/In selenide-chalcogenide-glass small-core step index fiber (SIF),” Opt. Mater. 67, 98–107 (2017).
[Crossref]

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. Benson, and A. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5 µm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref]

A. B. Seddon, D. Furniss, Z. Tang, T. Benson, R. Caspary, and S. Sujecki, “True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass,” in 18th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2016), paper 7550709.

Terry, F.

Thielen, P.

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

Troles, J.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Vallée, R.

Velmuzhov, A. P.

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, and A. V. Nezhdanov, “Special pure Pr3+ doped Ga3Ge31As18Se48 glass for active mid-IR optics,” J. Lumin. 209, 225–231 (2019).
[Crossref]

Wang, X.

Z. Liu, J. Bian, Y. Huang, T. Xu, X. Wang, and S. Dai, “Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres,” RSC Adv. 7(66), 41520–41526 (2017).
[Crossref]

Ward, J.

Wei, C.

Weston, N.

Xu, T.

Z. Liu, J. Bian, Y. Huang, T. Xu, X. Wang, and S. Dai, “Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres,” RSC Adv. 7(66), 41520–41526 (2017).
[Crossref]

Xu, Y.

Yang, L.

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Zhu, H.

Appl. Opt. (1)

ETRI Journal (1)

Y. G. Choi, B. J. Park, K. H. Kim, and J. Heo, “Pr3+- and Pr3+/Er3+-Doped Selenide Glasses for Potential 1.6 µm Optical Amplifier Materials,” ETRI Journal 23(3), 97–105 (2001).
[Crossref]

IEEE J. Quantum Electron. (1)

L. Shaw, B. Cole, P. Thielen, J. Sanghera, and I. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37(9), 1127–1137 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (1)

E. A. Anashkina, “Design and numerical modeling of broadband mid-IR rare-earth-doped chalcogenide fiber amplifiers,” IEEE Photon. Technol. Lett. 30(13), 1190–1193 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, S. Taccheo, M. Ferrari, and F. Prudenzano, “Design of an efficient pumping scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65PCF fiber laser,” IEEE Photonics Technol. Lett. 28(18), 1984–1987 (2016).
[Crossref]

Int. J. Greenhouse Gas Control (1)

F. Starecki, S. Morais, R. Chahal, C. Boussard-Plédel, B. Bureau, F. Palencia, C. Lecoutre, Y. Garrabos, S. Marre, and V. Nazabal, “IR emitting Dy3+ doped chalcogenide fibers for in situ CO2 monitoring in high pressure microsystems,” Int. J. Greenhouse Gas Control 55, 36–41 (2016).
[Crossref]

J. Am. Ceram. Soc. (1)

Z. Tang, D. Furniss, N. C. Neate, T. M. Benson, and A. B. Seddon, “Low gallium-content, dysprosium III-doped, Ge–As–Ga–Se chalcogenide glasses for active mid-infrared fiber optics,” J. Am. Ceram. Soc. 102(1), 195–206 (2019).
[Crossref]

J. Ceram. Soc. Jpn. (1)

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, J. Heo, and W. J. Chung, “Dy3+ doped Ge-Ga-Sb-Se glases and optical fibers for the mid-IR gain media,” J. Ceram. Soc. Jpn. 116(1358), 1087–1091 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, R. E. Miklos, F. H. Kung, and I. D. Aggarwal, “Fabrication of long lengths of low-loss IR transmitting As/sub 40/S/sub(60-x)/Se/sub x/ glass fibers,” J. Lightwave Technol. 14(5), 743–748 (1996).
[Crossref]

J. Lumin. (3)

P. Sourková, B. Frumarova, M. Frumar, P. Nemec, M. Kincl, V. Nazabal, V. Moizan, J.-L. Doualan, and R. Moncorgé, “Spectroscopy of infrared transitions of Pr3+ ions in Ga–Ge–Sb–Se glasses,” J. Lumin. 129(10), 1148–1153 (2009).
[Crossref]

V. S. Shiryaev, E. V. Karaksina, T. V. Kotereva, M. F. Churbanov, A. P. Velmuzhov, and A. V. Nezhdanov, “Special pure Pr3+ doped Ga3Ge31As18Se48 glass for active mid-IR optics,” J. Lumin. 209, 225–231 (2019).
[Crossref]

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5-5.5 µm) spectroscopic properties of Pr3+doped Ge-Ga-Sb-Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

Nat. Photonics (1)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Commun. (1)

M. Pollnau, P. J. Hardman, W. A. Clarkson, and D. C. Hanna, “Upconversion, lifetime quenching, and ground-state bleaching in Nd:LiYF4,” Opt. Commun. 147(1-3), 203–211 (1998).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. (3)

H. Sakr, Z. Tang, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Promising emission behavior in Pr3+/In selenide-chalcogenide-glass small-core step index fiber (SIF),” Opt. Mater. 67, 98–107 (2017).
[Crossref]

A. L. Pelé, A. Braud, J. L. Doualan, F. Starecki, V. Nazabal, R. Chahal, C. Boussard-Plédel, B. Bureau, R. Moncorgé, and P. Camy, “Dy3+ doped GeGaSbS fluorescent fiber at 4.4 µm for optical gas sensing: comparison of simulation and experiment,” Opt. Mater. 61, 37–44 (2016).
[Crossref]

E. Karaksina, V. Shiryaev, M. Churbanov, E. Anashkina, T. Kotereva, and G. Snopatin, “Core-clad Pr3+-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics,” Opt. Mater. 72, 654–660 (2017).
[Crossref]

Opt. Mater. Express (6)

M. Li, Y. Xu, X. Jia, L. Yang, N. Long, Z. Liu, and S. Dai, “Mid-infrared emission properties of Pr3+-doped Ge-Sb-Se-Ga-I chalcogenide glasses,” Opt. Mater. Express 8, 992–1000 (2018).
[Crossref]

Z. Tang, L. Sojka, D. Furniss, J. Nunes, H. Sakr, E. Barney, S. Sujecki, T. Benson, and A. Seddon, “Comparative study of praseodymium additives in active selenide chalcogenide optical fibers,” Opt. Mater. Express 8(12), 3910–3926 (2018).
[Crossref]

Z. Tang, D. Furniss, M. Fay, H. Sakr, L. Sójka, N. Neate, N. Weston, S. Sujecki, T. Benson, and A. Seddon, “Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass,” Opt. Mater. Express 5(4), 870–886 (2015).
[Crossref]

N. Abdellaoui, F. Starecki, C. Boussard-Pledel, Y. Shpotyuk, J.-L. Doualan, A. Braud, E. Baudet, P. Nemec, F. Cheviré, and M. Dussauze, “Tb3+ doped Ga5Ge20Sb10S65-xTex (x = 0-37.5) chalcogenide glasses and fibers for MWIR and LWIR emissions,” Opt. Mater. Express 8(9), 2887–2900 (2018).
[Crossref]

Z. Tang, V. S. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. M. Benson, A. B. Seddon, and M. F. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

Ł. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, D. Furniss, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

Opt. Quantum Electron. (1)

L. Sójka, Z. Tang, D. Furniss, H. Sakr, E. Bereś-Pawlik, A. B. Seddon, T. M. Benson, and S. Sujecki, “Numerical and experimental investigation of mid-infrared laser action in resonantly pumped Pr3+ doped chalcogenide fibre,” Opt. Quantum Electron. 49(1), 21 (2017).
[Crossref]

RSC Adv. (1)

Z. Liu, J. Bian, Y. Huang, T. Xu, X. Wang, and S. Dai, “Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres,” RSC Adv. 7(66), 41520–41526 (2017).
[Crossref]

Sens. Actuators, B (1)

R. Chahal, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, K. Michel, L. Brilland, A. Braud, P. Camy, B. Bureau, and V. Nazabal, “Fiber evanescent wave spectroscopy based on IR fluorescent chalcogenide fibers,” Sens. Actuators, B 229, 209–216 (2016).
[Crossref]

Other (1)

A. B. Seddon, D. Furniss, Z. Tang, T. Benson, R. Caspary, and S. Sujecki, “True mid-infrared Pr3+ absorption cross-section in a selenide-chalcogenide host-glass,” in 18th International Conference on Transparent Optical Networks (ICTON), (IEEE, 2016), paper 7550709.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Optical setup for measuring fiber photoluminescence (PL) properties under different pumping conditions.
Fig. 2.
Fig. 2. Schematic energy level diagrams for: (a) Pr3+ and (b) Dy3+ doped, selenide-chalcogenide glass, up to an energy of 8000 cm−1 (1.25 µm). The arrows indicate possible mid-infrared transitions.
Fig. 3.
Fig. 3. Measured emission of Pr3+ doped GeAsGaSe fiber: (a) from 3.5 to 6 µm (this emission can be attributed to the transitions (3F2,3H6)→3H5 ,3H53H4 and (3F4,3F3)→(3F2,3H6)) and (b) from 2 to 3 µm (this emission can be attributed to two different transitions (3F4,3F33H5) and (3F2,3H63H4)).
Fig. 4.
Fig. 4. Measured luminescence decay at: a) 4.7 µm and at b) 2.4 µm in 1000 ppm Pr3+ GeAsGaSe chalcogenide glass fiber after the laser excitation at 1.511 µm.
Fig. 5.
Fig. 5. Measured emission of Dy3+ doped GeAsGaSe fiber: (a) from 3.5 to 5 µm (this emission can be attributed to the transition (6H11/26H13/2) and (b) from 2 to 3.5 µm (this emission can be attributed to two different transitions (6F11/2, 6H9/2)→6H13/2 (2.1–2.6 µm) and 6H13/26H15/2 (2.7–3.4 µm)).
Fig. 6.
Fig. 6. Measured luminescence decay at: a) 2.95 µm and at b) 4.4 µm and c) 2.4 µm in 1000 ppm Dy3+ GeAsGaSe chalcogenide glass fiber after the laser excitation at 1.32 µm.
Fig. 7.
Fig. 7. (a) Measured infrared emission spectra on a logarithmic scale of co-doped 500 ppmw Pr3+ and 500 ppmw Dy3+ selenide-chalcogenide glass fiber under excitation at 1.32 µm recorded for different pump powers and (b) on a linear scale. The emission intensities were corrected for the system response.
Fig. 8.
Fig. 8. (a) Measured infrared emission spectra on a logarithmic scale of co-doped 500 ppmw Pr3+ and 500 ppmw Dy3+ selenide-chalcogenide glass fiber under excitation at 1.511 µm recorded for different pump powers and (b) on a linear scale. The emission intensities were corrected for the system response.
Fig. 9.
Fig. 9. (a) Measured infrared emission spectra of co-doped 500 ppmw Pr3+ and 500 ppmw Dy3+ selenide-chalcogenide glass fiber under excitation at 1.7 µm recorded for different pump powers on a logarithmic scale and (b) on a linear scale. The emission intensities were corrected for the system response.
Fig. 10.
Fig. 10. (a) Measured infrared emission spectra of co-doped 500 ppmw Pr3+ and 500 ppmw Dy3+ selenide-chalcogenide glass fiber under dual-wavelength excitation at 1.32 µm and 1.511 µm on a logarithmic scale and (b) on a linear scale. The emission intensities were corrected for the system response.
Fig. 11.
Fig. 11. Measured infrared emission spectra of co-doped 500 ppmw Pr3+ and 500 ppmw Dy3+ selenide-chalcogenide glass fiber under dual-wavelength excitation at 1.32 µm and 1.511 µm. (a) Pump power at 1.32 µm was constant at the level of 75 mW while the pump power at 1.511 µm was varied from 150 mW up to 300 mW plotted on a logarithmic scale and (b) plotted on a linear scale. Pump power at 1.511 µm was constant at the level of 75 mW while the pump power at 1.32 µm was varied from 150 mW up to 300 mW plotted on a logarithmic scale (c) and (d) plotted on a linear scale. The emission intensities were corrected for the system response
Fig. 12.
Fig. 12. PL decay of 500 ppmw Pr3+/Dy3+ co-doped GeAsGaSe fiber measured at: (a) 2.95 µm, (b) 4.4 µm, (c) 4.7 µm and (d) 2.4 µm under 1.32 µm pumping.
Fig. 13.
Fig. 13. PL decay of 500 ppmw Pr3+/Dy3+ co-doped Ge-As-Ga-Se fiber measured at: (a) 2.95 µm, (b) 4.4 µm, (c) 4.7 µm and (d) 2.4 µm all under 1.511 µm pumping.
Fig. 14.
Fig. 14. Measured dependence of MIR output power on pump power for a pumping at (a) 1.511 µm, (b) 1.7 µm, (c) dual wavelength at 1.32 µm + 1.511 µm and (d) 1.32 µm.

Tables (2)

Tables Icon

Table 1. Measured PL lifetimes of Pr3+: GeAsGaSe.

Tables Icon

Table 2. Measured PL lifetimes of Dy3+: GeAsGaSe.

Metrics