Abstract

Multiscale laser patterning of indium tin oxide thin films using the combination of direct laser interference patterning (DLIP) and laser induced periodic surface structuring (LIPSS) was studied. By balancing DLIP and LIPSS, structures in an ordered hierarchical pattern consisting of 75 nm LIPSS, 650 nm DLIP, and 50 µm laser spot size were demonstrated. The effects of laser fluence on the DLIP, LIPSS, and grain growth are discussed. The anisotropic conductance due to LIPSS was shown to exceed 50,000:1. Infrared reflectance measurements indicated that the anisotropy was uniform across the laser patterned samples.

Full Article  |  PDF Article
OSA Recommended Articles
Laser microstructured metal thin films as promising alternative for indium based transparent electrodes

Sebastian Eckhardt, Mathias Siebold, and Andrés Fabián Lasagni
Opt. Express 24(6) A553-A568 (2016)

Direct-write patterning of indium-tin-oxide film by high pulse repetition frequency femtosecond laser ablation

H. W. Choi, D. F. Farson, J. Bovatsek, A. Arai, and D. Ashkenasi
Appl. Opt. 46(23) 5792-5799 (2007)

Superior local conductivity in self-organized nanodots on indium-tin-oxide films induced by femtosecond laser pulses

Chih Wang, Hsuan-I Wang, Wei-Tsung Tang, Chih-Wei Luo, Takayoshi Kobayashi, and Jihperng Leu
Opt. Express 19(24) 24286-24297 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Y. Kwon, N. Patankar, J. Choi, and J. Lee, “Design of surface hierarchy for extreme hydrophobicity,” Langmuir 25(11), 6129–6136 (2009).
    [Crossref]
  2. X. Q. Dou, D. Zhang, C. L. Feng, and L. Jiang, “Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion,” ACS Nano 9(11), 10664–10672 (2015).
    [Crossref]
  3. A. Lasagni, C. Holzapfel, T. Weirich, and F. Mucklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
    [Crossref]
  4. Z. Huang, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
    [Crossref]
  5. R. Kumar, A. K. Agarwal, and S. A. Ramakrishna, “Development of a metamaterial structure for large-area surfaces with specified infrared emissivity,” Opt. Eng. 57(8), 087109 (2018).
    [Crossref]
  6. K. Koch, B. Bhushan, and W. Barthlott, “Multifunctional surface structures of plants: An inspiration for biomimetics,” Prog. Mater. Sci. 54(2), 137–178 (2009).
    [Crossref]
  7. D. Bratton, D. Yang, J. Dai, and C. K. Ober, “Recent progress in high resolution lithography,” Polym. Adv. Technol. 17, 94–103 (2006).
    [Crossref]
  8. R. P. Seisyan, “Nanolithography in microelectronics: A review,” Techn. Phys. 56(8), 1061–1073 (2011).
  9. A. Aktag, S. Michalski, L. Yue, R. D. Kirby, and S.-H. Liou, “Formation of an anisotropy lattice in Co/Pt multilayers by direct laser interference patterning,” J. Appl. Phys. 99(9), 093901 (2006).
    [Crossref]
  10. M. Heintze, P. V. Santos, C. E. Nebel, and M. Stutzmann, “Lateral structuring of silicon thin films by interference crystallization,” Appl. Phys. Lett. 64(23), 3148 (1994).
    [Crossref]
  11. M. K. Kelly, J. Rogg, C. E. Nebel, M. Stutzmann, and S. Katai, “High-resolution thermal processing of semiconductors using pulsed-laser interference patterning,” Phys. Stat. Sol. 166, 651–657 (1998).
    [Crossref]
  12. N. I. Polushkin, S. A. Gusev, and M. N. Drozdov, “Arrays of magnetic wires created in phase-separating Fe-containing alloys by interference laser irradiation,” J. Appl. Phys. 81(8), 5478–5480 (1997).
    [Crossref]
  13. C. Daniel, F. Mucklich, and Z. Liu, “Periodical micro-nano-structuring of metallic surfaces by interfering laser beams,” Appl. Surf. Sci. 208-209, 317–321 (2003).
    [Crossref]
  14. A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mucklich, “Periodical gratings in mixed-oxide films by laser-interference irradiation,” Adv. Mater. 17, 2228–2232 (2005).
    [Crossref]
  15. H. M. Phillips, D. L. Callahan, and R. Sauerbrey, “Sub-100 nm lines produced by direct laser ablation in polyimide,” Appl. Phys. Lett. 58(24), 2761 (1991).
    [Crossref]
  16. F. Yu, F. Mucklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromolecules 6(3), 1160–1167 (2005).
    [Crossref]
  17. M. Bieda, M. Siebold, and A. F. Lasagni, “Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning,” Appl. Surf. Sci. 387, 175–182 (2016).
    [Crossref]
  18. J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures – a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
    [Crossref]
  19. R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
    [Crossref]
  20. S. Hohm, M. Herzlieb, A. Rosenfeld, J. Kruger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics,” Appl. Surf. Sci. 374, 331–338 (2016).
    [Crossref]
  21. A. Rudenko, J.-P. Colombier, and T. E. Itina, “Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass,” Phys. Chem. Chem. Phys. 20(8), 5887 (2018).
    [Crossref]
  22. G.R.B.E. Romer, J.Z.P. Skolski, J.V. Obona, and A. J. H. in ’t Veld, “Finite-difference time-domain modeling of laser-induced periodic surface structures,” Phys. Procedia 56, 1325–1333 (2014).
    [Crossref]
  23. O. Varlamova, J. Reif, S. Varlamov, and M. Bestehorn, “The laser polarization as control parameter in the formation of laser-induced periodic surface structures: Comparison of numerical and experimental results,” Appl. Surf. Sci. 257(12), 5465–5469 (2011).
    [Crossref]
  24. E. L. Gurevich, “Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation,” Appl. Surf. Sci. 374, 56–60 (2016).
    [Crossref]
  25. S. Wang, L. Jiang, W. Han, J. Hu, X. Li, Q. Wang, and Y. Lu, “Hierarchical laser-induced periodic surface structures induced by femtosecond laser on the surface of a ZnO film,” Appl. Phys. Expr. 11(5), 052703 (2018).
    [Crossref]
  26. Y. Nakata and N. Miyanaga, “Effect of interference pattern on femtosecond laser-induced ripple structure,” Appl. Phys. A 98(2), 401–405 (2010).
    [Crossref]
  27. K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013).
    [Crossref]
  28. K. Miyazaki, G. Miyaji, and T. Inoue, “Nanograting formation on metals in air with interfering femtosecond laser pulses,” Appl. Phys. Lett. 107(7), 071103 (2015).
    [Crossref]
  29. S. Alamri, F. Fraggelakis, T. Kunze, B. Krupop, G. Mincuzzi, R. Kling, and A. F. Lasagni, “On the interplay of DLIP and LIPSS upon ultra-short laser pulse irradiation,” Materials 12(7), 1018 (2019).
    [Crossref]
  30. A. Pan, W. Wang, B. Liu, X. Mei, H. Yang, and W. Zhao, “Formation of high-spatial-frequency periodic surface structures on indium-tin-oxide films using picosecond laser pulses,” Mater. Des. 121, 126–135 (2017).
    [Crossref]
  31. P. Liu, W. Wang, A. Pan, Y. Xiang, and D. Wang, “Periodic surface structures on the surface of indium tin oxide film obtained using picosecond laser,” Opt. Laser Technol. 106, 259–264 (2018).
    [Crossref]
  32. N. Farid, P. Dasgupta, and G. M. O’Connor, “Onset and evolution of laser induced periodic surface structures on indium tin oxide thin films for clean ablation using a repetitively pulsed picosecond laser at low fluence,” J. Phys. D: Appl. Phys. 51(15), 155104 (2018).
    [Crossref]
  33. H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical and structural properties of indium tin oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
    [Crossref]
  34. Y. Wang, A. C. Overvig, S. Shrestha, R. Zhang, R. Wang, N. Yu, and L. D. Negro, “Tunability of indium tin oxide materials for mid-infrared plasmonics applications,” Opt. Mater. Express 7(8), 2727–2739 (2017).
    [Crossref]
  35. L. J. van der Pauw, “A Method of measuring specific resistivity and Hall effect of discs of arbitrary shape,” Philips Res. Repts 13, 1–9 (1958).
  36. O. Bierwagen, R. Pomraenke, S. Eilers, and W. T. Masselink, “Mobility and carrier density in materials with anisotropic conductivity revealed by van der Pauw measurements,” Phys. Rev. B 70(16), 165307 (2004).
    [Crossref]
  37. C. W. Chien and C. W. Cheng, “Fabrication of the crystalline ITO pattern by picosecond laser with a diffractive optical element,” J. Laser Micro/Nanoeng. 8(2), 165–169 (2013).
    [Crossref]
  38. T. Park and D. Kim, “Excimer laser sintering of indium tin oxide nanoparticles for fabrication thin films of variable thickness on flexible substrates,” Thin Solid Films 578, 76–82 (2015).
    [Crossref]
  39. B. Huis in’t Veld and H. van der Veer, “Initiation of femtosecond laser machined ripples in steel observed by scanning helium ion microscopy (SHIM),” J. Laser Micro/Nanoeng. 5(1), 28–34 (2010).
    [Crossref]
  40. H. Palneedi, J. H. Park, D. Maurya, M. Peddigari, G.-T. Hwang, V. Annapureddy, J.-W. Kim, J.-J. Choi, B.-D. Hahn, S. Priya, K. J. Lee, and J. Ryu, “Laser irradiation of metal oxide films and nanostructures: applications and advances,” Adv. Mater. 30(14), 1705148 (2018).
    [Crossref]
  41. T. Szorenyi, L.D. Laude, I. Bertoti, Z. Kantor, and Zs. Geretovszky, “Excimer laser processing of indium-tin- oxide films: An optical investigation,” J. Appl. Phys. 78(10), 6211 (1995).
    [Crossref]
  42. G. Miyaji and K. Miyazaki, “Fabrication of 50-nm period gratings on GaN in air through plasmonic near-field ablation induced by ultraviolet femtosecond laser pulses,” Opt. Express 24(5), 4648–4653 (2016).
    [Crossref]

2019 (1)

S. Alamri, F. Fraggelakis, T. Kunze, B. Krupop, G. Mincuzzi, R. Kling, and A. F. Lasagni, “On the interplay of DLIP and LIPSS upon ultra-short laser pulse irradiation,” Materials 12(7), 1018 (2019).
[Crossref]

2018 (6)

P. Liu, W. Wang, A. Pan, Y. Xiang, and D. Wang, “Periodic surface structures on the surface of indium tin oxide film obtained using picosecond laser,” Opt. Laser Technol. 106, 259–264 (2018).
[Crossref]

N. Farid, P. Dasgupta, and G. M. O’Connor, “Onset and evolution of laser induced periodic surface structures on indium tin oxide thin films for clean ablation using a repetitively pulsed picosecond laser at low fluence,” J. Phys. D: Appl. Phys. 51(15), 155104 (2018).
[Crossref]

A. Rudenko, J.-P. Colombier, and T. E. Itina, “Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass,” Phys. Chem. Chem. Phys. 20(8), 5887 (2018).
[Crossref]

S. Wang, L. Jiang, W. Han, J. Hu, X. Li, Q. Wang, and Y. Lu, “Hierarchical laser-induced periodic surface structures induced by femtosecond laser on the surface of a ZnO film,” Appl. Phys. Expr. 11(5), 052703 (2018).
[Crossref]

R. Kumar, A. K. Agarwal, and S. A. Ramakrishna, “Development of a metamaterial structure for large-area surfaces with specified infrared emissivity,” Opt. Eng. 57(8), 087109 (2018).
[Crossref]

H. Palneedi, J. H. Park, D. Maurya, M. Peddigari, G.-T. Hwang, V. Annapureddy, J.-W. Kim, J.-J. Choi, B.-D. Hahn, S. Priya, K. J. Lee, and J. Ryu, “Laser irradiation of metal oxide films and nanostructures: applications and advances,” Adv. Mater. 30(14), 1705148 (2018).
[Crossref]

2017 (3)

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures – a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

A. Pan, W. Wang, B. Liu, X. Mei, H. Yang, and W. Zhao, “Formation of high-spatial-frequency periodic surface structures on indium-tin-oxide films using picosecond laser pulses,” Mater. Des. 121, 126–135 (2017).
[Crossref]

Y. Wang, A. C. Overvig, S. Shrestha, R. Zhang, R. Wang, N. Yu, and L. D. Negro, “Tunability of indium tin oxide materials for mid-infrared plasmonics applications,” Opt. Mater. Express 7(8), 2727–2739 (2017).
[Crossref]

2016 (4)

S. Hohm, M. Herzlieb, A. Rosenfeld, J. Kruger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics,” Appl. Surf. Sci. 374, 331–338 (2016).
[Crossref]

E. L. Gurevich, “Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation,” Appl. Surf. Sci. 374, 56–60 (2016).
[Crossref]

M. Bieda, M. Siebold, and A. F. Lasagni, “Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning,” Appl. Surf. Sci. 387, 175–182 (2016).
[Crossref]

G. Miyaji and K. Miyazaki, “Fabrication of 50-nm period gratings on GaN in air through plasmonic near-field ablation induced by ultraviolet femtosecond laser pulses,” Opt. Express 24(5), 4648–4653 (2016).
[Crossref]

2015 (3)

T. Park and D. Kim, “Excimer laser sintering of indium tin oxide nanoparticles for fabrication thin films of variable thickness on flexible substrates,” Thin Solid Films 578, 76–82 (2015).
[Crossref]

X. Q. Dou, D. Zhang, C. L. Feng, and L. Jiang, “Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion,” ACS Nano 9(11), 10664–10672 (2015).
[Crossref]

K. Miyazaki, G. Miyaji, and T. Inoue, “Nanograting formation on metals in air with interfering femtosecond laser pulses,” Appl. Phys. Lett. 107(7), 071103 (2015).
[Crossref]

2014 (2)

G.R.B.E. Romer, J.Z.P. Skolski, J.V. Obona, and A. J. H. in ’t Veld, “Finite-difference time-domain modeling of laser-induced periodic surface structures,” Phys. Procedia 56, 1325–1333 (2014).
[Crossref]

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

2013 (2)

K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013).
[Crossref]

C. W. Chien and C. W. Cheng, “Fabrication of the crystalline ITO pattern by picosecond laser with a diffractive optical element,” J. Laser Micro/Nanoeng. 8(2), 165–169 (2013).
[Crossref]

2011 (2)

O. Varlamova, J. Reif, S. Varlamov, and M. Bestehorn, “The laser polarization as control parameter in the formation of laser-induced periodic surface structures: Comparison of numerical and experimental results,” Appl. Surf. Sci. 257(12), 5465–5469 (2011).
[Crossref]

R. P. Seisyan, “Nanolithography in microelectronics: A review,” Techn. Phys. 56(8), 1061–1073 (2011).

2010 (2)

Y. Nakata and N. Miyanaga, “Effect of interference pattern on femtosecond laser-induced ripple structure,” Appl. Phys. A 98(2), 401–405 (2010).
[Crossref]

B. Huis in’t Veld and H. van der Veer, “Initiation of femtosecond laser machined ripples in steel observed by scanning helium ion microscopy (SHIM),” J. Laser Micro/Nanoeng. 5(1), 28–34 (2010).
[Crossref]

2009 (2)

K. Koch, B. Bhushan, and W. Barthlott, “Multifunctional surface structures of plants: An inspiration for biomimetics,” Prog. Mater. Sci. 54(2), 137–178 (2009).
[Crossref]

Y. Kwon, N. Patankar, J. Choi, and J. Lee, “Design of surface hierarchy for extreme hydrophobicity,” Langmuir 25(11), 6129–6136 (2009).
[Crossref]

2007 (1)

A. Lasagni, C. Holzapfel, T. Weirich, and F. Mucklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
[Crossref]

2006 (3)

Z. Huang, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[Crossref]

D. Bratton, D. Yang, J. Dai, and C. K. Ober, “Recent progress in high resolution lithography,” Polym. Adv. Technol. 17, 94–103 (2006).
[Crossref]

A. Aktag, S. Michalski, L. Yue, R. D. Kirby, and S.-H. Liou, “Formation of an anisotropy lattice in Co/Pt multilayers by direct laser interference patterning,” J. Appl. Phys. 99(9), 093901 (2006).
[Crossref]

2005 (2)

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mucklich, “Periodical gratings in mixed-oxide films by laser-interference irradiation,” Adv. Mater. 17, 2228–2232 (2005).
[Crossref]

F. Yu, F. Mucklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromolecules 6(3), 1160–1167 (2005).
[Crossref]

2004 (1)

O. Bierwagen, R. Pomraenke, S. Eilers, and W. T. Masselink, “Mobility and carrier density in materials with anisotropic conductivity revealed by van der Pauw measurements,” Phys. Rev. B 70(16), 165307 (2004).
[Crossref]

2003 (1)

C. Daniel, F. Mucklich, and Z. Liu, “Periodical micro-nano-structuring of metallic surfaces by interfering laser beams,” Appl. Surf. Sci. 208-209, 317–321 (2003).
[Crossref]

1999 (1)

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical and structural properties of indium tin oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

1998 (1)

M. K. Kelly, J. Rogg, C. E. Nebel, M. Stutzmann, and S. Katai, “High-resolution thermal processing of semiconductors using pulsed-laser interference patterning,” Phys. Stat. Sol. 166, 651–657 (1998).
[Crossref]

1997 (1)

N. I. Polushkin, S. A. Gusev, and M. N. Drozdov, “Arrays of magnetic wires created in phase-separating Fe-containing alloys by interference laser irradiation,” J. Appl. Phys. 81(8), 5478–5480 (1997).
[Crossref]

1995 (1)

T. Szorenyi, L.D. Laude, I. Bertoti, Z. Kantor, and Zs. Geretovszky, “Excimer laser processing of indium-tin- oxide films: An optical investigation,” J. Appl. Phys. 78(10), 6211 (1995).
[Crossref]

1994 (1)

M. Heintze, P. V. Santos, C. E. Nebel, and M. Stutzmann, “Lateral structuring of silicon thin films by interference crystallization,” Appl. Phys. Lett. 64(23), 3148 (1994).
[Crossref]

1991 (1)

H. M. Phillips, D. L. Callahan, and R. Sauerbrey, “Sub-100 nm lines produced by direct laser ablation in polyimide,” Appl. Phys. Lett. 58(24), 2761 (1991).
[Crossref]

1958 (1)

L. J. van der Pauw, “A Method of measuring specific resistivity and Hall effect of discs of arbitrary shape,” Philips Res. Repts 13, 1–9 (1958).

Agarwal, A. K.

R. Kumar, A. K. Agarwal, and S. A. Ramakrishna, “Development of a metamaterial structure for large-area surfaces with specified infrared emissivity,” Opt. Eng. 57(8), 087109 (2018).
[Crossref]

Aktag, A.

A. Aktag, S. Michalski, L. Yue, R. D. Kirby, and S.-H. Liou, “Formation of an anisotropy lattice in Co/Pt multilayers by direct laser interference patterning,” J. Appl. Phys. 99(9), 093901 (2006).
[Crossref]

Alamri, S.

S. Alamri, F. Fraggelakis, T. Kunze, B. Krupop, G. Mincuzzi, R. Kling, and A. F. Lasagni, “On the interplay of DLIP and LIPSS upon ultra-short laser pulse irradiation,” Materials 12(7), 1018 (2019).
[Crossref]

Annapureddy, V.

H. Palneedi, J. H. Park, D. Maurya, M. Peddigari, G.-T. Hwang, V. Annapureddy, J.-W. Kim, J.-J. Choi, B.-D. Hahn, S. Priya, K. J. Lee, and J. Ryu, “Laser irradiation of metal oxide films and nanostructures: applications and advances,” Adv. Mater. 30(14), 1705148 (2018).
[Crossref]

Bakowsky, U.

F. Yu, F. Mucklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromolecules 6(3), 1160–1167 (2005).
[Crossref]

Barthlott, W.

K. Koch, B. Bhushan, and W. Barthlott, “Multifunctional surface structures of plants: An inspiration for biomimetics,” Prog. Mater. Sci. 54(2), 137–178 (2009).
[Crossref]

Bertoti, I.

T. Szorenyi, L.D. Laude, I. Bertoti, Z. Kantor, and Zs. Geretovszky, “Excimer laser processing of indium-tin- oxide films: An optical investigation,” J. Appl. Phys. 78(10), 6211 (1995).
[Crossref]

Bestehorn, M.

O. Varlamova, J. Reif, S. Varlamov, and M. Bestehorn, “The laser polarization as control parameter in the formation of laser-induced periodic surface structures: Comparison of numerical and experimental results,” Appl. Surf. Sci. 257(12), 5465–5469 (2011).
[Crossref]

Bhushan, B.

K. Koch, B. Bhushan, and W. Barthlott, “Multifunctional surface structures of plants: An inspiration for biomimetics,” Prog. Mater. Sci. 54(2), 137–178 (2009).
[Crossref]

Bieda, M.

M. Bieda, M. Siebold, and A. F. Lasagni, “Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning,” Appl. Surf. Sci. 387, 175–182 (2016).
[Crossref]

Bierwagen, O.

O. Bierwagen, R. Pomraenke, S. Eilers, and W. T. Masselink, “Mobility and carrier density in materials with anisotropic conductivity revealed by van der Pauw measurements,” Phys. Rev. B 70(16), 165307 (2004).
[Crossref]

Bonse, J.

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures – a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

S. Hohm, M. Herzlieb, A. Rosenfeld, J. Kruger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics,” Appl. Surf. Sci. 374, 331–338 (2016).
[Crossref]

Bratton, D.

D. Bratton, D. Yang, J. Dai, and C. K. Ober, “Recent progress in high resolution lithography,” Polym. Adv. Technol. 17, 94–103 (2006).
[Crossref]

Buividas, R.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Callahan, D. L.

H. M. Phillips, D. L. Callahan, and R. Sauerbrey, “Sub-100 nm lines produced by direct laser ablation in polyimide,” Appl. Phys. Lett. 58(24), 2761 (1991).
[Crossref]

Cheng, C. W.

C. W. Chien and C. W. Cheng, “Fabrication of the crystalline ITO pattern by picosecond laser with a diffractive optical element,” J. Laser Micro/Nanoeng. 8(2), 165–169 (2013).
[Crossref]

Chien, C. W.

C. W. Chien and C. W. Cheng, “Fabrication of the crystalline ITO pattern by picosecond laser with a diffractive optical element,” J. Laser Micro/Nanoeng. 8(2), 165–169 (2013).
[Crossref]

Choi, J.

Y. Kwon, N. Patankar, J. Choi, and J. Lee, “Design of surface hierarchy for extreme hydrophobicity,” Langmuir 25(11), 6129–6136 (2009).
[Crossref]

Choi, J.-J.

H. Palneedi, J. H. Park, D. Maurya, M. Peddigari, G.-T. Hwang, V. Annapureddy, J.-W. Kim, J.-J. Choi, B.-D. Hahn, S. Priya, K. J. Lee, and J. Ryu, “Laser irradiation of metal oxide films and nanostructures: applications and advances,” Adv. Mater. 30(14), 1705148 (2018).
[Crossref]

Chrisey, D. B.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical and structural properties of indium tin oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

Colombier, J.-P.

A. Rudenko, J.-P. Colombier, and T. E. Itina, “Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass,” Phys. Chem. Chem. Phys. 20(8), 5887 (2018).
[Crossref]

Dai, J.

D. Bratton, D. Yang, J. Dai, and C. K. Ober, “Recent progress in high resolution lithography,” Polym. Adv. Technol. 17, 94–103 (2006).
[Crossref]

Daniel, C.

C. Daniel, F. Mucklich, and Z. Liu, “Periodical micro-nano-structuring of metallic surfaces by interfering laser beams,” Appl. Surf. Sci. 208-209, 317–321 (2003).
[Crossref]

Dasgupta, P.

N. Farid, P. Dasgupta, and G. M. O’Connor, “Onset and evolution of laser induced periodic surface structures on indium tin oxide thin films for clean ablation using a repetitively pulsed picosecond laser at low fluence,” J. Phys. D: Appl. Phys. 51(15), 155104 (2018).
[Crossref]

Dou, X. Q.

X. Q. Dou, D. Zhang, C. L. Feng, and L. Jiang, “Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion,” ACS Nano 9(11), 10664–10672 (2015).
[Crossref]

Drozdov, M. N.

N. I. Polushkin, S. A. Gusev, and M. N. Drozdov, “Arrays of magnetic wires created in phase-separating Fe-containing alloys by interference laser irradiation,” J. Appl. Phys. 81(8), 5478–5480 (1997).
[Crossref]

Eilers, S.

O. Bierwagen, R. Pomraenke, S. Eilers, and W. T. Masselink, “Mobility and carrier density in materials with anisotropic conductivity revealed by van der Pauw measurements,” Phys. Rev. B 70(16), 165307 (2004).
[Crossref]

Farid, N.

N. Farid, P. Dasgupta, and G. M. O’Connor, “Onset and evolution of laser induced periodic surface structures on indium tin oxide thin films for clean ablation using a repetitively pulsed picosecond laser at low fluence,” J. Phys. D: Appl. Phys. 51(15), 155104 (2018).
[Crossref]

Feng, C. L.

X. Q. Dou, D. Zhang, C. L. Feng, and L. Jiang, “Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion,” ACS Nano 9(11), 10664–10672 (2015).
[Crossref]

Fraggelakis, F.

S. Alamri, F. Fraggelakis, T. Kunze, B. Krupop, G. Mincuzzi, R. Kling, and A. F. Lasagni, “On the interplay of DLIP and LIPSS upon ultra-short laser pulse irradiation,” Materials 12(7), 1018 (2019).
[Crossref]

Geretovszky, Zs.

T. Szorenyi, L.D. Laude, I. Bertoti, Z. Kantor, and Zs. Geretovszky, “Excimer laser processing of indium-tin- oxide films: An optical investigation,” J. Appl. Phys. 78(10), 6211 (1995).
[Crossref]

Gilmore, C. M.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical and structural properties of indium tin oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

Gurevich, E. L.

E. L. Gurevich, “Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation,” Appl. Surf. Sci. 374, 56–60 (2016).
[Crossref]

Gusev, S. A.

N. I. Polushkin, S. A. Gusev, and M. N. Drozdov, “Arrays of magnetic wires created in phase-separating Fe-containing alloys by interference laser irradiation,” J. Appl. Phys. 81(8), 5478–5480 (1997).
[Crossref]

Hahn, B.-D.

H. Palneedi, J. H. Park, D. Maurya, M. Peddigari, G.-T. Hwang, V. Annapureddy, J.-W. Kim, J.-J. Choi, B.-D. Hahn, S. Priya, K. J. Lee, and J. Ryu, “Laser irradiation of metal oxide films and nanostructures: applications and advances,” Adv. Mater. 30(14), 1705148 (2018).
[Crossref]

Han, W.

S. Wang, L. Jiang, W. Han, J. Hu, X. Li, Q. Wang, and Y. Lu, “Hierarchical laser-induced periodic surface structures induced by femtosecond laser on the surface of a ZnO film,” Appl. Phys. Expr. 11(5), 052703 (2018).
[Crossref]

Heintze, M.

M. Heintze, P. V. Santos, C. E. Nebel, and M. Stutzmann, “Lateral structuring of silicon thin films by interference crystallization,” Appl. Phys. Lett. 64(23), 3148 (1994).
[Crossref]

Herzlieb, M.

S. Hohm, M. Herzlieb, A. Rosenfeld, J. Kruger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics,” Appl. Surf. Sci. 374, 331–338 (2016).
[Crossref]

Hohm, S.

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures – a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

S. Hohm, M. Herzlieb, A. Rosenfeld, J. Kruger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics,” Appl. Surf. Sci. 374, 331–338 (2016).
[Crossref]

Holzapfel, C.

A. Lasagni, C. Holzapfel, T. Weirich, and F. Mucklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
[Crossref]

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mucklich, “Periodical gratings in mixed-oxide films by laser-interference irradiation,” Adv. Mater. 17, 2228–2232 (2005).
[Crossref]

Horwitz, J. S.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical and structural properties of indium tin oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

Hu, J.

S. Wang, L. Jiang, W. Han, J. Hu, X. Li, Q. Wang, and Y. Lu, “Hierarchical laser-induced periodic surface structures induced by femtosecond laser on the surface of a ZnO film,” Appl. Phys. Expr. 11(5), 052703 (2018).
[Crossref]

Huang, Z.

Z. Huang, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[Crossref]

Huis in’t Veld, B.

B. Huis in’t Veld and H. van der Veer, “Initiation of femtosecond laser machined ripples in steel observed by scanning helium ion microscopy (SHIM),” J. Laser Micro/Nanoeng. 5(1), 28–34 (2010).
[Crossref]

Hwang, G.-T.

H. Palneedi, J. H. Park, D. Maurya, M. Peddigari, G.-T. Hwang, V. Annapureddy, J.-W. Kim, J.-J. Choi, B.-D. Hahn, S. Priya, K. J. Lee, and J. Ryu, “Laser irradiation of metal oxide films and nanostructures: applications and advances,” Adv. Mater. 30(14), 1705148 (2018).
[Crossref]

in ’t Veld, A. J. H.

G.R.B.E. Romer, J.Z.P. Skolski, J.V. Obona, and A. J. H. in ’t Veld, “Finite-difference time-domain modeling of laser-induced periodic surface structures,” Phys. Procedia 56, 1325–1333 (2014).
[Crossref]

Inoue, T.

K. Miyazaki, G. Miyaji, and T. Inoue, “Nanograting formation on metals in air with interfering femtosecond laser pulses,” Appl. Phys. Lett. 107(7), 071103 (2015).
[Crossref]

Itina, T. E.

A. Rudenko, J.-P. Colombier, and T. E. Itina, “Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass,” Phys. Chem. Chem. Phys. 20(8), 5887 (2018).
[Crossref]

Jiang, L.

S. Wang, L. Jiang, W. Han, J. Hu, X. Li, Q. Wang, and Y. Lu, “Hierarchical laser-induced periodic surface structures induced by femtosecond laser on the surface of a ZnO film,” Appl. Phys. Expr. 11(5), 052703 (2018).
[Crossref]

X. Q. Dou, D. Zhang, C. L. Feng, and L. Jiang, “Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion,” ACS Nano 9(11), 10664–10672 (2015).
[Crossref]

Juodkazis, S.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Kafafi, Z. H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical and structural properties of indium tin oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

Kantor, Z.

T. Szorenyi, L.D. Laude, I. Bertoti, Z. Kantor, and Zs. Geretovszky, “Excimer laser processing of indium-tin- oxide films: An optical investigation,” J. Appl. Phys. 78(10), 6211 (1995).
[Crossref]

Katai, S.

M. K. Kelly, J. Rogg, C. E. Nebel, M. Stutzmann, and S. Katai, “High-resolution thermal processing of semiconductors using pulsed-laser interference patterning,” Phys. Stat. Sol. 166, 651–657 (1998).
[Crossref]

Kelly, M. K.

M. K. Kelly, J. Rogg, C. E. Nebel, M. Stutzmann, and S. Katai, “High-resolution thermal processing of semiconductors using pulsed-laser interference patterning,” Phys. Stat. Sol. 166, 651–657 (1998).
[Crossref]

Kim, D.

T. Park and D. Kim, “Excimer laser sintering of indium tin oxide nanoparticles for fabrication thin films of variable thickness on flexible substrates,” Thin Solid Films 578, 76–82 (2015).
[Crossref]

Kim, H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical and structural properties of indium tin oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

Kim, J.-W.

H. Palneedi, J. H. Park, D. Maurya, M. Peddigari, G.-T. Hwang, V. Annapureddy, J.-W. Kim, J.-J. Choi, B.-D. Hahn, S. Priya, K. J. Lee, and J. Ryu, “Laser irradiation of metal oxide films and nanostructures: applications and advances,” Adv. Mater. 30(14), 1705148 (2018).
[Crossref]

Kirby, R. D.

A. Aktag, S. Michalski, L. Yue, R. D. Kirby, and S.-H. Liou, “Formation of an anisotropy lattice in Co/Pt multilayers by direct laser interference patterning,” J. Appl. Phys. 99(9), 093901 (2006).
[Crossref]

Kirner, S. V.

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures – a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

Kling, R.

S. Alamri, F. Fraggelakis, T. Kunze, B. Krupop, G. Mincuzzi, R. Kling, and A. F. Lasagni, “On the interplay of DLIP and LIPSS upon ultra-short laser pulse irradiation,” Materials 12(7), 1018 (2019).
[Crossref]

Koch, K.

K. Koch, B. Bhushan, and W. Barthlott, “Multifunctional surface structures of plants: An inspiration for biomimetics,” Prog. Mater. Sci. 54(2), 137–178 (2009).
[Crossref]

Kruger, J.

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures – a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

S. Hohm, M. Herzlieb, A. Rosenfeld, J. Kruger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics,” Appl. Surf. Sci. 374, 331–338 (2016).
[Crossref]

Krupop, B.

S. Alamri, F. Fraggelakis, T. Kunze, B. Krupop, G. Mincuzzi, R. Kling, and A. F. Lasagni, “On the interplay of DLIP and LIPSS upon ultra-short laser pulse irradiation,” Materials 12(7), 1018 (2019).
[Crossref]

Kumar, R.

R. Kumar, A. K. Agarwal, and S. A. Ramakrishna, “Development of a metamaterial structure for large-area surfaces with specified infrared emissivity,” Opt. Eng. 57(8), 087109 (2018).
[Crossref]

Kunze, T.

S. Alamri, F. Fraggelakis, T. Kunze, B. Krupop, G. Mincuzzi, R. Kling, and A. F. Lasagni, “On the interplay of DLIP and LIPSS upon ultra-short laser pulse irradiation,” Materials 12(7), 1018 (2019).
[Crossref]

Kwon, Y.

Y. Kwon, N. Patankar, J. Choi, and J. Lee, “Design of surface hierarchy for extreme hydrophobicity,” Langmuir 25(11), 6129–6136 (2009).
[Crossref]

Lasagni, A.

A. Lasagni, C. Holzapfel, T. Weirich, and F. Mucklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
[Crossref]

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mucklich, “Periodical gratings in mixed-oxide films by laser-interference irradiation,” Adv. Mater. 17, 2228–2232 (2005).
[Crossref]

Lasagni, A. F.

S. Alamri, F. Fraggelakis, T. Kunze, B. Krupop, G. Mincuzzi, R. Kling, and A. F. Lasagni, “On the interplay of DLIP and LIPSS upon ultra-short laser pulse irradiation,” Materials 12(7), 1018 (2019).
[Crossref]

M. Bieda, M. Siebold, and A. F. Lasagni, “Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning,” Appl. Surf. Sci. 387, 175–182 (2016).
[Crossref]

Laude, L.D.

T. Szorenyi, L.D. Laude, I. Bertoti, Z. Kantor, and Zs. Geretovszky, “Excimer laser processing of indium-tin- oxide films: An optical investigation,” J. Appl. Phys. 78(10), 6211 (1995).
[Crossref]

Lee, J.

Y. Kwon, N. Patankar, J. Choi, and J. Lee, “Design of surface hierarchy for extreme hydrophobicity,” Langmuir 25(11), 6129–6136 (2009).
[Crossref]

Lee, K. J.

H. Palneedi, J. H. Park, D. Maurya, M. Peddigari, G.-T. Hwang, V. Annapureddy, J.-W. Kim, J.-J. Choi, B.-D. Hahn, S. Priya, K. J. Lee, and J. Ryu, “Laser irradiation of metal oxide films and nanostructures: applications and advances,” Adv. Mater. 30(14), 1705148 (2018).
[Crossref]

Lehr, C.-M.

F. Yu, F. Mucklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromolecules 6(3), 1160–1167 (2005).
[Crossref]

Li, P.

F. Yu, F. Mucklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromolecules 6(3), 1160–1167 (2005).
[Crossref]

Li, X.

S. Wang, L. Jiang, W. Han, J. Hu, X. Li, Q. Wang, and Y. Lu, “Hierarchical laser-induced periodic surface structures induced by femtosecond laser on the surface of a ZnO film,” Appl. Phys. Expr. 11(5), 052703 (2018).
[Crossref]

Liou, S.-H.

A. Aktag, S. Michalski, L. Yue, R. D. Kirby, and S.-H. Liou, “Formation of an anisotropy lattice in Co/Pt multilayers by direct laser interference patterning,” J. Appl. Phys. 99(9), 093901 (2006).
[Crossref]

Liu, B.

A. Pan, W. Wang, B. Liu, X. Mei, H. Yang, and W. Zhao, “Formation of high-spatial-frequency periodic surface structures on indium-tin-oxide films using picosecond laser pulses,” Mater. Des. 121, 126–135 (2017).
[Crossref]

Liu, P.

P. Liu, W. Wang, A. Pan, Y. Xiang, and D. Wang, “Periodic surface structures on the surface of indium tin oxide film obtained using picosecond laser,” Opt. Laser Technol. 106, 259–264 (2018).
[Crossref]

Liu, Z.

C. Daniel, F. Mucklich, and Z. Liu, “Periodical micro-nano-structuring of metallic surfaces by interfering laser beams,” Appl. Surf. Sci. 208-209, 317–321 (2003).
[Crossref]

Lu, Y.

S. Wang, L. Jiang, W. Han, J. Hu, X. Li, Q. Wang, and Y. Lu, “Hierarchical laser-induced periodic surface structures induced by femtosecond laser on the surface of a ZnO film,” Appl. Phys. Expr. 11(5), 052703 (2018).
[Crossref]

Maier, W. F.

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mucklich, “Periodical gratings in mixed-oxide films by laser-interference irradiation,” Adv. Mater. 17, 2228–2232 (2005).
[Crossref]

Masselink, W. T.

O. Bierwagen, R. Pomraenke, S. Eilers, and W. T. Masselink, “Mobility and carrier density in materials with anisotropic conductivity revealed by van der Pauw measurements,” Phys. Rev. B 70(16), 165307 (2004).
[Crossref]

Mathur, S.

F. Yu, F. Mucklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromolecules 6(3), 1160–1167 (2005).
[Crossref]

Mattoussi, H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical and structural properties of indium tin oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

Maurya, D.

H. Palneedi, J. H. Park, D. Maurya, M. Peddigari, G.-T. Hwang, V. Annapureddy, J.-W. Kim, J.-J. Choi, B.-D. Hahn, S. Priya, K. J. Lee, and J. Ryu, “Laser irradiation of metal oxide films and nanostructures: applications and advances,” Adv. Mater. 30(14), 1705148 (2018).
[Crossref]

Mei, X.

A. Pan, W. Wang, B. Liu, X. Mei, H. Yang, and W. Zhao, “Formation of high-spatial-frequency periodic surface structures on indium-tin-oxide films using picosecond laser pulses,” Mater. Des. 121, 126–135 (2017).
[Crossref]

Michalski, S.

A. Aktag, S. Michalski, L. Yue, R. D. Kirby, and S.-H. Liou, “Formation of an anisotropy lattice in Co/Pt multilayers by direct laser interference patterning,” J. Appl. Phys. 99(9), 093901 (2006).
[Crossref]

Mikutis, M.

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Mincuzzi, G.

S. Alamri, F. Fraggelakis, T. Kunze, B. Krupop, G. Mincuzzi, R. Kling, and A. F. Lasagni, “On the interplay of DLIP and LIPSS upon ultra-short laser pulse irradiation,” Materials 12(7), 1018 (2019).
[Crossref]

Miyaji, G.

G. Miyaji and K. Miyazaki, “Fabrication of 50-nm period gratings on GaN in air through plasmonic near-field ablation induced by ultraviolet femtosecond laser pulses,” Opt. Express 24(5), 4648–4653 (2016).
[Crossref]

K. Miyazaki, G. Miyaji, and T. Inoue, “Nanograting formation on metals in air with interfering femtosecond laser pulses,” Appl. Phys. Lett. 107(7), 071103 (2015).
[Crossref]

K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013).
[Crossref]

Miyanaga, N.

Y. Nakata and N. Miyanaga, “Effect of interference pattern on femtosecond laser-induced ripple structure,” Appl. Phys. A 98(2), 401–405 (2010).
[Crossref]

Miyazaki, K.

G. Miyaji and K. Miyazaki, “Fabrication of 50-nm period gratings on GaN in air through plasmonic near-field ablation induced by ultraviolet femtosecond laser pulses,” Opt. Express 24(5), 4648–4653 (2016).
[Crossref]

K. Miyazaki, G. Miyaji, and T. Inoue, “Nanograting formation on metals in air with interfering femtosecond laser pulses,” Appl. Phys. Lett. 107(7), 071103 (2015).
[Crossref]

K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013).
[Crossref]

Mucklich, F.

A. Lasagni, C. Holzapfel, T. Weirich, and F. Mucklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
[Crossref]

F. Yu, F. Mucklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromolecules 6(3), 1160–1167 (2005).
[Crossref]

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mucklich, “Periodical gratings in mixed-oxide films by laser-interference irradiation,” Adv. Mater. 17, 2228–2232 (2005).
[Crossref]

C. Daniel, F. Mucklich, and Z. Liu, “Periodical micro-nano-structuring of metallic surfaces by interfering laser beams,” Appl. Surf. Sci. 208-209, 317–321 (2003).
[Crossref]

Murata, H.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical and structural properties of indium tin oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

Nakata, Y.

Y. Nakata and N. Miyanaga, “Effect of interference pattern on femtosecond laser-induced ripple structure,” Appl. Phys. A 98(2), 401–405 (2010).
[Crossref]

Nebel, C. E.

M. K. Kelly, J. Rogg, C. E. Nebel, M. Stutzmann, and S. Katai, “High-resolution thermal processing of semiconductors using pulsed-laser interference patterning,” Phys. Stat. Sol. 166, 651–657 (1998).
[Crossref]

M. Heintze, P. V. Santos, C. E. Nebel, and M. Stutzmann, “Lateral structuring of silicon thin films by interference crystallization,” Appl. Phys. Lett. 64(23), 3148 (1994).
[Crossref]

Negro, L. D.

O’Connor, G. M.

N. Farid, P. Dasgupta, and G. M. O’Connor, “Onset and evolution of laser induced periodic surface structures on indium tin oxide thin films for clean ablation using a repetitively pulsed picosecond laser at low fluence,” J. Phys. D: Appl. Phys. 51(15), 155104 (2018).
[Crossref]

Ober, C. K.

D. Bratton, D. Yang, J. Dai, and C. K. Ober, “Recent progress in high resolution lithography,” Polym. Adv. Technol. 17, 94–103 (2006).
[Crossref]

Obona, J.V.

G.R.B.E. Romer, J.Z.P. Skolski, J.V. Obona, and A. J. H. in ’t Veld, “Finite-difference time-domain modeling of laser-induced periodic surface structures,” Phys. Procedia 56, 1325–1333 (2014).
[Crossref]

Overvig, A. C.

Palneedi, H.

H. Palneedi, J. H. Park, D. Maurya, M. Peddigari, G.-T. Hwang, V. Annapureddy, J.-W. Kim, J.-J. Choi, B.-D. Hahn, S. Priya, K. J. Lee, and J. Ryu, “Laser irradiation of metal oxide films and nanostructures: applications and advances,” Adv. Mater. 30(14), 1705148 (2018).
[Crossref]

Pan, A.

P. Liu, W. Wang, A. Pan, Y. Xiang, and D. Wang, “Periodic surface structures on the surface of indium tin oxide film obtained using picosecond laser,” Opt. Laser Technol. 106, 259–264 (2018).
[Crossref]

A. Pan, W. Wang, B. Liu, X. Mei, H. Yang, and W. Zhao, “Formation of high-spatial-frequency periodic surface structures on indium-tin-oxide films using picosecond laser pulses,” Mater. Des. 121, 126–135 (2017).
[Crossref]

Park, J. H.

H. Palneedi, J. H. Park, D. Maurya, M. Peddigari, G.-T. Hwang, V. Annapureddy, J.-W. Kim, J.-J. Choi, B.-D. Hahn, S. Priya, K. J. Lee, and J. Ryu, “Laser irradiation of metal oxide films and nanostructures: applications and advances,” Adv. Mater. 30(14), 1705148 (2018).
[Crossref]

Park, T.

T. Park and D. Kim, “Excimer laser sintering of indium tin oxide nanoparticles for fabrication thin films of variable thickness on flexible substrates,” Thin Solid Films 578, 76–82 (2015).
[Crossref]

Patankar, N.

Y. Kwon, N. Patankar, J. Choi, and J. Lee, “Design of surface hierarchy for extreme hydrophobicity,” Langmuir 25(11), 6129–6136 (2009).
[Crossref]

Peddigari, M.

H. Palneedi, J. H. Park, D. Maurya, M. Peddigari, G.-T. Hwang, V. Annapureddy, J.-W. Kim, J.-J. Choi, B.-D. Hahn, S. Priya, K. J. Lee, and J. Ryu, “Laser irradiation of metal oxide films and nanostructures: applications and advances,” Adv. Mater. 30(14), 1705148 (2018).
[Crossref]

Phillips, H. M.

H. M. Phillips, D. L. Callahan, and R. Sauerbrey, “Sub-100 nm lines produced by direct laser ablation in polyimide,” Appl. Phys. Lett. 58(24), 2761 (1991).
[Crossref]

Piqué, A.

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical and structural properties of indium tin oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

Polushkin, N. I.

N. I. Polushkin, S. A. Gusev, and M. N. Drozdov, “Arrays of magnetic wires created in phase-separating Fe-containing alloys by interference laser irradiation,” J. Appl. Phys. 81(8), 5478–5480 (1997).
[Crossref]

Pomraenke, R.

O. Bierwagen, R. Pomraenke, S. Eilers, and W. T. Masselink, “Mobility and carrier density in materials with anisotropic conductivity revealed by van der Pauw measurements,” Phys. Rev. B 70(16), 165307 (2004).
[Crossref]

Priya, S.

H. Palneedi, J. H. Park, D. Maurya, M. Peddigari, G.-T. Hwang, V. Annapureddy, J.-W. Kim, J.-J. Choi, B.-D. Hahn, S. Priya, K. J. Lee, and J. Ryu, “Laser irradiation of metal oxide films and nanostructures: applications and advances,” Adv. Mater. 30(14), 1705148 (2018).
[Crossref]

Ramakrishna, S. A.

R. Kumar, A. K. Agarwal, and S. A. Ramakrishna, “Development of a metamaterial structure for large-area surfaces with specified infrared emissivity,” Opt. Eng. 57(8), 087109 (2018).
[Crossref]

Reif, J.

O. Varlamova, J. Reif, S. Varlamov, and M. Bestehorn, “The laser polarization as control parameter in the formation of laser-induced periodic surface structures: Comparison of numerical and experimental results,” Appl. Surf. Sci. 257(12), 5465–5469 (2011).
[Crossref]

Rogg, J.

M. K. Kelly, J. Rogg, C. E. Nebel, M. Stutzmann, and S. Katai, “High-resolution thermal processing of semiconductors using pulsed-laser interference patterning,” Phys. Stat. Sol. 166, 651–657 (1998).
[Crossref]

Romer, G.R.B.E.

G.R.B.E. Romer, J.Z.P. Skolski, J.V. Obona, and A. J. H. in ’t Veld, “Finite-difference time-domain modeling of laser-induced periodic surface structures,” Phys. Procedia 56, 1325–1333 (2014).
[Crossref]

Rosenfeld, A.

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures – a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

S. Hohm, M. Herzlieb, A. Rosenfeld, J. Kruger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics,” Appl. Surf. Sci. 374, 331–338 (2016).
[Crossref]

Rudenko, A.

A. Rudenko, J.-P. Colombier, and T. E. Itina, “Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass,” Phys. Chem. Chem. Phys. 20(8), 5887 (2018).
[Crossref]

Ryu, J.

H. Palneedi, J. H. Park, D. Maurya, M. Peddigari, G.-T. Hwang, V. Annapureddy, J.-W. Kim, J.-J. Choi, B.-D. Hahn, S. Priya, K. J. Lee, and J. Ryu, “Laser irradiation of metal oxide films and nanostructures: applications and advances,” Adv. Mater. 30(14), 1705148 (2018).
[Crossref]

Santos, P. V.

M. Heintze, P. V. Santos, C. E. Nebel, and M. Stutzmann, “Lateral structuring of silicon thin films by interference crystallization,” Appl. Phys. Lett. 64(23), 3148 (1994).
[Crossref]

Sauerbrey, R.

H. M. Phillips, D. L. Callahan, and R. Sauerbrey, “Sub-100 nm lines produced by direct laser ablation in polyimide,” Appl. Phys. Lett. 58(24), 2761 (1991).
[Crossref]

Seisyan, R. P.

R. P. Seisyan, “Nanolithography in microelectronics: A review,” Techn. Phys. 56(8), 1061–1073 (2011).

Seyler, M.

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mucklich, “Periodical gratings in mixed-oxide films by laser-interference irradiation,” Adv. Mater. 17, 2228–2232 (2005).
[Crossref]

Shen, H.

F. Yu, F. Mucklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromolecules 6(3), 1160–1167 (2005).
[Crossref]

Shrestha, S.

Siebold, M.

M. Bieda, M. Siebold, and A. F. Lasagni, “Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning,” Appl. Surf. Sci. 387, 175–182 (2016).
[Crossref]

Skolski, J.Z.P.

G.R.B.E. Romer, J.Z.P. Skolski, J.V. Obona, and A. J. H. in ’t Veld, “Finite-difference time-domain modeling of laser-induced periodic surface structures,” Phys. Procedia 56, 1325–1333 (2014).
[Crossref]

Stutzmann, M.

M. K. Kelly, J. Rogg, C. E. Nebel, M. Stutzmann, and S. Katai, “High-resolution thermal processing of semiconductors using pulsed-laser interference patterning,” Phys. Stat. Sol. 166, 651–657 (1998).
[Crossref]

M. Heintze, P. V. Santos, C. E. Nebel, and M. Stutzmann, “Lateral structuring of silicon thin films by interference crystallization,” Appl. Phys. Lett. 64(23), 3148 (1994).
[Crossref]

Szorenyi, T.

T. Szorenyi, L.D. Laude, I. Bertoti, Z. Kantor, and Zs. Geretovszky, “Excimer laser processing of indium-tin- oxide films: An optical investigation,” J. Appl. Phys. 78(10), 6211 (1995).
[Crossref]

van der Pauw, L. J.

L. J. van der Pauw, “A Method of measuring specific resistivity and Hall effect of discs of arbitrary shape,” Philips Res. Repts 13, 1–9 (1958).

van der Veer, H.

B. Huis in’t Veld and H. van der Veer, “Initiation of femtosecond laser machined ripples in steel observed by scanning helium ion microscopy (SHIM),” J. Laser Micro/Nanoeng. 5(1), 28–34 (2010).
[Crossref]

Varlamov, S.

O. Varlamova, J. Reif, S. Varlamov, and M. Bestehorn, “The laser polarization as control parameter in the formation of laser-induced periodic surface structures: Comparison of numerical and experimental results,” Appl. Surf. Sci. 257(12), 5465–5469 (2011).
[Crossref]

Varlamova, O.

O. Varlamova, J. Reif, S. Varlamov, and M. Bestehorn, “The laser polarization as control parameter in the formation of laser-induced periodic surface structures: Comparison of numerical and experimental results,” Appl. Surf. Sci. 257(12), 5465–5469 (2011).
[Crossref]

Wang, D.

P. Liu, W. Wang, A. Pan, Y. Xiang, and D. Wang, “Periodic surface structures on the surface of indium tin oxide film obtained using picosecond laser,” Opt. Laser Technol. 106, 259–264 (2018).
[Crossref]

Wang, Q.

S. Wang, L. Jiang, W. Han, J. Hu, X. Li, Q. Wang, and Y. Lu, “Hierarchical laser-induced periodic surface structures induced by femtosecond laser on the surface of a ZnO film,” Appl. Phys. Expr. 11(5), 052703 (2018).
[Crossref]

Wang, R.

Wang, S.

S. Wang, L. Jiang, W. Han, J. Hu, X. Li, Q. Wang, and Y. Lu, “Hierarchical laser-induced periodic surface structures induced by femtosecond laser on the surface of a ZnO film,” Appl. Phys. Expr. 11(5), 052703 (2018).
[Crossref]

Wang, W.

P. Liu, W. Wang, A. Pan, Y. Xiang, and D. Wang, “Periodic surface structures on the surface of indium tin oxide film obtained using picosecond laser,” Opt. Laser Technol. 106, 259–264 (2018).
[Crossref]

A. Pan, W. Wang, B. Liu, X. Mei, H. Yang, and W. Zhao, “Formation of high-spatial-frequency periodic surface structures on indium-tin-oxide films using picosecond laser pulses,” Mater. Des. 121, 126–135 (2017).
[Crossref]

Wang, Y.

Weirich, T.

A. Lasagni, C. Holzapfel, T. Weirich, and F. Mucklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
[Crossref]

Xiang, Y.

P. Liu, W. Wang, A. Pan, Y. Xiang, and D. Wang, “Periodic surface structures on the surface of indium tin oxide film obtained using picosecond laser,” Opt. Laser Technol. 106, 259–264 (2018).
[Crossref]

Yang, D.

D. Bratton, D. Yang, J. Dai, and C. K. Ober, “Recent progress in high resolution lithography,” Polym. Adv. Technol. 17, 94–103 (2006).
[Crossref]

Yang, H.

A. Pan, W. Wang, B. Liu, X. Mei, H. Yang, and W. Zhao, “Formation of high-spatial-frequency periodic surface structures on indium-tin-oxide films using picosecond laser pulses,” Mater. Des. 121, 126–135 (2017).
[Crossref]

Yu, F.

F. Yu, F. Mucklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromolecules 6(3), 1160–1167 (2005).
[Crossref]

Yu, N.

Yue, L.

A. Aktag, S. Michalski, L. Yue, R. D. Kirby, and S.-H. Liou, “Formation of an anisotropy lattice in Co/Pt multilayers by direct laser interference patterning,” J. Appl. Phys. 99(9), 093901 (2006).
[Crossref]

Zhang, D.

X. Q. Dou, D. Zhang, C. L. Feng, and L. Jiang, “Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion,” ACS Nano 9(11), 10664–10672 (2015).
[Crossref]

Zhang, R.

Zhao, W.

A. Pan, W. Wang, B. Liu, X. Mei, H. Yang, and W. Zhao, “Formation of high-spatial-frequency periodic surface structures on indium-tin-oxide films using picosecond laser pulses,” Mater. Des. 121, 126–135 (2017).
[Crossref]

ACS Nano (1)

X. Q. Dou, D. Zhang, C. L. Feng, and L. Jiang, “Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion,” ACS Nano 9(11), 10664–10672 (2015).
[Crossref]

Adv. Mater. (2)

A. Lasagni, M. Seyler, C. Holzapfel, W. F. Maier, and F. Mucklich, “Periodical gratings in mixed-oxide films by laser-interference irradiation,” Adv. Mater. 17, 2228–2232 (2005).
[Crossref]

H. Palneedi, J. H. Park, D. Maurya, M. Peddigari, G.-T. Hwang, V. Annapureddy, J.-W. Kim, J.-J. Choi, B.-D. Hahn, S. Priya, K. J. Lee, and J. Ryu, “Laser irradiation of metal oxide films and nanostructures: applications and advances,” Adv. Mater. 30(14), 1705148 (2018).
[Crossref]

Appl. Phys. A (1)

Y. Nakata and N. Miyanaga, “Effect of interference pattern on femtosecond laser-induced ripple structure,” Appl. Phys. A 98(2), 401–405 (2010).
[Crossref]

Appl. Phys. Expr. (1)

S. Wang, L. Jiang, W. Han, J. Hu, X. Li, Q. Wang, and Y. Lu, “Hierarchical laser-induced periodic surface structures induced by femtosecond laser on the surface of a ZnO film,” Appl. Phys. Expr. 11(5), 052703 (2018).
[Crossref]

Appl. Phys. Lett. (4)

K. Miyazaki, G. Miyaji, and T. Inoue, “Nanograting formation on metals in air with interfering femtosecond laser pulses,” Appl. Phys. Lett. 107(7), 071103 (2015).
[Crossref]

H. M. Phillips, D. L. Callahan, and R. Sauerbrey, “Sub-100 nm lines produced by direct laser ablation in polyimide,” Appl. Phys. Lett. 58(24), 2761 (1991).
[Crossref]

M. Heintze, P. V. Santos, C. E. Nebel, and M. Stutzmann, “Lateral structuring of silicon thin films by interference crystallization,” Appl. Phys. Lett. 64(23), 3148 (1994).
[Crossref]

Z. Huang, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89(3), 033506 (2006).
[Crossref]

Appl. Surf. Sci. (6)

A. Lasagni, C. Holzapfel, T. Weirich, and F. Mucklich, “Laser interference metallurgy: A new method for periodic surface microstructure design on multilayered metallic thin films,” Appl. Surf. Sci. 253(19), 8070–8074 (2007).
[Crossref]

C. Daniel, F. Mucklich, and Z. Liu, “Periodical micro-nano-structuring of metallic surfaces by interfering laser beams,” Appl. Surf. Sci. 208-209, 317–321 (2003).
[Crossref]

M. Bieda, M. Siebold, and A. F. Lasagni, “Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning,” Appl. Surf. Sci. 387, 175–182 (2016).
[Crossref]

S. Hohm, M. Herzlieb, A. Rosenfeld, J. Kruger, and J. Bonse, “Dynamics of the formation of laser-induced periodic surface structures (LIPSS) upon femtosecond two-color double-pulse irradiation of metals, semiconductors, and dielectrics,” Appl. Surf. Sci. 374, 331–338 (2016).
[Crossref]

O. Varlamova, J. Reif, S. Varlamov, and M. Bestehorn, “The laser polarization as control parameter in the formation of laser-induced periodic surface structures: Comparison of numerical and experimental results,” Appl. Surf. Sci. 257(12), 5465–5469 (2011).
[Crossref]

E. L. Gurevich, “Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation,” Appl. Surf. Sci. 374, 56–60 (2016).
[Crossref]

Biomacromolecules (1)

F. Yu, F. Mucklich, P. Li, H. Shen, S. Mathur, C.-M. Lehr, and U. Bakowsky, “In vitro cell response to a polymer surface micropatterned by laser interference lithography,” Biomacromolecules 6(3), 1160–1167 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Bonse, S. Hohm, S. V. Kirner, A. Rosenfeld, and J. Kruger, “Laser-induced periodic surface structures – a scientific evergreen,” IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017).
[Crossref]

J. Appl. Phys. (5)

N. I. Polushkin, S. A. Gusev, and M. N. Drozdov, “Arrays of magnetic wires created in phase-separating Fe-containing alloys by interference laser irradiation,” J. Appl. Phys. 81(8), 5478–5480 (1997).
[Crossref]

A. Aktag, S. Michalski, L. Yue, R. D. Kirby, and S.-H. Liou, “Formation of an anisotropy lattice in Co/Pt multilayers by direct laser interference patterning,” J. Appl. Phys. 99(9), 093901 (2006).
[Crossref]

K. Miyazaki and G. Miyaji, “Nanograting formation through surface plasmon fields induced by femtosecond laser pulses,” J. Appl. Phys. 114(15), 153108 (2013).
[Crossref]

H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical and structural properties of indium tin oxide thin films for organic light-emitting devices,” J. Appl. Phys. 86(11), 6451 (1999).
[Crossref]

T. Szorenyi, L.D. Laude, I. Bertoti, Z. Kantor, and Zs. Geretovszky, “Excimer laser processing of indium-tin- oxide films: An optical investigation,” J. Appl. Phys. 78(10), 6211 (1995).
[Crossref]

J. Laser Micro/Nanoeng. (2)

B. Huis in’t Veld and H. van der Veer, “Initiation of femtosecond laser machined ripples in steel observed by scanning helium ion microscopy (SHIM),” J. Laser Micro/Nanoeng. 5(1), 28–34 (2010).
[Crossref]

C. W. Chien and C. W. Cheng, “Fabrication of the crystalline ITO pattern by picosecond laser with a diffractive optical element,” J. Laser Micro/Nanoeng. 8(2), 165–169 (2013).
[Crossref]

J. Phys. D: Appl. Phys. (1)

N. Farid, P. Dasgupta, and G. M. O’Connor, “Onset and evolution of laser induced periodic surface structures on indium tin oxide thin films for clean ablation using a repetitively pulsed picosecond laser at low fluence,” J. Phys. D: Appl. Phys. 51(15), 155104 (2018).
[Crossref]

Langmuir (1)

Y. Kwon, N. Patankar, J. Choi, and J. Lee, “Design of surface hierarchy for extreme hydrophobicity,” Langmuir 25(11), 6129–6136 (2009).
[Crossref]

Mater. Des. (1)

A. Pan, W. Wang, B. Liu, X. Mei, H. Yang, and W. Zhao, “Formation of high-spatial-frequency periodic surface structures on indium-tin-oxide films using picosecond laser pulses,” Mater. Des. 121, 126–135 (2017).
[Crossref]

Materials (1)

S. Alamri, F. Fraggelakis, T. Kunze, B. Krupop, G. Mincuzzi, R. Kling, and A. F. Lasagni, “On the interplay of DLIP and LIPSS upon ultra-short laser pulse irradiation,” Materials 12(7), 1018 (2019).
[Crossref]

Opt. Eng. (1)

R. Kumar, A. K. Agarwal, and S. A. Ramakrishna, “Development of a metamaterial structure for large-area surfaces with specified infrared emissivity,” Opt. Eng. 57(8), 087109 (2018).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

P. Liu, W. Wang, A. Pan, Y. Xiang, and D. Wang, “Periodic surface structures on the surface of indium tin oxide film obtained using picosecond laser,” Opt. Laser Technol. 106, 259–264 (2018).
[Crossref]

Opt. Mater. Express (1)

Philips Res. Repts (1)

L. J. van der Pauw, “A Method of measuring specific resistivity and Hall effect of discs of arbitrary shape,” Philips Res. Repts 13, 1–9 (1958).

Phys. Chem. Chem. Phys. (1)

A. Rudenko, J.-P. Colombier, and T. E. Itina, “Nanopore-mediated ultrashort laser-induced formation and erasure of volume nanogratings in glass,” Phys. Chem. Chem. Phys. 20(8), 5887 (2018).
[Crossref]

Phys. Procedia (1)

G.R.B.E. Romer, J.Z.P. Skolski, J.V. Obona, and A. J. H. in ’t Veld, “Finite-difference time-domain modeling of laser-induced periodic surface structures,” Phys. Procedia 56, 1325–1333 (2014).
[Crossref]

Phys. Rev. B (1)

O. Bierwagen, R. Pomraenke, S. Eilers, and W. T. Masselink, “Mobility and carrier density in materials with anisotropic conductivity revealed by van der Pauw measurements,” Phys. Rev. B 70(16), 165307 (2004).
[Crossref]

Phys. Stat. Sol. (1)

M. K. Kelly, J. Rogg, C. E. Nebel, M. Stutzmann, and S. Katai, “High-resolution thermal processing of semiconductors using pulsed-laser interference patterning,” Phys. Stat. Sol. 166, 651–657 (1998).
[Crossref]

Polym. Adv. Technol. (1)

D. Bratton, D. Yang, J. Dai, and C. K. Ober, “Recent progress in high resolution lithography,” Polym. Adv. Technol. 17, 94–103 (2006).
[Crossref]

Prog. Mater. Sci. (1)

K. Koch, B. Bhushan, and W. Barthlott, “Multifunctional surface structures of plants: An inspiration for biomimetics,” Prog. Mater. Sci. 54(2), 137–178 (2009).
[Crossref]

Prog. Quantum Electron. (1)

R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances,” Prog. Quantum Electron. 38(3), 119–156 (2014).
[Crossref]

Techn. Phys. (1)

R. P. Seisyan, “Nanolithography in microelectronics: A review,” Techn. Phys. 56(8), 1061–1073 (2011).

Thin Solid Films (1)

T. Park and D. Kim, “Excimer laser sintering of indium tin oxide nanoparticles for fabrication thin films of variable thickness on flexible substrates,” Thin Solid Films 578, 76–82 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic of the DLIP optical setup and patterned ITO film.
Fig. 2.
Fig. 2. AFM images of (a) single shot at 80 mJ/cm2, (b) single shot at 340 mJ/cm2 and (c) N = 250,000 shots at 32 mJ/cm2. The scanned area for each image was 2 µm ×  2 µm. The z-scales of (a), (b), and (c) are 200 nm, 300 nm and 100 nm, respectively. See Fig. 6 in Appendix for more details.
Fig. 3.
Fig. 3. (a) AFM images of single-shot DLIP patterned ITO films at 90 mJ/cm2, 210 mJ/cm2, 340 mJ/cm2, and 440 mJ/cm2. (b) Plot of the height of a cross section of the micrographs shown above. The z-scale is 300 nm for all samples. (c) Average width and height profiles of DLIP patterned ITO films as a function of laser fluence.
Fig. 4.
Fig. 4. (a,d) SEM images showing LIPSS structures perpendicular (32 mJ/cm2) and parallel (37 mJ/cm2) to DLIP. The broken lines represent the DLIP grating overlaid on the LIPSS structures. (b,e) Fourier Transform of (a,d). (c,f) Polarized infrared reflectance of horizontal and vertical LIPSS structures. Some harmonics of the 75 nm feature appear in the Fourier Transform in (b) as discussed in Ref. 42. See Fig. 8 in Appendix for more details.
Fig. 5.
Fig. 5. SEM images showing combination of laser induced periodic surface structuring (LIPSS) and direct laser interference patterning (DLIP) in ITO films machined at 200 kHz and 5 mm/s with an electric field parallel (a-c) and perpendicular (d-f) to the nano-grating at two different laser fluences (50 and 90 mJ/cm2). See Fig. 9 in Appendix for more details.
Fig. 6.
Fig. 6. SEM images of (a) a single shot with laser fluence of 340 mJ/cm2 and (b) many laser shots (N = 250,000) with a laser fluence of 32 mJ/cm2.
Fig. 7.
Fig. 7. AFM image (1 µm ×  1 µm) of as-grown ITO film on sapphire substrate. Average grain size is ∼ 25–30 nm. Note that the film surface is extremely smooth, where the z-scale is only 5 nm and the rms surface roughness is 0.45 nm.
Fig. 8.
Fig. 8. AFM images (3.5 µm ×  3.5 µm) with height profiles for patterned ITO films showing laser induced periodic surface structures (LIPSS) (a) perpendicular and (b) parallel to the direct laser interference patterning (DLIP). Red boxes mark the areas scanned for height profiles. (a) and (b) were obtained from similar areas in Figs. 4(a) and 4(d), respectively.
Fig. 9.
Fig. 9. AFM images (2.5 µm ×  2.5 µm) showing combination of LIPSS and DLIP in ITO films laser patterned with an electric field (a) parallel and (b) perpendicular to the raster direction (y-axis) at 90 mJ/cm2. Polarization direction is indicated in each figure. (a) and (b) were obtained from similar areas in Figs. 5(c) and 5(f), respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ 2 sin ( θ / 2 )

Metrics