Abstract

Formation of relief structures on the surface of thermally poled silicate glasses with reactive ion etching (RIE) is performed for the first time. RIE of a poled soda-lime glass is compared with acidic chemical etching of the glass by a polishing etchant. The chemical etching provides surface relief ∼20 times deeper than RIE, because the RIE selectively etches “silica-like” poled layer of the glass contrary to the acidic etching in which the poled glass layer behaves as a mask for the etching. However, the quality of the transfer of the anodic electrode relief pattern to glass surface by RIE is higher because the latter allows smoothing of peculiar stronger poled regions near the edges of the anodic electrode used in the glass poling. In manufacturing structures, which elements are hundreds of nanometers in size, RIE is preferable over the chemical etching because of its directivity. Additional thermal treatment of the poled glasses allowed increasing of the surface relief formed by RIE ∼ 230% and by chemical etching ∼ 140% due to the relaxation of the poled region of the glass.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nano-imprinting of surface relief gratings on soda-aluminosilicate and soda-lime silicate glasses

Naoki Kubo, Naoki Ikutame, Masashi Takei, Bian Weibai, Sadatatsu Ikeda, Kiyoshi Yamamoto, Keiichiro Uraji, Takahiro Misawa, Masaya Fujioka, Hideo Kaiju, Gaoyang Zhao, and Junji Nishii
Opt. Mater. Express 7(5) 1438-1445 (2017)

Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass

Thomas G. Alley and S. R. J. Brueck
Opt. Lett. 23(15) 1170-1172 (1998)

References

  • View by:
  • |
  • |
  • |

  1. W. Margulis and F. Laurell, “Interferometric study of poled glass under etching,” Opt. Lett. 21(21), 1786–1788 (1996).
    [Crossref]
  2. N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
    [Crossref]
  3. N. Kubo, N. Ikutame, M. Takei, B. Weibai, S. Ikeda, K. Yamamoto, K. Uraji, T. Misawa, M. Fujioka, H. Kaiju, G. Zhao, and J. Nishii, “Nano-imprinting of surface relief gratings on soda-aluminosilicate and soda-lime silicate glasses,” Opt. Mater. Express 7(5), 1438–1445 (2017).
    [Crossref]
  4. A. N. Kamenskii, I. V. Reduto, V. D. Petrikov, and A. A. Lipovskii, “Effective diffraction gratings by acidic etching of thermally poled glasses,” Opt. Mater. 62, 250–254 (2016).
    [Crossref]
  5. I. Reduto, A. Kamenskii, A. Redkov, and A. Lipovskii, “Mechanisms and Peculiarities of Electric Field Imprinting in Glasses,” J. Electrochem. Soc. 164(13), E385–E390 (2017).
    [Crossref]
  6. M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
    [Crossref]
  7. S. Ikeda, K. Uraji, T. Suzuki, K. Yamamoto, and J. Nishii, “Migration behavior of alkali and alkaline-earth cations in soda-lime silicate glass surface by electrical nanoimprint,” J. Non-Cryst. Solids 453, 103–107 (2016).
    [Crossref]
  8. A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Micro-structuring the surface reactivity of a borosilicate glass via thermal poling,” Chem. Phys. Lett. 664, 10–15 (2016).
    [Crossref]
  9. P. N. Brunkov, V. G. Melekhin, V. V. Goncharov, A. A. Lipovskii, and M. I. Petrov, “Submicron-resolved relief formation in poled glasses and glass-metal nanocomposites,” Tech. Phys. Lett. 34(12), 1030–1033 (2008).
    [Crossref]
  10. A. V. Redkov, V. G. Melehin, V. V. Statcenko, and A. A. Lipovskii, “Nanoprofiling of alkali-silicate glasses by thermal poling,” J. Non-Cryst. Solids 409, 166–169 (2015).
    [Crossref]
  11. I. V. Reduto, V. P. Kaasik, A. A. Lipovskii, and D. K. Tagantsev, “Volume relaxation of poled glasses: surface relief enhancement,” J. Non-Cryst. Solids 499, 360–362 (2018).
    [Crossref]
  12. C. M. Lepienski, J. A. Giacometti, G. F. Leal Ferreira, F. L. Freire Jr, and C. A. Achete, “Electric field distribution and near-surface modifications in soda-lime glass submitted to a dc potential,” J. Non-Cryst. Solids 159(3), 204–212 (1993).
    [Crossref]
  13. A. A. Lipovskii, V. G. Melehin, M. I. Petrov, and Yu. P. Svirko, “Thermal electric field imprinting lithography: fundamentals and applications,” chapter 6 in Lithography: Principles, Processes and Materials, Theodore C. Hennessy, ed. (Nova Science Publishers, 2011), pp. 149–163.
  14. S. E. Alexandrov, A. A. Lipovskii, A. A. Osipov, I. V. Reduto, and D. K. Tagantsev, “Plasma-etching of 2D-poled glasses: A route to dry lithography,” Appl. Phys. Lett. 111(11), 111604 (2017).
    [Crossref]
  15. S. J. Pearton, “Reactive Ion Etching of III–V Semiconductors,” Int. J. Mod. Phys. B 8(14), 1781–1876 (1994).
    [Crossref]
  16. K. Nojiri, Dry Etching Technology for Semiconductors (Springer, 2015).
  17. P. W. Leech, “Reactive ion etching of quartz and silica-based glasses in CF4/CHF3 plasmas,” Vacuum 55(3-4), 191–196 (1999).
    [Crossref]
  18. Soda-lime glass slides composition, http://www.agarscientific.com/microscope-slides.html
  19. J. Schmitt, A. Meier, U. Wallrabe, and F. Völklein, “Reactive ion etching (CF4/Ar) and ion beam etching of various glasses for diffractive optical element fabrication,” Int. J. Appl. Glass Sci. 9(4), 499–509 (2018).
    [Crossref]
  20. A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Tagantsev, V. V. Zhurikhina, and A. A. Lipovskii, “Modifications of poled silicate glasses under heat treatment,” J. Non-Cryst. Solids 503-504, 279–283 (2019).
    [Crossref]
  21. D. V. Raskhodchikov, I. V. Reshetov, D. K. Tagantsev, A. A. Lipovskii, and V. P. Kaasik, “Study of charge relaxation in poled silicate glass,” in Book of Abstracts of 5th International School and Conference Saint-Petersburg OPEN 2018, Zh. I. Alferov, ed. (Academic University Publishing, 2018), pp. 400–402.
  22. J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), xiv + 287.
  23. R. Oven, “Measurement of the refractive index of electrically poled soda-lime glass layers using leaky modes,” Appl. Opt. 55(32), 9123–9130 (2016).
    [Crossref]
  24. M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Refractive index distribution in the non-linear optical layer of thermally poled oxide glasses,” Chem. Phys. Lett. 470(1-3), 63–66 (2009).
    [Crossref]
  25. K. Sokolov, V. Melehin, M. Petrov, V. Zhurikhina, and A. Lipovskii, “On spatially periodical poling of silica glass,” J. Appl. Phys. 111(10), 104307 (2012).
    [Crossref]

2019 (1)

A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Tagantsev, V. V. Zhurikhina, and A. A. Lipovskii, “Modifications of poled silicate glasses under heat treatment,” J. Non-Cryst. Solids 503-504, 279–283 (2019).
[Crossref]

2018 (2)

J. Schmitt, A. Meier, U. Wallrabe, and F. Völklein, “Reactive ion etching (CF4/Ar) and ion beam etching of various glasses for diffractive optical element fabrication,” Int. J. Appl. Glass Sci. 9(4), 499–509 (2018).
[Crossref]

I. V. Reduto, V. P. Kaasik, A. A. Lipovskii, and D. K. Tagantsev, “Volume relaxation of poled glasses: surface relief enhancement,” J. Non-Cryst. Solids 499, 360–362 (2018).
[Crossref]

2017 (3)

I. Reduto, A. Kamenskii, A. Redkov, and A. Lipovskii, “Mechanisms and Peculiarities of Electric Field Imprinting in Glasses,” J. Electrochem. Soc. 164(13), E385–E390 (2017).
[Crossref]

S. E. Alexandrov, A. A. Lipovskii, A. A. Osipov, I. V. Reduto, and D. K. Tagantsev, “Plasma-etching of 2D-poled glasses: A route to dry lithography,” Appl. Phys. Lett. 111(11), 111604 (2017).
[Crossref]

N. Kubo, N. Ikutame, M. Takei, B. Weibai, S. Ikeda, K. Yamamoto, K. Uraji, T. Misawa, M. Fujioka, H. Kaiju, G. Zhao, and J. Nishii, “Nano-imprinting of surface relief gratings on soda-aluminosilicate and soda-lime silicate glasses,” Opt. Mater. Express 7(5), 1438–1445 (2017).
[Crossref]

2016 (4)

R. Oven, “Measurement of the refractive index of electrically poled soda-lime glass layers using leaky modes,” Appl. Opt. 55(32), 9123–9130 (2016).
[Crossref]

S. Ikeda, K. Uraji, T. Suzuki, K. Yamamoto, and J. Nishii, “Migration behavior of alkali and alkaline-earth cations in soda-lime silicate glass surface by electrical nanoimprint,” J. Non-Cryst. Solids 453, 103–107 (2016).
[Crossref]

A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Micro-structuring the surface reactivity of a borosilicate glass via thermal poling,” Chem. Phys. Lett. 664, 10–15 (2016).
[Crossref]

A. N. Kamenskii, I. V. Reduto, V. D. Petrikov, and A. A. Lipovskii, “Effective diffraction gratings by acidic etching of thermally poled glasses,” Opt. Mater. 62, 250–254 (2016).
[Crossref]

2015 (1)

A. V. Redkov, V. G. Melehin, V. V. Statcenko, and A. A. Lipovskii, “Nanoprofiling of alkali-silicate glasses by thermal poling,” J. Non-Cryst. Solids 409, 166–169 (2015).
[Crossref]

2013 (1)

N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
[Crossref]

2012 (1)

K. Sokolov, V. Melehin, M. Petrov, V. Zhurikhina, and A. Lipovskii, “On spatially periodical poling of silica glass,” J. Appl. Phys. 111(10), 104307 (2012).
[Crossref]

2010 (1)

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

2009 (1)

M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Refractive index distribution in the non-linear optical layer of thermally poled oxide glasses,” Chem. Phys. Lett. 470(1-3), 63–66 (2009).
[Crossref]

2008 (1)

P. N. Brunkov, V. G. Melekhin, V. V. Goncharov, A. A. Lipovskii, and M. I. Petrov, “Submicron-resolved relief formation in poled glasses and glass-metal nanocomposites,” Tech. Phys. Lett. 34(12), 1030–1033 (2008).
[Crossref]

1999 (1)

P. W. Leech, “Reactive ion etching of quartz and silica-based glasses in CF4/CHF3 plasmas,” Vacuum 55(3-4), 191–196 (1999).
[Crossref]

1996 (1)

1994 (1)

S. J. Pearton, “Reactive Ion Etching of III–V Semiconductors,” Int. J. Mod. Phys. B 8(14), 1781–1876 (1994).
[Crossref]

1993 (1)

C. M. Lepienski, J. A. Giacometti, G. F. Leal Ferreira, F. L. Freire Jr, and C. A. Achete, “Electric field distribution and near-surface modifications in soda-lime glass submitted to a dc potential,” J. Non-Cryst. Solids 159(3), 204–212 (1993).
[Crossref]

Achete, C. A.

C. M. Lepienski, J. A. Giacometti, G. F. Leal Ferreira, F. L. Freire Jr, and C. A. Achete, “Electric field distribution and near-surface modifications in soda-lime glass submitted to a dc potential,” J. Non-Cryst. Solids 159(3), 204–212 (1993).
[Crossref]

Adamietz, F.

A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Micro-structuring the surface reactivity of a borosilicate glass via thermal poling,” Chem. Phys. Lett. 664, 10–15 (2016).
[Crossref]

Alexandrov, S. E.

S. E. Alexandrov, A. A. Lipovskii, A. A. Osipov, I. V. Reduto, and D. K. Tagantsev, “Plasma-etching of 2D-poled glasses: A route to dry lithography,” Appl. Phys. Lett. 111(11), 111604 (2017).
[Crossref]

Brunkov, P. N.

P. N. Brunkov, V. G. Melekhin, V. V. Goncharov, A. A. Lipovskii, and M. I. Petrov, “Submicron-resolved relief formation in poled glasses and glass-metal nanocomposites,” Tech. Phys. Lett. 34(12), 1030–1033 (2008).
[Crossref]

Cardinal, T.

A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Micro-structuring the surface reactivity of a borosilicate glass via thermal poling,” Chem. Phys. Lett. 664, 10–15 (2016).
[Crossref]

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Dussauze, M.

A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Micro-structuring the surface reactivity of a borosilicate glass via thermal poling,” Chem. Phys. Lett. 664, 10–15 (2016).
[Crossref]

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Refractive index distribution in the non-linear optical layer of thermally poled oxide glasses,” Chem. Phys. Lett. 470(1-3), 63–66 (2009).
[Crossref]

Fargin, E.

A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Micro-structuring the surface reactivity of a borosilicate glass via thermal poling,” Chem. Phys. Lett. 664, 10–15 (2016).
[Crossref]

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Refractive index distribution in the non-linear optical layer of thermally poled oxide glasses,” Chem. Phys. Lett. 470(1-3), 63–66 (2009).
[Crossref]

Freire Jr, F. L.

C. M. Lepienski, J. A. Giacometti, G. F. Leal Ferreira, F. L. Freire Jr, and C. A. Achete, “Electric field distribution and near-surface modifications in soda-lime glass submitted to a dc potential,” J. Non-Cryst. Solids 159(3), 204–212 (1993).
[Crossref]

Fujioka, M.

Funatsu, S.

N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
[Crossref]

Giacometti, J. A.

C. M. Lepienski, J. A. Giacometti, G. F. Leal Ferreira, F. L. Freire Jr, and C. A. Achete, “Electric field distribution and near-surface modifications in soda-lime glass submitted to a dc potential,” J. Non-Cryst. Solids 159(3), 204–212 (1993).
[Crossref]

Goncharov, V. V.

P. N. Brunkov, V. G. Melekhin, V. V. Goncharov, A. A. Lipovskii, and M. I. Petrov, “Submicron-resolved relief formation in poled glasses and glass-metal nanocomposites,” Tech. Phys. Lett. 34(12), 1030–1033 (2008).
[Crossref]

Goodman, J.W.

J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), xiv + 287.

Harada, K.

N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
[Crossref]

Ikeda, H.

N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
[Crossref]

Ikeda, S.

N. Kubo, N. Ikutame, M. Takei, B. Weibai, S. Ikeda, K. Yamamoto, K. Uraji, T. Misawa, M. Fujioka, H. Kaiju, G. Zhao, and J. Nishii, “Nano-imprinting of surface relief gratings on soda-aluminosilicate and soda-lime silicate glasses,” Opt. Mater. Express 7(5), 1438–1445 (2017).
[Crossref]

S. Ikeda, K. Uraji, T. Suzuki, K. Yamamoto, and J. Nishii, “Migration behavior of alkali and alkaline-earth cations in soda-lime silicate glass surface by electrical nanoimprint,” J. Non-Cryst. Solids 453, 103–107 (2016).
[Crossref]

Ikutame, N.

N. Kubo, N. Ikutame, M. Takei, B. Weibai, S. Ikeda, K. Yamamoto, K. Uraji, T. Misawa, M. Fujioka, H. Kaiju, G. Zhao, and J. Nishii, “Nano-imprinting of surface relief gratings on soda-aluminosilicate and soda-lime silicate glasses,” Opt. Mater. Express 7(5), 1438–1445 (2017).
[Crossref]

N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
[Crossref]

Kaasik, V. P.

I. V. Reduto, V. P. Kaasik, A. A. Lipovskii, and D. K. Tagantsev, “Volume relaxation of poled glasses: surface relief enhancement,” J. Non-Cryst. Solids 499, 360–362 (2018).
[Crossref]

D. V. Raskhodchikov, I. V. Reshetov, D. K. Tagantsev, A. A. Lipovskii, and V. P. Kaasik, “Study of charge relaxation in poled silicate glass,” in Book of Abstracts of 5th International School and Conference Saint-Petersburg OPEN 2018, Zh. I. Alferov, ed. (Academic University Publishing, 2018), pp. 400–402.

Kaiju, H.

Kamenskii, A.

I. Reduto, A. Kamenskii, A. Redkov, and A. Lipovskii, “Mechanisms and Peculiarities of Electric Field Imprinting in Glasses,” J. Electrochem. Soc. 164(13), E385–E390 (2017).
[Crossref]

Kamenskii, A. N.

A. N. Kamenskii, I. V. Reduto, V. D. Petrikov, and A. A. Lipovskii, “Effective diffraction gratings by acidic etching of thermally poled glasses,” Opt. Mater. 62, 250–254 (2016).
[Crossref]

Kamitsos, E. I.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Refractive index distribution in the non-linear optical layer of thermally poled oxide glasses,” Chem. Phys. Lett. 470(1-3), 63–66 (2009).
[Crossref]

Kawaguchi, K.

N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
[Crossref]

Kubo, N.

Laurell, F.

Leal Ferreira, G. F.

C. M. Lepienski, J. A. Giacometti, G. F. Leal Ferreira, F. L. Freire Jr, and C. A. Achete, “Electric field distribution and near-surface modifications in soda-lime glass submitted to a dc potential,” J. Non-Cryst. Solids 159(3), 204–212 (1993).
[Crossref]

Leech, P. W.

P. W. Leech, “Reactive ion etching of quartz and silica-based glasses in CF4/CHF3 plasmas,” Vacuum 55(3-4), 191–196 (1999).
[Crossref]

Lepicard, A.

A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Micro-structuring the surface reactivity of a borosilicate glass via thermal poling,” Chem. Phys. Lett. 664, 10–15 (2016).
[Crossref]

Lepienski, C. M.

C. M. Lepienski, J. A. Giacometti, G. F. Leal Ferreira, F. L. Freire Jr, and C. A. Achete, “Electric field distribution and near-surface modifications in soda-lime glass submitted to a dc potential,” J. Non-Cryst. Solids 159(3), 204–212 (1993).
[Crossref]

Lipovskii, A.

I. Reduto, A. Kamenskii, A. Redkov, and A. Lipovskii, “Mechanisms and Peculiarities of Electric Field Imprinting in Glasses,” J. Electrochem. Soc. 164(13), E385–E390 (2017).
[Crossref]

K. Sokolov, V. Melehin, M. Petrov, V. Zhurikhina, and A. Lipovskii, “On spatially periodical poling of silica glass,” J. Appl. Phys. 111(10), 104307 (2012).
[Crossref]

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Lipovskii, A. A.

A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Tagantsev, V. V. Zhurikhina, and A. A. Lipovskii, “Modifications of poled silicate glasses under heat treatment,” J. Non-Cryst. Solids 503-504, 279–283 (2019).
[Crossref]

I. V. Reduto, V. P. Kaasik, A. A. Lipovskii, and D. K. Tagantsev, “Volume relaxation of poled glasses: surface relief enhancement,” J. Non-Cryst. Solids 499, 360–362 (2018).
[Crossref]

S. E. Alexandrov, A. A. Lipovskii, A. A. Osipov, I. V. Reduto, and D. K. Tagantsev, “Plasma-etching of 2D-poled glasses: A route to dry lithography,” Appl. Phys. Lett. 111(11), 111604 (2017).
[Crossref]

A. N. Kamenskii, I. V. Reduto, V. D. Petrikov, and A. A. Lipovskii, “Effective diffraction gratings by acidic etching of thermally poled glasses,” Opt. Mater. 62, 250–254 (2016).
[Crossref]

A. V. Redkov, V. G. Melehin, V. V. Statcenko, and A. A. Lipovskii, “Nanoprofiling of alkali-silicate glasses by thermal poling,” J. Non-Cryst. Solids 409, 166–169 (2015).
[Crossref]

P. N. Brunkov, V. G. Melekhin, V. V. Goncharov, A. A. Lipovskii, and M. I. Petrov, “Submicron-resolved relief formation in poled glasses and glass-metal nanocomposites,” Tech. Phys. Lett. 34(12), 1030–1033 (2008).
[Crossref]

A. A. Lipovskii, V. G. Melehin, M. I. Petrov, and Yu. P. Svirko, “Thermal electric field imprinting lithography: fundamentals and applications,” chapter 6 in Lithography: Principles, Processes and Materials, Theodore C. Hennessy, ed. (Nova Science Publishers, 2011), pp. 149–163.

D. V. Raskhodchikov, I. V. Reshetov, D. K. Tagantsev, A. A. Lipovskii, and V. P. Kaasik, “Study of charge relaxation in poled silicate glass,” in Book of Abstracts of 5th International School and Conference Saint-Petersburg OPEN 2018, Zh. I. Alferov, ed. (Academic University Publishing, 2018), pp. 400–402.

Margulis, W.

Meier, A.

J. Schmitt, A. Meier, U. Wallrabe, and F. Völklein, “Reactive ion etching (CF4/Ar) and ion beam etching of various glasses for diffractive optical element fabrication,” Int. J. Appl. Glass Sci. 9(4), 499–509 (2018).
[Crossref]

Melehin, V.

K. Sokolov, V. Melehin, M. Petrov, V. Zhurikhina, and A. Lipovskii, “On spatially periodical poling of silica glass,” J. Appl. Phys. 111(10), 104307 (2012).
[Crossref]

Melehin, V. G.

A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Tagantsev, V. V. Zhurikhina, and A. A. Lipovskii, “Modifications of poled silicate glasses under heat treatment,” J. Non-Cryst. Solids 503-504, 279–283 (2019).
[Crossref]

A. V. Redkov, V. G. Melehin, V. V. Statcenko, and A. A. Lipovskii, “Nanoprofiling of alkali-silicate glasses by thermal poling,” J. Non-Cryst. Solids 409, 166–169 (2015).
[Crossref]

A. A. Lipovskii, V. G. Melehin, M. I. Petrov, and Yu. P. Svirko, “Thermal electric field imprinting lithography: fundamentals and applications,” chapter 6 in Lithography: Principles, Processes and Materials, Theodore C. Hennessy, ed. (Nova Science Publishers, 2011), pp. 149–163.

Melekhin, V. G.

P. N. Brunkov, V. G. Melekhin, V. V. Goncharov, A. A. Lipovskii, and M. I. Petrov, “Submicron-resolved relief formation in poled glasses and glass-metal nanocomposites,” Tech. Phys. Lett. 34(12), 1030–1033 (2008).
[Crossref]

Misawa, T.

Nishii, J.

N. Kubo, N. Ikutame, M. Takei, B. Weibai, S. Ikeda, K. Yamamoto, K. Uraji, T. Misawa, M. Fujioka, H. Kaiju, G. Zhao, and J. Nishii, “Nano-imprinting of surface relief gratings on soda-aluminosilicate and soda-lime silicate glasses,” Opt. Mater. Express 7(5), 1438–1445 (2017).
[Crossref]

S. Ikeda, K. Uraji, T. Suzuki, K. Yamamoto, and J. Nishii, “Migration behavior of alkali and alkaline-earth cations in soda-lime silicate glass surface by electrical nanoimprint,” J. Non-Cryst. Solids 453, 103–107 (2016).
[Crossref]

N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
[Crossref]

Nojiri, K.

K. Nojiri, Dry Etching Technology for Semiconductors (Springer, 2015).

Osipov, A. A.

S. E. Alexandrov, A. A. Lipovskii, A. A. Osipov, I. V. Reduto, and D. K. Tagantsev, “Plasma-etching of 2D-poled glasses: A route to dry lithography,” Appl. Phys. Lett. 111(11), 111604 (2017).
[Crossref]

Oven, R.

Pearton, S. J.

S. J. Pearton, “Reactive Ion Etching of III–V Semiconductors,” Int. J. Mod. Phys. B 8(14), 1781–1876 (1994).
[Crossref]

Petrikov, V. D.

A. N. Kamenskii, I. V. Reduto, V. D. Petrikov, and A. A. Lipovskii, “Effective diffraction gratings by acidic etching of thermally poled glasses,” Opt. Mater. 62, 250–254 (2016).
[Crossref]

Petrov, M.

K. Sokolov, V. Melehin, M. Petrov, V. Zhurikhina, and A. Lipovskii, “On spatially periodical poling of silica glass,” J. Appl. Phys. 111(10), 104307 (2012).
[Crossref]

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Petrov, M. I.

P. N. Brunkov, V. G. Melekhin, V. V. Goncharov, A. A. Lipovskii, and M. I. Petrov, “Submicron-resolved relief formation in poled glasses and glass-metal nanocomposites,” Tech. Phys. Lett. 34(12), 1030–1033 (2008).
[Crossref]

A. A. Lipovskii, V. G. Melehin, M. I. Petrov, and Yu. P. Svirko, “Thermal electric field imprinting lithography: fundamentals and applications,” chapter 6 in Lithography: Principles, Processes and Materials, Theodore C. Hennessy, ed. (Nova Science Publishers, 2011), pp. 149–163.

Raskhodchikov, D. V.

A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Tagantsev, V. V. Zhurikhina, and A. A. Lipovskii, “Modifications of poled silicate glasses under heat treatment,” J. Non-Cryst. Solids 503-504, 279–283 (2019).
[Crossref]

D. V. Raskhodchikov, I. V. Reshetov, D. K. Tagantsev, A. A. Lipovskii, and V. P. Kaasik, “Study of charge relaxation in poled silicate glass,” in Book of Abstracts of 5th International School and Conference Saint-Petersburg OPEN 2018, Zh. I. Alferov, ed. (Academic University Publishing, 2018), pp. 400–402.

Redkov, A.

I. Reduto, A. Kamenskii, A. Redkov, and A. Lipovskii, “Mechanisms and Peculiarities of Electric Field Imprinting in Glasses,” J. Electrochem. Soc. 164(13), E385–E390 (2017).
[Crossref]

Redkov, A. V.

A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Tagantsev, V. V. Zhurikhina, and A. A. Lipovskii, “Modifications of poled silicate glasses under heat treatment,” J. Non-Cryst. Solids 503-504, 279–283 (2019).
[Crossref]

A. V. Redkov, V. G. Melehin, V. V. Statcenko, and A. A. Lipovskii, “Nanoprofiling of alkali-silicate glasses by thermal poling,” J. Non-Cryst. Solids 409, 166–169 (2015).
[Crossref]

Reduto, I.

I. Reduto, A. Kamenskii, A. Redkov, and A. Lipovskii, “Mechanisms and Peculiarities of Electric Field Imprinting in Glasses,” J. Electrochem. Soc. 164(13), E385–E390 (2017).
[Crossref]

Reduto, I. V.

I. V. Reduto, V. P. Kaasik, A. A. Lipovskii, and D. K. Tagantsev, “Volume relaxation of poled glasses: surface relief enhancement,” J. Non-Cryst. Solids 499, 360–362 (2018).
[Crossref]

S. E. Alexandrov, A. A. Lipovskii, A. A. Osipov, I. V. Reduto, and D. K. Tagantsev, “Plasma-etching of 2D-poled glasses: A route to dry lithography,” Appl. Phys. Lett. 111(11), 111604 (2017).
[Crossref]

A. N. Kamenskii, I. V. Reduto, V. D. Petrikov, and A. A. Lipovskii, “Effective diffraction gratings by acidic etching of thermally poled glasses,” Opt. Mater. 62, 250–254 (2016).
[Crossref]

Reshetov, I. V.

A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Tagantsev, V. V. Zhurikhina, and A. A. Lipovskii, “Modifications of poled silicate glasses under heat treatment,” J. Non-Cryst. Solids 503-504, 279–283 (2019).
[Crossref]

D. V. Raskhodchikov, I. V. Reshetov, D. K. Tagantsev, A. A. Lipovskii, and V. P. Kaasik, “Study of charge relaxation in poled silicate glass,” in Book of Abstracts of 5th International School and Conference Saint-Petersburg OPEN 2018, Zh. I. Alferov, ed. (Academic University Publishing, 2018), pp. 400–402.

Richardson, K.

A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Micro-structuring the surface reactivity of a borosilicate glass via thermal poling,” Chem. Phys. Lett. 664, 10–15 (2016).
[Crossref]

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Rodriguez, V.

A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Micro-structuring the surface reactivity of a borosilicate glass via thermal poling,” Chem. Phys. Lett. 664, 10–15 (2016).
[Crossref]

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Refractive index distribution in the non-linear optical layer of thermally poled oxide glasses,” Chem. Phys. Lett. 470(1-3), 63–66 (2009).
[Crossref]

Sakai, D.

N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
[Crossref]

Schmitt, J.

J. Schmitt, A. Meier, U. Wallrabe, and F. Völklein, “Reactive ion etching (CF4/Ar) and ion beam etching of various glasses for diffractive optical element fabrication,” Int. J. Appl. Glass Sci. 9(4), 499–509 (2018).
[Crossref]

Smith, C.

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Sokolov, K.

K. Sokolov, V. Melehin, M. Petrov, V. Zhurikhina, and A. Lipovskii, “On spatially periodical poling of silica glass,” J. Appl. Phys. 111(10), 104307 (2012).
[Crossref]

Statcenko, V. V.

A. V. Redkov, V. G. Melehin, V. V. Statcenko, and A. A. Lipovskii, “Nanoprofiling of alkali-silicate glasses by thermal poling,” J. Non-Cryst. Solids 409, 166–169 (2015).
[Crossref]

Suzuki, T.

S. Ikeda, K. Uraji, T. Suzuki, K. Yamamoto, and J. Nishii, “Migration behavior of alkali and alkaline-earth cations in soda-lime silicate glass surface by electrical nanoimprint,” J. Non-Cryst. Solids 453, 103–107 (2016).
[Crossref]

Svirko, Yu. P.

A. A. Lipovskii, V. G. Melehin, M. I. Petrov, and Yu. P. Svirko, “Thermal electric field imprinting lithography: fundamentals and applications,” chapter 6 in Lithography: Principles, Processes and Materials, Theodore C. Hennessy, ed. (Nova Science Publishers, 2011), pp. 149–163.

Tagantsev, D. K.

A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Tagantsev, V. V. Zhurikhina, and A. A. Lipovskii, “Modifications of poled silicate glasses under heat treatment,” J. Non-Cryst. Solids 503-504, 279–283 (2019).
[Crossref]

I. V. Reduto, V. P. Kaasik, A. A. Lipovskii, and D. K. Tagantsev, “Volume relaxation of poled glasses: surface relief enhancement,” J. Non-Cryst. Solids 499, 360–362 (2018).
[Crossref]

S. E. Alexandrov, A. A. Lipovskii, A. A. Osipov, I. V. Reduto, and D. K. Tagantsev, “Plasma-etching of 2D-poled glasses: A route to dry lithography,” Appl. Phys. Lett. 111(11), 111604 (2017).
[Crossref]

D. V. Raskhodchikov, I. V. Reshetov, D. K. Tagantsev, A. A. Lipovskii, and V. P. Kaasik, “Study of charge relaxation in poled silicate glass,” in Book of Abstracts of 5th International School and Conference Saint-Petersburg OPEN 2018, Zh. I. Alferov, ed. (Academic University Publishing, 2018), pp. 400–402.

Takei, M.

Uraji, K.

N. Kubo, N. Ikutame, M. Takei, B. Weibai, S. Ikeda, K. Yamamoto, K. Uraji, T. Misawa, M. Fujioka, H. Kaiju, G. Zhao, and J. Nishii, “Nano-imprinting of surface relief gratings on soda-aluminosilicate and soda-lime silicate glasses,” Opt. Mater. Express 7(5), 1438–1445 (2017).
[Crossref]

S. Ikeda, K. Uraji, T. Suzuki, K. Yamamoto, and J. Nishii, “Migration behavior of alkali and alkaline-earth cations in soda-lime silicate glass surface by electrical nanoimprint,” J. Non-Cryst. Solids 453, 103–107 (2016).
[Crossref]

Völklein, F.

J. Schmitt, A. Meier, U. Wallrabe, and F. Völklein, “Reactive ion etching (CF4/Ar) and ion beam etching of various glasses for diffractive optical element fabrication,” Int. J. Appl. Glass Sci. 9(4), 499–509 (2018).
[Crossref]

Wallrabe, U.

J. Schmitt, A. Meier, U. Wallrabe, and F. Völklein, “Reactive ion etching (CF4/Ar) and ion beam etching of various glasses for diffractive optical element fabrication,” Int. J. Appl. Glass Sci. 9(4), 499–509 (2018).
[Crossref]

Weibai, B.

Yamamoto, K.

N. Kubo, N. Ikutame, M. Takei, B. Weibai, S. Ikeda, K. Yamamoto, K. Uraji, T. Misawa, M. Fujioka, H. Kaiju, G. Zhao, and J. Nishii, “Nano-imprinting of surface relief gratings on soda-aluminosilicate and soda-lime silicate glasses,” Opt. Mater. Express 7(5), 1438–1445 (2017).
[Crossref]

S. Ikeda, K. Uraji, T. Suzuki, K. Yamamoto, and J. Nishii, “Migration behavior of alkali and alkaline-earth cations in soda-lime silicate glass surface by electrical nanoimprint,” J. Non-Cryst. Solids 453, 103–107 (2016).
[Crossref]

Zhao, G.

Zhurikhina, V.

K. Sokolov, V. Melehin, M. Petrov, V. Zhurikhina, and A. Lipovskii, “On spatially periodical poling of silica glass,” J. Appl. Phys. 111(10), 104307 (2012).
[Crossref]

Zhurikhina, V. V.

A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Tagantsev, V. V. Zhurikhina, and A. A. Lipovskii, “Modifications of poled silicate glasses under heat treatment,” J. Non-Cryst. Solids 503-504, 279–283 (2019).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. E. Alexandrov, A. A. Lipovskii, A. A. Osipov, I. V. Reduto, and D. K. Tagantsev, “Plasma-etching of 2D-poled glasses: A route to dry lithography,” Appl. Phys. Lett. 111(11), 111604 (2017).
[Crossref]

Chem. Phys. Lett. (2)

A. Lepicard, T. Cardinal, E. Fargin, F. Adamietz, V. Rodriguez, K. Richardson, and M. Dussauze, “Micro-structuring the surface reactivity of a borosilicate glass via thermal poling,” Chem. Phys. Lett. 664, 10–15 (2016).
[Crossref]

M. Dussauze, E. I. Kamitsos, E. Fargin, and V. Rodriguez, “Refractive index distribution in the non-linear optical layer of thermally poled oxide glasses,” Chem. Phys. Lett. 470(1-3), 63–66 (2009).
[Crossref]

Int. J. Appl. Glass Sci. (1)

J. Schmitt, A. Meier, U. Wallrabe, and F. Völklein, “Reactive ion etching (CF4/Ar) and ion beam etching of various glasses for diffractive optical element fabrication,” Int. J. Appl. Glass Sci. 9(4), 499–509 (2018).
[Crossref]

Int. J. Mod. Phys. B (1)

S. J. Pearton, “Reactive Ion Etching of III–V Semiconductors,” Int. J. Mod. Phys. B 8(14), 1781–1876 (1994).
[Crossref]

J. Appl. Phys. (2)

N. Ikutame, K. Kawaguchi, H. Ikeda, D. Sakai, K. Harada, S. Funatsu, and J. Nishii, “Low-temperature fabrication of fine structures on glass using electrical nanoimprint and chemical etching,” J. Appl. Phys. 114(8), 083514 (2013).
[Crossref]

K. Sokolov, V. Melehin, M. Petrov, V. Zhurikhina, and A. Lipovskii, “On spatially periodical poling of silica glass,” J. Appl. Phys. 111(10), 104307 (2012).
[Crossref]

J. Electrochem. Soc. (1)

I. Reduto, A. Kamenskii, A. Redkov, and A. Lipovskii, “Mechanisms and Peculiarities of Electric Field Imprinting in Glasses,” J. Electrochem. Soc. 164(13), E385–E390 (2017).
[Crossref]

J. Non-Cryst. Solids (5)

A. V. Redkov, V. G. Melehin, V. V. Statcenko, and A. A. Lipovskii, “Nanoprofiling of alkali-silicate glasses by thermal poling,” J. Non-Cryst. Solids 409, 166–169 (2015).
[Crossref]

I. V. Reduto, V. P. Kaasik, A. A. Lipovskii, and D. K. Tagantsev, “Volume relaxation of poled glasses: surface relief enhancement,” J. Non-Cryst. Solids 499, 360–362 (2018).
[Crossref]

C. M. Lepienski, J. A. Giacometti, G. F. Leal Ferreira, F. L. Freire Jr, and C. A. Achete, “Electric field distribution and near-surface modifications in soda-lime glass submitted to a dc potential,” J. Non-Cryst. Solids 159(3), 204–212 (1993).
[Crossref]

S. Ikeda, K. Uraji, T. Suzuki, K. Yamamoto, and J. Nishii, “Migration behavior of alkali and alkaline-earth cations in soda-lime silicate glass surface by electrical nanoimprint,” J. Non-Cryst. Solids 453, 103–107 (2016).
[Crossref]

A. V. Redkov, V. G. Melehin, D. V. Raskhodchikov, I. V. Reshetov, D. K. Tagantsev, V. V. Zhurikhina, and A. A. Lipovskii, “Modifications of poled silicate glasses under heat treatment,” J. Non-Cryst. Solids 503-504, 279–283 (2019).
[Crossref]

J. Phys. Chem. C (1)

M. Dussauze, V. Rodriguez, A. Lipovskii, M. Petrov, C. Smith, K. Richardson, T. Cardinal, E. Fargin, and E. I. Kamitsos, “How does thermal poling affect the structure of soda-lime glass?” J. Phys. Chem. C 114(29), 12754–12759 (2010).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

A. N. Kamenskii, I. V. Reduto, V. D. Petrikov, and A. A. Lipovskii, “Effective diffraction gratings by acidic etching of thermally poled glasses,” Opt. Mater. 62, 250–254 (2016).
[Crossref]

Opt. Mater. Express (1)

Tech. Phys. Lett. (1)

P. N. Brunkov, V. G. Melekhin, V. V. Goncharov, A. A. Lipovskii, and M. I. Petrov, “Submicron-resolved relief formation in poled glasses and glass-metal nanocomposites,” Tech. Phys. Lett. 34(12), 1030–1033 (2008).
[Crossref]

Vacuum (1)

P. W. Leech, “Reactive ion etching of quartz and silica-based glasses in CF4/CHF3 plasmas,” Vacuum 55(3-4), 191–196 (1999).
[Crossref]

Other (5)

Soda-lime glass slides composition, http://www.agarscientific.com/microscope-slides.html

K. Nojiri, Dry Etching Technology for Semiconductors (Springer, 2015).

A. A. Lipovskii, V. G. Melehin, M. I. Petrov, and Yu. P. Svirko, “Thermal electric field imprinting lithography: fundamentals and applications,” chapter 6 in Lithography: Principles, Processes and Materials, Theodore C. Hennessy, ed. (Nova Science Publishers, 2011), pp. 149–163.

D. V. Raskhodchikov, I. V. Reshetov, D. K. Tagantsev, A. A. Lipovskii, and V. P. Kaasik, “Study of charge relaxation in poled silicate glass,” in Book of Abstracts of 5th International School and Conference Saint-Petersburg OPEN 2018, Zh. I. Alferov, ed. (Academic University Publishing, 2018), pp. 400–402.

J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968), xiv + 287.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. SEM images (45-degree view) of glassy carbon electrodes with period of 200 nm (a), 600 nm (b), and 2000nm (c). Insert: SEM image shows the relief height in the edge of the pattern. The SEM images were taken after several tens of TEFI processes.
Fig. 2.
Fig. 2. Schematics of thermal-electric field imprinting, “wet” chemical and “dry” reactive ion etching of a glass. Thermal poling: applying 300-700 V DC with profiled glassy carbon anodic electrode to the glass heated to 300°C results in the formation of a hidden structure via deepening of alkali and alkali earth ions. Chemical etching: faster etching of virgin (poling-untouched) regions of the glass slide in acidic polishing agent results in the formation of the reversed electrode profile. Reactive ion etching: faster etching of poling-modified regions of the glass results in the formation of the direct electrode profile.
Fig. 3.
Fig. 3. Time dependence of the drop at poled/unpoled glass interface before and after additional thermal processing and the height the step at the interface of protected and etched regions of the virgin glass slides resulting from RIE (a) and chemical (b) etching. Poling conditions: 300°C, 700 V, 30 min; thermal processing conditions: 400°C, 50 min; RIE in 12CHF3:38Ar gas composition, chemical etching in 100NH4F:800Н2О:7HF49% (in weight) at room temperature.
Fig. 4.
Fig. 4. Height of the gratings relief during the RIE (a) and the lower bound of the grating height during the chemical etching (b). Periods of the gratings are marked near corresponding curves. TEFI is performed with pressed glassy carbon electrode at 300°C under 300 V, 30 min (a), and at 325°C under 1000 V, 2 min (b), RIE was performed in 12CHF3:38Ar gas composition, chemical etching in NH4F:8H2O (in weight) at room temperature.
Fig. 5.
Fig. 5. Sub-micron gratings height (a) and dynamics of the glass pattern formation (b) in RIE. TEFI is performed with pressed glassy carbon electrode at 300°C under 300 V, 30 min, RIE in 12CHF3:38Ar gas composition.
Fig. 6.
Fig. 6. Images of RIE-patterned glass surfaces. AFM images of 0.6 (a), 2 (b) and 6 µm (c) gratings. Acquired with optical profiler images of 80 µm grating (d) and a piece of a pattern (filter, mixer) for microfluidics (e).

Tables (1)

Tables Icon

Table 1. Chemical composition of used glass [18]

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I = J 1 2 ( Δ φ ) ,

Metrics