Abstract

A graphene-based metamaterial transmitarray antenna is proposed to generate tunable orbital angular momentum (OAM) vortex waves in terahertz. Theoretical design of the transmitarray antenna has been developed by using the transmission line network model, and a multilayer graphene-based metamaterial element has been designed. By changing the chemical potentials of the graphene sheets, the 360° transmission phase range of the element is achieved in a broad band from 4.2 THz to 5.6 THz. By arranging the metamaterial element into a transmitarray, the OAM waves with tunable modes including l = 0, ±1, ±2 and the mode purity greater than 0.96 are generated. Simulation results are given to demonstrate good performance of the proposed design, which provides a feasible way to the efficient generation and manipulation of the OAM vortex waves in terahertz.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Phase-modulation based transmitarray convergence lens for vortex wave carrying orbital angular momentum

Yingfan Meng, Jianjia Yi, Shah Nawaz Burokur, Lei Kang, Hailin Zhang, and Douglas H. Werner
Opt. Express 26(17) 22019-22029 (2018)

Metasurface-based broadband orbital angular momentum generator in millimeter wave region

Fan Bi, Zhongling Ba, and Xiong Wang
Opt. Express 26(20) 25693-25705 (2018)

Achromatic electromagnetic metasurface for generating a vortex wave with orbital angular momentum (OAM)

Shan Jiang, Chang Chen, Hualiang Zhang, and Weidong Chen
Opt. Express 26(5) 6466-6477 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref]
  2. R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
    [Crossref]
  3. F. Tamburini, E. Mari, T. Bo, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
    [Crossref]
  4. F. Capasso, P. Genevet, J. Lin, and M. A. Kats, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
    [Crossref]
  5. B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimon, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
    [Crossref]
  6. S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
    [Crossref]
  7. S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
    [Crossref]
  8. K. Zhang, Y. Y. Yuan, D. W. Zhang, X. M. Ding, B. Ratni, S. N. Burokur, M. J. Lu, K. Tang, and Q. Wu, “Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region,” Opt. Express 26(2), 1351 (2018).
    [Crossref]
  9. Y. Zhang, Y. Shi, and C. H. Liang, “A broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6(9), 3036 (2016).
    [Crossref]
  10. Y. Shi and Y. Zhang, “Generation of wideband tunable orbital angular momentum vortex waves using graphene metamaterial reflectarray,” IEEE Access 6, 5341–5347 (2018).
    [Crossref]
  11. A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
    [Crossref]
  12. Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
    [Crossref]
  13. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys.: Condens. Matter 19(2), 026222 (2007).
    [Crossref]
  14. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Sum rules for the optical and hall conductivity in graphene,” Phys. Rev. B: Condens. Matter Mater. Phys. 75(16), 165407 (2007).
    [Crossref]
  15. G. W. Hanson, “Dyadic greens functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  16. D. M. Pozar, Microwave Engineering (Wiley, 2012).
  17. J. S. Hong and M. J. Lancaster, Microstrip Filters For RF/Microwave Applications (Wiley, 2001).
  18. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref]
  19. M. J. Strain, X. L. Cai, J. W. Wang, J. B. Zhu, D. B. Phillips, L. F. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5(1), 4856 (2014).
    [Crossref]
  20. B. Jack, M. J. Padgett, and S. F. Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
    [Crossref]

2018 (2)

2016 (3)

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Y. Zhang, Y. Shi, and C. H. Liang, “A broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6(9), 3036 (2016).
[Crossref]

2015 (1)

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref]

2014 (2)

M. J. Strain, X. L. Cai, J. W. Wang, J. B. Zhu, D. B. Phillips, L. F. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5(1), 4856 (2014).
[Crossref]

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

2012 (2)

F. Capasso, P. Genevet, J. Lin, and M. A. Kats, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref]

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

2011 (2)

F. Tamburini, E. Mari, T. Bo, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

2008 (2)

B. Jack, M. J. Padgett, and S. F. Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

G. W. Hanson, “Dyadic greens functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2007 (3)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys.: Condens. Matter 19(2), 026222 (2007).
[Crossref]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Sum rules for the optical and hall conductivity in graphene,” Phys. Rev. B: Condens. Matter Mater. Phys. 75(16), 165407 (2007).
[Crossref]

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimon, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Andryieuski, A.

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

Arnold, S. F.

B. Jack, M. J. Padgett, and S. F. Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

Barbieri, C.

F. Tamburini, E. Mari, T. Bo, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Bergman, J.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimon, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Bo, T.

F. Tamburini, E. Mari, T. Bo, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

Brousseau, C.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Burokur, S. N.

Cai, X. L.

M. J. Strain, X. L. Cai, J. W. Wang, J. B. Zhu, D. B. Phillips, L. F. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5(1), 4856 (2014).
[Crossref]

Capasso, F.

F. Capasso, P. Genevet, J. Lin, and M. A. Kats, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref]

Carbotte, J. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys.: Condens. Matter 19(2), 026222 (2007).
[Crossref]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Sum rules for the optical and hall conductivity in graphene,” Phys. Rev. B: Condens. Matter Mater. Phys. 75(16), 165407 (2007).
[Crossref]

Carozzi, T. D.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimon, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Chen, L. F.

M. J. Strain, X. L. Cai, J. W. Wang, J. B. Zhu, D. B. Phillips, L. F. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5(1), 4856 (2014).
[Crossref]

Chigrin, D. N.

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

Ding, X. M.

Ding, Y.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref]

Emile, O.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Frandsen, L. H.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref]

Genevet, P.

F. Capasso, P. Genevet, J. Lin, and M. A. Kats, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref]

Gusynin, V. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys.: Condens. Matter 19(2), 026222 (2007).
[Crossref]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Sum rules for the optical and hall conductivity in graphene,” Phys. Rev. B: Condens. Matter Mater. Phys. 75(16), 165407 (2007).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic greens functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hong, J. S.

J. S. Hong and M. J. Lancaster, Microstrip Filters For RF/Microwave Applications (Wiley, 2001).

Hu, H.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref]

Ibragimon, N. H.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimon, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Istomin, Y. N.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimon, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Jack, B.

B. Jack, M. J. Padgett, and S. F. Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

Kats, M. A.

F. Capasso, P. Genevet, J. Lin, and M. A. Kats, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref]

Khamitova, R.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimon, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Lancaster, M. J.

J. S. Hong and M. J. Lancaster, Microstrip Filters For RF/Microwave Applications (Wiley, 2001).

Lavrinenko, A. V.

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

Li, L.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Liang, C. H.

Lin, J.

F. Capasso, P. Genevet, J. Lin, and M. A. Kats, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref]

Lopez-Garcia, M.

M. J. Strain, X. L. Cai, J. W. Wang, J. B. Zhu, D. B. Phillips, L. F. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5(1), 4856 (2014).
[Crossref]

Lu, M. J.

Mahdjoubi, K.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Mari, E.

F. Tamburini, E. Mari, T. Bo, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

Menard, A.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Mortensen, N. A.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref]

Niemiec, R.

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

O’Brien, J. L.

M. J. Strain, X. L. Cai, J. W. Wang, J. B. Zhu, D. B. Phillips, L. F. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5(1), 4856 (2014).
[Crossref]

Padgett, M. J.

B. Jack, M. J. Padgett, and S. F. Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

Palmer, K.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimon, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Phillips, D. B.

M. J. Strain, X. L. Cai, J. W. Wang, J. B. Zhu, D. B. Phillips, L. F. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5(1), 4856 (2014).
[Crossref]

Pozar, D. M.

D. M. Pozar, Microwave Engineering (Wiley, 2012).

Ratni, B.

Romanato, F.

F. Tamburini, E. Mari, T. Bo, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

Sharapov, S. G.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Sum rules for the optical and hall conductivity in graphene,” Phys. Rev. B: Condens. Matter Mater. Phys. 75(16), 165407 (2007).
[Crossref]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys.: Condens. Matter 19(2), 026222 (2007).
[Crossref]

Shi, G.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Shi, Y.

Y. Shi and Y. Zhang, “Generation of wideband tunable orbital angular momentum vortex waves using graphene metamaterial reflectarray,” IEEE Access 6, 5341–5347 (2018).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

Y. Zhang, Y. Shi, and C. H. Liang, “A broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6(9), 3036 (2016).
[Crossref]

Sjöholm, J.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimon, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Sorel, M.

M. J. Strain, X. L. Cai, J. W. Wang, J. B. Zhu, D. B. Phillips, L. F. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5(1), 4856 (2014).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Strain, M. J.

M. J. Strain, X. L. Cai, J. W. Wang, J. B. Zhu, D. B. Phillips, L. F. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5(1), 4856 (2014).
[Crossref]

Tamburini, F.

F. Tamburini, E. Mari, T. Bo, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

Tang, K.

Then, H.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimon, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Thidé, B.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimon, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Thompson, M. G.

M. J. Strain, X. L. Cai, J. W. Wang, J. B. Zhu, D. B. Phillips, L. F. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5(1), 4856 (2014).
[Crossref]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Wang, J. W.

M. J. Strain, X. L. Cai, J. W. Wang, J. B. Zhu, D. B. Phillips, L. F. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5(1), 4856 (2014).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Wu, Q.

Xiao, S.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref]

Yu, S.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

M. J. Strain, X. L. Cai, J. W. Wang, J. B. Zhu, D. B. Phillips, L. F. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5(1), 4856 (2014).
[Crossref]

Yuan, Y. Y.

Yvind, K.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref]

Zhang, D. W.

Zhang, K.

Zhang, Y.

Y. Shi and Y. Zhang, “Generation of wideband tunable orbital angular momentum vortex waves using graphene metamaterial reflectarray,” IEEE Access 6, 5341–5347 (2018).
[Crossref]

Y. Zhang, Y. Shi, and C. H. Liang, “A broadband tunable graphene-based metamaterial absorber,” Opt. Mater. Express 6(9), 3036 (2016).
[Crossref]

Zhou, X.

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Zhu, C.

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

Zhu, J. B.

M. J. Strain, X. L. Cai, J. W. Wang, J. B. Zhu, D. B. Phillips, L. F. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5(1), 4856 (2014).
[Crossref]

Zhu, X.

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref]

Antennas Wirel. Propag. Lett. (1)

R. Niemiec, C. Brousseau, K. Mahdjoubi, O. Emile, and A. Menard, “Characterization of an OAM flat-plate antenna in the millimeter frequency band,” Antennas Wirel. Propag. Lett. 13, 1011–1014 (2014).
[Crossref]

Appl. Phys. Lett. (3)

F. Tamburini, E. Mari, T. Bo, C. Barbieri, and F. Romanato, “Experimental verification of photon angular momentum and vorticity with radio techniques,” Appl. Phys. Lett. 99(20), 204102 (2011).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, “Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain,” Appl. Phys. Lett. 108(12), 121903 (2016).
[Crossref]

S. Yu, L. Li, G. Shi, C. Zhu, and Y. Shi, “Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain,” Appl. Phys. Lett. 108(24), 241901 (2016).
[Crossref]

IEEE Access (1)

Y. Shi and Y. Zhang, “Generation of wideband tunable orbital angular momentum vortex waves using graphene metamaterial reflectarray,” IEEE Access 6, 5341–5347 (2018).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic greens functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Phys.: Condens. Matter (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity in graphene,” J. Phys.: Condens. Matter 19(2), 026222 (2007).
[Crossref]

Nano Lett. (1)

Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, “Effective electro-optical modulation with high extinction ratio by a graphene–silicon microring resonator,” Nano Lett. 15(7), 4393–4400 (2015).
[Crossref]

Nat. Commun. (2)

F. Capasso, P. Genevet, J. Lin, and M. A. Kats, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3(1), 1278 (2012).
[Crossref]

M. J. Strain, X. L. Cai, J. W. Wang, J. B. Zhu, D. B. Phillips, L. F. Chen, M. Lopez-Garcia, J. L. O’Brien, M. G. Thompson, M. Sorel, and S. Yu, “Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters,” Nat. Commun. 5(1), 4856 (2014).
[Crossref]

New J. Phys. (1)

B. Jack, M. J. Padgett, and S. F. Arnold, “Angular diffraction,” New J. Phys. 10(10), 103013 (2008).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref]

Phys. Rev. B (1)

A. Andryieuski, A. V. Lavrinenko, and D. N. Chigrin, “Graphene hyperlens for terahertz radiation,” Phys. Rev. B 86(12), 121108 (2012).
[Crossref]

Phys. Rev. B: Condens. Matter Mater. Phys. (1)

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Sum rules for the optical and hall conductivity in graphene,” Phys. Rev. B: Condens. Matter Mater. Phys. 75(16), 165407 (2007).
[Crossref]

Phys. Rev. Lett. (1)

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimon, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett. 99(8), 087701 (2007).
[Crossref]

Science (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]

Other (2)

D. M. Pozar, Microwave Engineering (Wiley, 2012).

J. S. Hong and M. J. Lancaster, Microstrip Filters For RF/Microwave Applications (Wiley, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. The designed metamaterial unit cell and the corresponding TL network model.
Fig. 2.
Fig. 2. Comparison of S21 between the FW simulation and the TL network model. (a). Magnitude of S21. (b) Phase of S21.
Fig. 3.
Fig. 3. Transmission phase of the unit cell for possible μc1 and μc2 in a wide band.
Fig. 4.
Fig. 4. The graphene-based metamaterial transmitarray.
Fig. 5.
Fig. 5. OAM vortex wave with tunable modes at 4.9 THz.
Fig. 6.
Fig. 6. Mode purity of the OAM wave.
Fig. 7.
Fig. 7. The OAM wave with l = 1 in a wideband.

Tables (1)

Tables Icon

Table 1. Chemical potentials of the graphene in 8 segments and the corresponding S21.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

σ = σ int r a + σ int e r ,
{ σ int r a i e 2 k B T π 2 ( ω + i 2 Γ ) [ μ c k B T + 2 ln ( e μ c k B T + 1 ) ] , σ int e r i e 2 4 π ln [ 2 | μ c | ( ω + i 2 Γ ) 2 | μ c | + ( ω + i 2 Γ ) ] .
[ A ] = [ A B C D ] = [ A 1 ] [ A 2 ] [ A 1 ] [ A 2 ] [ A 1 ] [ A 2 ] [ A 1 ] ,
[ A 1 ] = [ 1 0 Y s ( 1 ) 1 ] [ cos β d l d j sin β d l d / sin β d l d Y d Y d j Y d sin β d l d cos β d l d ] [ 1 0 Y s ( 2 ) 1 ] ,
[ A 2 ] = [ cos β 0 l 0 j sin β 0 l 0 / sin β 0 l 0 Y 0 Y 0 j Y 0 sin β 0 l 0 cos β 0 l 0 ] .
S 21 = 2 A + B Y 0 + C / C Y 0 + D Y 0 + D .
| μ c | v F { π a 0 | V d V D i r a c | } 1 / 2 ,

Metrics