Abstract

Conventional absorption spectroscopy is not nearly sensitive enough for quantitative overtone measurements on submonolayer coatings. While cavity-enhanced absorption detection methods using microresonators have the potential to provide quantitative absorption cross sections of even weakly absorbing submonolayer films, this potential has not yet been fully realized. To determine the absorption cross section of a submonolayer film of ethylene diamine (EDA) on a silica microsphere resonator, we use phase-shift cavity ringdown spectroscopy simultaneously on near-IR radiation that is Rayleigh backscattered from the microsphere and transmitted through the coupling fiber taper. We then independently determine both the coupling coefficient and the optical loss within the resonator. Together with a coincident measurement of the wavelength frequency shift, an absolute overtone absorption cross section of adsorbed EDA, at submonolayer coverage, was obtained and was compared to the bulk value. The smallest quantifiable absorption cross section is σmin=2.7×1012cm2. This absorption cross section is comparable to the extinction coefficients of, e.g., single gold nanoparticles or aerosol particles. We therefore propose that the present method is also a viable route to absolute extinction measurements of single particles.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cascaded photoenhancement from coupled nanoparticle and microcavity resonance effects

Kirk A. Fuller and David D. Smith
Opt. Express 15(6) 3575-3580 (2007)

Monolithic folded resonator for evanescent wave cavity ringdown spectroscopy

Andrew C. R. Pipino
Appl. Opt. 39(9) 1449-1453 (2000)

Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes

G. Farca, S. I. Shopova, and A. T. Rosenberger
Opt. Express 15(25) 17443-17448 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. Goldwin, M. Trupke, J. Kenner, A. Ratnapala, E. A. Hinds, “Fast cavity-enhanced atom detection with low noise and high fidelity,” Nat. Commun. 2, 418 (2011).
    [Crossref]
  2. M. Pirchi, G. Ziv, I. Riven, S. S. Cohen, N. Zohar, Y. Barak, G. Haran, “Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein,” Nat. Commun. 2, 493 (2011).
    [Crossref]
  3. X. J. G. Xu, M. Rang, I. M. Craig, M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
    [Crossref]
  4. M. Celebrano, P. Kukura, A. Renn, V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics 5, 95–98 (2011).
    [Crossref]
  5. P. G. Etchegoin, E. C. Le Ru, “A perspective on single molecule SERS: current status and future challenges,” Phys. Chem. Chem. Phys. 10, 6079–6089 (2008).
    [Crossref]
  6. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
    [Crossref]
  7. P. Zijlstra, P. M. R. Paulo, M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7, 379–382 (2012).
    [Crossref]
  8. A. M. Armani, “Label-free, single-molecule detection with optical microcavities (August, pg 783, 2007),” Science 334, 1496 (2011).
    [Crossref]
  9. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
    [Crossref]
  10. I. Teraoka, S. Arnold, F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937–1946 (2003).
    [Crossref]
  11. F. Vollmer, S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref]
  12. M. Pelton, M. Z. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, N. E. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31, 2075–2077 (2006).
    [Crossref]
  13. J. Zhu, S. K. Ozdemir, L. He, D. R. Chen, L. Yang, “Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities,” Opt. Express 19, 16195–16206 (2011).
    [Crossref]
  14. J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
    [Crossref]
  15. J. D. Swaim, J. Knittel, W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
    [Crossref]
  16. L. Stern, I. Goykhman, B. Desiatov, U. Levy, “Frequency locked micro disk resonator for real time and precise monitoring of refractive index,” Opt. Lett. 37, 1313–1315 (2012).
    [Crossref]
  17. T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
    [Crossref]
  18. V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
    [Crossref]
  19. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
    [Crossref]
  20. M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
    [Crossref]
  21. G. Farca, S. I. Shopova, A. T. Rosenberger, “Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes,” Opt. Express 15, 17443–17448 (2007).
    [Crossref]
  22. A. C. R. Pipino, J. P. M. Hoefnagels, N. Watanabe, “Absolute surface coverage measurement using a vibrational overtone,” J. Chem. Phys. 120, 2879–2888 (2004).
    [Crossref]
  23. M. Mazurenka, A. J. Orr-Ewing, R. Peverall, G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Ann. Rep. Prog. Chem. C 101, 100–142 (2005).
    [Crossref]
  24. A. C. R. Pipino, “Ultrasensitive surface spectroscopy with a miniature optical resonator,” Phys. Rev. Lett. 83, 3093–3096 (1999).
    [Crossref]
  25. V. S. Ilchenko, X. S. Yao, L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett. 24, 723–725 (1999).
    [Crossref]
  26. D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref]
  27. J. M. Herbelin, J. A. McKay, M. A. Kwok, R. H. Ueunten, D. S. Urevig, D. J. Spencer, D. J. Benard, “Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method,” Appl. Opt. 19, 144–147 (1980).
    [Crossref]
  28. R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
    [Crossref]
  29. Z. G. Tong, A. Wright, T. McCormick, R. K. Li, R. D. Oleschuk, H. P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
    [Crossref]
  30. J. A. Barnes, B. Carver, J. M. Fraser, G. Gagliardi, H. P. Loock, Z. Tian, M. Wilson, S. S. H. Yam, O. Yastrubshak, “Loss determination in microsphere resonators by phase-shift cavity ring-down measurements,” Opt. Express 16, 13158–13167 (2008).
    [Crossref]
  31. M. I. Cheema, S. Mehrabani, A. A. Hayat, Y. A. Peter, A. M. Armani, A. G. Kirk, “Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy,” Opt. Express 20, 9090–9098 (2012).
    [Crossref]
  32. M. Xu, D. F. Liu, H. C. Allen, “Ethylenediamine at air/liquid and air/silica interfaces: protonation versus hydrogen bonding investigated by sum frequency generation spectroscopy,” Environ. Sci. Technol. 40, 1566–1572 (2006).
    [Crossref]
  33. M. L. Gorodetsky, A. D. Pryamikov, V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
    [Crossref]
  34. T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
    [Crossref]
  35. J. A. Barnes, G. Gagliardi, H. P. Loock, “Phase-shift cavity ring-down spectroscopy on a microresonator by Rayleigh backscattering,” Phys. Rev. A 87, 053843 (2013).
    [Crossref]
  36. J. A. Barnes, G. Gagliardi, H. P. Loock, “Erratum: Phase-shift cavity ring-down spectroscopy on a microsphere resonator by Rayleigh backscattering [Phys. Rev. A 87, 053843 (2013)],” Phys. Rev. A 88, 059905 (2013).
    [Crossref]
  37. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
    [Crossref]
  38. S. Avino, J. A. Barnes, G. Gagliardi, X. J. Gu, D. Gutstein, J. R. Mester, C. Nicholaou, H. P. Loock, “Musical instrument pickup based on a laser locked to an optical fiber resonator,” Opt. Express 19, 25057–25065 (2011).
    [Crossref]
  39. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330, 1081–1084 (2010).
    [Crossref]
  40. V. Tsionsky, E. Gileadi, “Use of the quartz crystal microbalance for the study of adsorption from the gas phase,” Langmuir 10, 2830–2835 (1994).
    [Crossref]
  41. I. Teraoka, S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B 23, 1381–1389 (2006).
    [Crossref]
  42. I. Teraoka, S. Arnold, “Estimation of surface density of molecules adsorbed on a whispering gallery mode resonator: utility of isotropic polarizability,” J. Appl. Phys. 102, 076109 (2007).
    [Crossref]
  43. L. V. Lanshina, M. N. Rodnikova, K. T. Dudnikova, “Structure of liquid ethylene diamine according to data on molecular-scattering of light,” J. Struct. Chem. 30, 684–687 (1990).
    [Crossref]
  44. M. T. S. R. Gomes, M. I. S. Verissimo, J. A. B. P. Oliveira, “Detection of volatile amines using a quartz crystal with gold electrodes,” Sens. Actuators B 57, 261–267 (1999).
    [Crossref]
  45. V. Dong, S. V. Pappu, Z. Xu, “Detection of local density distributions of isolated silanol groups on planar silica surfaces using nonlinear optical molecular probes,” Anal. Chem. 70, 4730–4735 (1998).
    [Crossref]
  46. J. D. Lambert, E. D. T. Strong, “The dimerization of ammonia and amines,” Proc. R. Soc. A 200, 566–572 (1950).
    [Crossref]
  47. J. Rezac, “Properties and applications of whispering-gallery mode resonances in fused silica microspheres,” Ph.D. thesis (Oklahoma State University, 2002).
  48. C. Schmidt, A. Chipouline, T. Pertsch, A. Tunnermann, O. Egorov, F. Lederer, L. Deych, “Nonlinear thermal effects in optical microspheres at different wavelength sweeping speeds,” Opt. Express 16, 6285–6301 (2008).
    [Crossref]
  49. J. A. Barnes, H. P. Loock, G. Gagliardi, “Phase shift cavity ring-down measurements on silica sphere microresponators,” in Cavity Enhanced Spectroscopy and Sensing, H. P. Loock, G. Gagliardi, eds. (Springer, 2013).
  50. G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).
    [Crossref]
  51. M. Buback, H. P. Vogele, FT-NIR Atlas (VCH, 1993).
  52. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
  53. B. Fubini, V. Bolis, A. Cavenago, E. Garrone, P. Ugliengo, “Structural and induced heterogeneity at the surface of some SiO2 polymorphs from the enthalpy of adsorption of various molecules,” Langmuir 9, 2712–2720 (1993).
    [Crossref]
  54. C. C. Lam, P. T. Leung, K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering,” J. Opt. Soc. Am. B 9, 1585–1592 (1992).
    [Crossref]

2013 (3)

J. D. Swaim, J. Knittel, W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

J. A. Barnes, G. Gagliardi, H. P. Loock, “Phase-shift cavity ring-down spectroscopy on a microresonator by Rayleigh backscattering,” Phys. Rev. A 87, 053843 (2013).
[Crossref]

J. A. Barnes, G. Gagliardi, H. P. Loock, “Erratum: Phase-shift cavity ring-down spectroscopy on a microsphere resonator by Rayleigh backscattering [Phys. Rev. A 87, 053843 (2013)],” Phys. Rev. A 88, 059905 (2013).
[Crossref]

2012 (6)

M. I. Cheema, S. Mehrabani, A. A. Hayat, Y. A. Peter, A. M. Armani, A. G. Kirk, “Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy,” Opt. Express 20, 9090–9098 (2012).
[Crossref]

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

L. Stern, I. Goykhman, B. Desiatov, U. Levy, “Frequency locked micro disk resonator for real time and precise monitoring of refractive index,” Opt. Lett. 37, 1313–1315 (2012).
[Crossref]

X. J. G. Xu, M. Rang, I. M. Craig, M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
[Crossref]

P. Zijlstra, P. M. R. Paulo, M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7, 379–382 (2012).
[Crossref]

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).
[Crossref]

2011 (7)

S. Avino, J. A. Barnes, G. Gagliardi, X. J. Gu, D. Gutstein, J. R. Mester, C. Nicholaou, H. P. Loock, “Musical instrument pickup based on a laser locked to an optical fiber resonator,” Opt. Express 19, 25057–25065 (2011).
[Crossref]

A. M. Armani, “Label-free, single-molecule detection with optical microcavities (August, pg 783, 2007),” Science 334, 1496 (2011).
[Crossref]

M. Celebrano, P. Kukura, A. Renn, V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics 5, 95–98 (2011).
[Crossref]

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

J. Zhu, S. K. Ozdemir, L. He, D. R. Chen, L. Yang, “Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities,” Opt. Express 19, 16195–16206 (2011).
[Crossref]

J. Goldwin, M. Trupke, J. Kenner, A. Ratnapala, E. A. Hinds, “Fast cavity-enhanced atom detection with low noise and high fidelity,” Nat. Commun. 2, 418 (2011).
[Crossref]

M. Pirchi, G. Ziv, I. Riven, S. S. Cohen, N. Zohar, Y. Barak, G. Haran, “Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein,” Nat. Commun. 2, 493 (2011).
[Crossref]

2010 (2)

J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330, 1081–1084 (2010).
[Crossref]

2008 (4)

2007 (3)

G. Farca, S. I. Shopova, A. T. Rosenberger, “Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes,” Opt. Express 15, 17443–17448 (2007).
[Crossref]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

I. Teraoka, S. Arnold, “Estimation of surface density of molecules adsorbed on a whispering gallery mode resonator: utility of isotropic polarizability,” J. Appl. Phys. 102, 076109 (2007).
[Crossref]

2006 (3)

2005 (1)

M. Mazurenka, A. J. Orr-Ewing, R. Peverall, G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Ann. Rep. Prog. Chem. C 101, 100–142 (2005).
[Crossref]

2004 (2)

A. C. R. Pipino, J. P. M. Hoefnagels, N. Watanabe, “Absolute surface coverage measurement using a vibrational overtone,” J. Chem. Phys. 120, 2879–2888 (2004).
[Crossref]

Z. G. Tong, A. Wright, T. McCormick, R. K. Li, R. D. Oleschuk, H. P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[Crossref]

2003 (3)

2002 (1)

2001 (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[Crossref]

2000 (1)

1999 (3)

A. C. R. Pipino, “Ultrasensitive surface spectroscopy with a miniature optical resonator,” Phys. Rev. Lett. 83, 3093–3096 (1999).
[Crossref]

V. S. Ilchenko, X. S. Yao, L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett. 24, 723–725 (1999).
[Crossref]

M. T. S. R. Gomes, M. I. S. Verissimo, J. A. B. P. Oliveira, “Detection of volatile amines using a quartz crystal with gold electrodes,” Sens. Actuators B 57, 261–267 (1999).
[Crossref]

1998 (1)

V. Dong, S. V. Pappu, Z. Xu, “Detection of local density distributions of isolated silanol groups on planar silica surfaces using nonlinear optical molecular probes,” Anal. Chem. 70, 4730–4735 (1998).
[Crossref]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

1996 (2)

M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996).
[Crossref]

R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[Crossref]

1994 (1)

V. Tsionsky, E. Gileadi, “Use of the quartz crystal microbalance for the study of adsorption from the gas phase,” Langmuir 10, 2830–2835 (1994).
[Crossref]

1993 (1)

B. Fubini, V. Bolis, A. Cavenago, E. Garrone, P. Ugliengo, “Structural and induced heterogeneity at the surface of some SiO2 polymorphs from the enthalpy of adsorption of various molecules,” Langmuir 9, 2712–2720 (1993).
[Crossref]

1992 (1)

1990 (1)

L. V. Lanshina, M. N. Rodnikova, K. T. Dudnikova, “Structure of liquid ethylene diamine according to data on molecular-scattering of light,” J. Struct. Chem. 30, 684–687 (1990).
[Crossref]

1980 (1)

1950 (1)

J. D. Lambert, E. D. T. Strong, “The dimerization of ammonia and amines,” Proc. R. Soc. A 200, 566–572 (1950).
[Crossref]

Abeywickrema, U.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).
[Crossref]

Adamovsky, G.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).
[Crossref]

Allen, H. C.

M. Xu, D. F. Liu, H. C. Allen, “Ethylenediamine at air/liquid and air/silica interfaces: protonation versus hydrogen bonding investigated by sum frequency generation spectroscopy,” Environ. Sci. Technol. 40, 1566–1572 (2006).
[Crossref]

Armani, A. M.

M. I. Cheema, S. Mehrabani, A. A. Hayat, Y. A. Peter, A. M. Armani, A. G. Kirk, “Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy,” Opt. Express 20, 9090–9098 (2012).
[Crossref]

A. M. Armani, “Label-free, single-molecule detection with optical microcavities (August, pg 783, 2007),” Science 334, 1496 (2011).
[Crossref]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Arnold, S.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

F. Vollmer, S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

I. Teraoka, S. Arnold, “Estimation of surface density of molecules adsorbed on a whispering gallery mode resonator: utility of isotropic polarizability,” J. Appl. Phys. 102, 076109 (2007).
[Crossref]

I. Teraoka, S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” J. Opt. Soc. Am. B 23, 1381–1389 (2006).
[Crossref]

I. Teraoka, S. Arnold, F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937–1946 (2003).
[Crossref]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref]

Avino, S.

Barak, Y.

M. Pirchi, G. Ziv, I. Riven, S. S. Cohen, N. Zohar, Y. Barak, G. Haran, “Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein,” Nat. Commun. 2, 493 (2011).
[Crossref]

Barnes, J. A.

J. A. Barnes, G. Gagliardi, H. P. Loock, “Phase-shift cavity ring-down spectroscopy on a microresonator by Rayleigh backscattering,” Phys. Rev. A 87, 053843 (2013).
[Crossref]

J. A. Barnes, G. Gagliardi, H. P. Loock, “Erratum: Phase-shift cavity ring-down spectroscopy on a microsphere resonator by Rayleigh backscattering [Phys. Rev. A 87, 053843 (2013)],” Phys. Rev. A 88, 059905 (2013).
[Crossref]

S. Avino, J. A. Barnes, G. Gagliardi, X. J. Gu, D. Gutstein, J. R. Mester, C. Nicholaou, H. P. Loock, “Musical instrument pickup based on a laser locked to an optical fiber resonator,” Opt. Express 19, 25057–25065 (2011).
[Crossref]

J. A. Barnes, B. Carver, J. M. Fraser, G. Gagliardi, H. P. Loock, Z. Tian, M. Wilson, S. S. H. Yam, O. Yastrubshak, “Loss determination in microsphere resonators by phase-shift cavity ring-down measurements,” Opt. Express 16, 13158–13167 (2008).
[Crossref]

J. A. Barnes, H. P. Loock, G. Gagliardi, “Phase shift cavity ring-down measurements on silica sphere microresponators,” in Cavity Enhanced Spectroscopy and Sensing, H. P. Loock, G. Gagliardi, eds. (Springer, 2013).

Benard, D. J.

Berden, G.

R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[Crossref]

Black, E. D.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[Crossref]

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).

Bolis, V.

B. Fubini, V. Bolis, A. Cavenago, E. Garrone, P. Ugliengo, “Structural and induced heterogeneity at the surface of some SiO2 polymorphs from the enthalpy of adsorption of various molecules,” Langmuir 9, 2712–2720 (1993).
[Crossref]

Bowen, W. P.

J. D. Swaim, J. Knittel, W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

Buback, M.

M. Buback, H. P. Vogele, FT-NIR Atlas (VCH, 1993).

Carver, B.

Cavenago, A.

B. Fubini, V. Bolis, A. Cavenago, E. Garrone, P. Ugliengo, “Structural and induced heterogeneity at the surface of some SiO2 polymorphs from the enthalpy of adsorption of various molecules,” Langmuir 9, 2712–2720 (1993).
[Crossref]

Celebrano, M.

M. Celebrano, P. Kukura, A. Renn, V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics 5, 95–98 (2011).
[Crossref]

Cheema, M. I.

Chen, D. R.

J. Zhu, S. K. Ozdemir, L. He, D. R. Chen, L. Yang, “Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities,” Opt. Express 19, 16195–16206 (2011).
[Crossref]

J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Chen, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Chipouline, A.

Cohen, S. S.

M. Pirchi, G. Ziv, I. Riven, S. S. Cohen, N. Zohar, Y. Barak, G. Haran, “Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein,” Nat. Commun. 2, 493 (2011).
[Crossref]

Craig, I. M.

X. J. G. Xu, M. Rang, I. M. Craig, M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
[Crossref]

Dantham, V. R.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

Dasari, R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

De Natale, P.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330, 1081–1084 (2010).
[Crossref]

Desiatov, B.

Deych, L.

Dong, V.

V. Dong, S. V. Pappu, Z. Xu, “Detection of local density distributions of isolated silanol groups on planar silica surfaces using nonlinear optical molecular probes,” Anal. Chem. 70, 4730–4735 (1998).
[Crossref]

Dudnikova, K. T.

L. V. Lanshina, M. N. Rodnikova, K. T. Dudnikova, “Structure of liquid ethylene diamine according to data on molecular-scattering of light,” J. Struct. Chem. 30, 684–687 (1990).
[Crossref]

Egorov, O.

Engeln, R.

R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[Crossref]

Etchegoin, P. G.

P. G. Etchegoin, E. C. Le Ru, “A perspective on single molecule SERS: current status and future challenges,” Phys. Chem. Chem. Phys. 10, 6079–6089 (2008).
[Crossref]

Farca, G.

Fedin, I.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).
[Crossref]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Ferraro, P.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330, 1081–1084 (2010).
[Crossref]

Flagan, R. C.

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Floyd, B. M.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).
[Crossref]

Fraser, J. M.

Fraser, S. E.

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Fubini, B.

B. Fubini, V. Bolis, A. Cavenago, E. Garrone, P. Ugliengo, “Structural and induced heterogeneity at the surface of some SiO2 polymorphs from the enthalpy of adsorption of various molecules,” Langmuir 9, 2712–2720 (1993).
[Crossref]

Gagliardi, G.

J. A. Barnes, G. Gagliardi, H. P. Loock, “Erratum: Phase-shift cavity ring-down spectroscopy on a microsphere resonator by Rayleigh backscattering [Phys. Rev. A 87, 053843 (2013)],” Phys. Rev. A 88, 059905 (2013).
[Crossref]

J. A. Barnes, G. Gagliardi, H. P. Loock, “Phase-shift cavity ring-down spectroscopy on a microresonator by Rayleigh backscattering,” Phys. Rev. A 87, 053843 (2013).
[Crossref]

S. Avino, J. A. Barnes, G. Gagliardi, X. J. Gu, D. Gutstein, J. R. Mester, C. Nicholaou, H. P. Loock, “Musical instrument pickup based on a laser locked to an optical fiber resonator,” Opt. Express 19, 25057–25065 (2011).
[Crossref]

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330, 1081–1084 (2010).
[Crossref]

J. A. Barnes, B. Carver, J. M. Fraser, G. Gagliardi, H. P. Loock, Z. Tian, M. Wilson, S. S. H. Yam, O. Yastrubshak, “Loss determination in microsphere resonators by phase-shift cavity ring-down measurements,” Opt. Express 16, 13158–13167 (2008).
[Crossref]

J. A. Barnes, H. P. Loock, G. Gagliardi, “Phase shift cavity ring-down measurements on silica sphere microresponators,” in Cavity Enhanced Spectroscopy and Sensing, H. P. Loock, G. Gagliardi, eds. (Springer, 2013).

Garrone, E.

B. Fubini, V. Bolis, A. Cavenago, E. Garrone, P. Ugliengo, “Structural and induced heterogeneity at the surface of some SiO2 polymorphs from the enthalpy of adsorption of various molecules,” Langmuir 9, 2712–2720 (1993).
[Crossref]

Gileadi, E.

V. Tsionsky, E. Gileadi, “Use of the quartz crystal microbalance for the study of adsorption from the gas phase,” Langmuir 10, 2830–2835 (1994).
[Crossref]

Goldwin, J.

J. Goldwin, M. Trupke, J. Kenner, A. Ratnapala, E. A. Hinds, “Fast cavity-enhanced atom detection with low noise and high fidelity,” Nat. Commun. 2, 418 (2011).
[Crossref]

Gomes, M. T. S. R.

M. T. S. R. Gomes, M. I. S. Verissimo, J. A. B. P. Oliveira, “Detection of volatile amines using a quartz crystal with gold electrodes,” Sens. Actuators B 57, 261–267 (1999).
[Crossref]

Gorodetsky, M. L.

Goykhman, I.

Gu, X. J.

Gutstein, D.

Guyot-Sionnest, P.

Haran, G.

M. Pirchi, G. Ziv, I. Riven, S. S. Cohen, N. Zohar, Y. Barak, G. Haran, “Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein,” Nat. Commun. 2, 493 (2011).
[Crossref]

Hayat, A. A.

He, L.

He, L. N.

J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Herbelin, J. M.

Herchak, S.

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Hinds, E. A.

J. Goldwin, M. Trupke, J. Kenner, A. Ratnapala, E. A. Hinds, “Fast cavity-enhanced atom detection with low noise and high fidelity,” Nat. Commun. 2, 418 (2011).
[Crossref]

Hoefnagels, J. P. M.

A. C. R. Pipino, J. P. M. Hoefnagels, N. Watanabe, “Absolute surface coverage measurement using a vibrational overtone,” J. Chem. Phys. 120, 2879–2888 (2004).
[Crossref]

Holler, S.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).

Ilchenko, V. S.

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Kenner, J.

J. Goldwin, M. Trupke, J. Kenner, A. Ratnapala, E. A. Hinds, “Fast cavity-enhanced atom detection with low noise and high fidelity,” Nat. Commun. 2, 418 (2011).
[Crossref]

Khoshsima, M.

Kim, H. Y.

Kim, J. H.

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[Crossref]

Kirk, A. G.

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Knittel, J.

J. D. Swaim, J. Knittel, W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

Kolchenko, V.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

Kukura, P.

M. Celebrano, P. Kukura, A. Renn, V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics 5, 95–98 (2011).
[Crossref]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

Kwok, M. A.

Lam, C. C.

Lambert, J. D.

J. D. Lambert, E. D. T. Strong, “The dimerization of ammonia and amines,” Proc. R. Soc. A 200, 566–572 (1950).
[Crossref]

Lanshina, L. V.

L. V. Lanshina, M. N. Rodnikova, K. T. Dudnikova, “Structure of liquid ethylene diamine according to data on molecular-scattering of light,” J. Struct. Chem. 30, 684–687 (1990).
[Crossref]

Le Ru, E. C.

P. G. Etchegoin, E. C. Le Ru, “A perspective on single molecule SERS: current status and future challenges,” Phys. Chem. Chem. Phys. 10, 6079–6089 (2008).
[Crossref]

Lederer, F.

Lee, H.

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Leung, P. T.

Levy, U.

Li, L.

J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Li, R. K.

Z. G. Tong, A. Wright, T. McCormick, R. K. Li, R. D. Oleschuk, H. P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[Crossref]

Liu, D. F.

M. Xu, D. F. Liu, H. C. Allen, “Ethylenediamine at air/liquid and air/silica interfaces: protonation versus hydrogen bonding investigated by sum frequency generation spectroscopy,” Environ. Sci. Technol. 40, 1566–1572 (2006).
[Crossref]

Liu, M. Z.

Loock, H. P.

J. A. Barnes, G. Gagliardi, H. P. Loock, “Phase-shift cavity ring-down spectroscopy on a microresonator by Rayleigh backscattering,” Phys. Rev. A 87, 053843 (2013).
[Crossref]

J. A. Barnes, G. Gagliardi, H. P. Loock, “Erratum: Phase-shift cavity ring-down spectroscopy on a microsphere resonator by Rayleigh backscattering [Phys. Rev. A 87, 053843 (2013)],” Phys. Rev. A 88, 059905 (2013).
[Crossref]

S. Avino, J. A. Barnes, G. Gagliardi, X. J. Gu, D. Gutstein, J. R. Mester, C. Nicholaou, H. P. Loock, “Musical instrument pickup based on a laser locked to an optical fiber resonator,” Opt. Express 19, 25057–25065 (2011).
[Crossref]

J. A. Barnes, B. Carver, J. M. Fraser, G. Gagliardi, H. P. Loock, Z. Tian, M. Wilson, S. S. H. Yam, O. Yastrubshak, “Loss determination in microsphere resonators by phase-shift cavity ring-down measurements,” Opt. Express 16, 13158–13167 (2008).
[Crossref]

Z. G. Tong, A. Wright, T. McCormick, R. K. Li, R. D. Oleschuk, H. P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[Crossref]

J. A. Barnes, H. P. Loock, G. Gagliardi, “Phase shift cavity ring-down measurements on silica sphere microresponators,” in Cavity Enhanced Spectroscopy and Sensing, H. P. Loock, G. Gagliardi, eds. (Springer, 2013).

Lu, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Lyuksyutov, S. F.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).
[Crossref]

Mackey, J. R.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).
[Crossref]

Maleki, L.

Mazurenka, M.

M. Mazurenka, A. J. Orr-Ewing, R. Peverall, G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Ann. Rep. Prog. Chem. C 101, 100–142 (2005).
[Crossref]

McCormick, T.

Z. G. Tong, A. Wright, T. McCormick, R. K. Li, R. D. Oleschuk, H. P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[Crossref]

McKay, J. A.

Mehrabani, S.

Meijer, G.

R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[Crossref]

Mester, J. R.

Nicholaou, C.

Oleschuk, R. D.

Z. G. Tong, A. Wright, T. McCormick, R. K. Li, R. D. Oleschuk, H. P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[Crossref]

Oliveira, J. A. B. P.

M. T. S. R. Gomes, M. I. S. Verissimo, J. A. B. P. Oliveira, “Detection of volatile amines using a quartz crystal with gold electrodes,” Sens. Actuators B 57, 261–267 (1999).
[Crossref]

Orr-Ewing, A. J.

M. Mazurenka, A. J. Orr-Ewing, R. Peverall, G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Ann. Rep. Prog. Chem. C 101, 100–142 (2005).
[Crossref]

Orrit, M.

P. Zijlstra, P. M. R. Paulo, M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7, 379–382 (2012).
[Crossref]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, L. He, D. R. Chen, L. Yang, “Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities,” Opt. Express 19, 16195–16206 (2011).
[Crossref]

J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Pappu, S. V.

V. Dong, S. V. Pappu, Z. Xu, “Detection of local density distributions of isolated silanol groups on planar silica surfaces using nonlinear optical molecular probes,” Anal. Chem. 70, 4730–4735 (1998).
[Crossref]

Paulo, P. M. R.

P. Zijlstra, P. M. R. Paulo, M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7, 379–382 (2012).
[Crossref]

Pelton, M.

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Pertsch, T.

Peter, Y. A.

Peverall, R.

M. Mazurenka, A. J. Orr-Ewing, R. Peverall, G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Ann. Rep. Prog. Chem. C 101, 100–142 (2005).
[Crossref]

Pipino, A. C. R.

A. C. R. Pipino, J. P. M. Hoefnagels, N. Watanabe, “Absolute surface coverage measurement using a vibrational overtone,” J. Chem. Phys. 120, 2879–2888 (2004).
[Crossref]

A. C. R. Pipino, “Ultrasensitive surface spectroscopy with a miniature optical resonator,” Phys. Rev. Lett. 83, 3093–3096 (1999).
[Crossref]

Pirchi, M.

M. Pirchi, G. Ziv, I. Riven, S. S. Cohen, N. Zohar, Y. Barak, G. Haran, “Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein,” Nat. Commun. 2, 493 (2011).
[Crossref]

Pryamikov, A. D.

Rackaitis, M.

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).
[Crossref]

Rang, M.

X. J. G. Xu, M. Rang, I. M. Craig, M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
[Crossref]

Raschke, M. B.

X. J. G. Xu, M. Rang, I. M. Craig, M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
[Crossref]

Ratnapala, A.

J. Goldwin, M. Trupke, J. Kenner, A. Ratnapala, E. A. Hinds, “Fast cavity-enhanced atom detection with low noise and high fidelity,” Nat. Commun. 2, 418 (2011).
[Crossref]

Renn, A.

M. Celebrano, P. Kukura, A. Renn, V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics 5, 95–98 (2011).
[Crossref]

Rezac, J.

J. Rezac, “Properties and applications of whispering-gallery mode resonances in fused silica microspheres,” Ph.D. thesis (Oklahoma State University, 2002).

Ritchie, G. A. D.

M. Mazurenka, A. J. Orr-Ewing, R. Peverall, G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Ann. Rep. Prog. Chem. C 101, 100–142 (2005).
[Crossref]

Riven, I.

M. Pirchi, G. Ziv, I. Riven, S. S. Cohen, N. Zohar, Y. Barak, G. Haran, “Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein,” Nat. Commun. 2, 493 (2011).
[Crossref]

Rodnikova, M. N.

L. V. Lanshina, M. N. Rodnikova, K. T. Dudnikova, “Structure of liquid ethylene diamine according to data on molecular-scattering of light,” J. Struct. Chem. 30, 684–687 (1990).
[Crossref]

Rosenberger, A. T.

Salza, M.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330, 1081–1084 (2010).
[Crossref]

Sandoghdar, V.

M. Celebrano, P. Kukura, A. Renn, V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics 5, 95–98 (2011).
[Crossref]

Savchenkov, A. A.

Scherer, N. E.

Schmidt, C.

Shopova, S. I.

Smith, G.

Spencer, D. J.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[Crossref]

Stern, L.

Strong, E. D. T.

J. D. Lambert, E. D. T. Strong, “The dimerization of ammonia and amines,” Proc. R. Soc. A 200, 566–572 (1950).
[Crossref]

Swaim, J. D.

J. D. Swaim, J. Knittel, W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

Teraoka, I.

Tian, Z.

Tong, Z. G.

Z. G. Tong, A. Wright, T. McCormick, R. K. Li, R. D. Oleschuk, H. P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[Crossref]

Trupke, M.

J. Goldwin, M. Trupke, J. Kenner, A. Ratnapala, E. A. Hinds, “Fast cavity-enhanced atom detection with low noise and high fidelity,” Nat. Commun. 2, 418 (2011).
[Crossref]

Tsionsky, V.

V. Tsionsky, E. Gileadi, “Use of the quartz crystal microbalance for the study of adsorption from the gas phase,” Langmuir 10, 2830–2835 (1994).
[Crossref]

Tunnermann, A.

Ueunten, R. H.

Ugliengo, P.

B. Fubini, V. Bolis, A. Cavenago, E. Garrone, P. Ugliengo, “Structural and induced heterogeneity at the surface of some SiO2 polymorphs from the enthalpy of adsorption of various molecules,” Langmuir 9, 2712–2720 (1993).
[Crossref]

Urevig, D. S.

Vahala, K.

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[Crossref]

Verissimo, M. I. S.

M. T. S. R. Gomes, M. I. S. Verissimo, J. A. B. P. Oliveira, “Detection of volatile amines using a quartz crystal with gold electrodes,” Sens. Actuators B 57, 261–267 (1999).
[Crossref]

Vogele, H. P.

M. Buback, H. P. Vogele, FT-NIR Atlas (VCH, 1993).

Vollmer, F.

von Helden, G.

R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[Crossref]

Wan, Z.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Watanabe, N.

A. C. R. Pipino, J. P. M. Hoefnagels, N. Watanabe, “Absolute surface coverage measurement using a vibrational overtone,” J. Chem. Phys. 120, 2879–2888 (2004).
[Crossref]

Wilson, M.

Wright, A.

Z. G. Tong, A. Wright, T. McCormick, R. K. Li, R. D. Oleschuk, H. P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[Crossref]

Xiao, Y. F.

J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Xu, M.

M. Xu, D. F. Liu, H. C. Allen, “Ethylenediamine at air/liquid and air/silica interfaces: protonation versus hydrogen bonding investigated by sum frequency generation spectroscopy,” Environ. Sci. Technol. 40, 1566–1572 (2006).
[Crossref]

Xu, X. J. G.

X. J. G. Xu, M. Rang, I. M. Craig, M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
[Crossref]

Xu, Z.

V. Dong, S. V. Pappu, Z. Xu, “Detection of local density distributions of isolated silanol groups on planar silica surfaces using nonlinear optical molecular probes,” Anal. Chem. 70, 4730–4735 (1998).
[Crossref]

Yam, S. S. H.

Yang, L.

J. Zhu, S. K. Ozdemir, L. He, D. R. Chen, L. Yang, “Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities,” Opt. Express 19, 16195–16206 (2011).
[Crossref]

J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Yao, X. S.

Yastrubshak, O.

Young, K.

Zhu, J.

Zhu, J. G.

J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Zijlstra, P.

P. Zijlstra, P. M. R. Paulo, M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7, 379–382 (2012).
[Crossref]

Ziv, G.

M. Pirchi, G. Ziv, I. Riven, S. S. Cohen, N. Zohar, Y. Barak, G. Haran, “Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein,” Nat. Commun. 2, 493 (2011).
[Crossref]

Zohar, N.

M. Pirchi, G. Ziv, I. Riven, S. S. Cohen, N. Zohar, Y. Barak, G. Haran, “Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein,” Nat. Commun. 2, 493 (2011).
[Crossref]

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[Crossref]

Anal. Chem. (2)

Z. G. Tong, A. Wright, T. McCormick, R. K. Li, R. D. Oleschuk, H. P. Loock, “Phase-shift fiber-loop ring-down spectroscopy,” Anal. Chem. 76, 6594–6599 (2004).
[Crossref]

V. Dong, S. V. Pappu, Z. Xu, “Detection of local density distributions of isolated silanol groups on planar silica surfaces using nonlinear optical molecular probes,” Anal. Chem. 70, 4730–4735 (1998).
[Crossref]

Ann. Rep. Prog. Chem. C (1)

M. Mazurenka, A. J. Orr-Ewing, R. Peverall, G. A. D. Ritchie, “Cavity ring-down and cavity enhanced spectroscopy using diode lasers,” Ann. Rep. Prog. Chem. C 101, 100–142 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

J. D. Swaim, J. Knittel, W. P. Bowen, “Detection of nanoparticles with a frequency locked whispering gallery mode microresonator,” Appl. Phys. Lett. 102, 183106 (2013).
[Crossref]

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett. 101, 043704 (2012).
[Crossref]

Chem. Phys. Lett. (1)

R. Engeln, G. von Helden, G. Berden, G. Meijer, “Phase shift cavity ring down absorption spectroscopy,” Chem. Phys. Lett. 262, 105–109 (1996).
[Crossref]

Environ. Sci. Technol. (1)

M. Xu, D. F. Liu, H. C. Allen, “Ethylenediamine at air/liquid and air/silica interfaces: protonation versus hydrogen bonding investigated by sum frequency generation spectroscopy,” Environ. Sci. Technol. 40, 1566–1572 (2006).
[Crossref]

J. Appl. Phys. (1)

I. Teraoka, S. Arnold, “Estimation of surface density of molecules adsorbed on a whispering gallery mode resonator: utility of isotropic polarizability,” J. Appl. Phys. 102, 076109 (2007).
[Crossref]

J. Chem. Phys. (1)

A. C. R. Pipino, J. P. M. Hoefnagels, N. Watanabe, “Absolute surface coverage measurement using a vibrational overtone,” J. Chem. Phys. 120, 2879–2888 (2004).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. Chem. Lett. (1)

X. J. G. Xu, M. Rang, I. M. Craig, M. B. Raschke, “Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity,” J. Phys. Chem. Lett. 3, 1836–1841 (2012).
[Crossref]

J. Struct. Chem. (1)

L. V. Lanshina, M. N. Rodnikova, K. T. Dudnikova, “Structure of liquid ethylene diamine according to data on molecular-scattering of light,” J. Struct. Chem. 30, 684–687 (1990).
[Crossref]

Langmuir (2)

V. Tsionsky, E. Gileadi, “Use of the quartz crystal microbalance for the study of adsorption from the gas phase,” Langmuir 10, 2830–2835 (1994).
[Crossref]

B. Fubini, V. Bolis, A. Cavenago, E. Garrone, P. Ugliengo, “Structural and induced heterogeneity at the surface of some SiO2 polymorphs from the enthalpy of adsorption of various molecules,” Langmuir 9, 2712–2720 (1993).
[Crossref]

Nat. Commun. (2)

J. Goldwin, M. Trupke, J. Kenner, A. Ratnapala, E. A. Hinds, “Fast cavity-enhanced atom detection with low noise and high fidelity,” Nat. Commun. 2, 418 (2011).
[Crossref]

M. Pirchi, G. Ziv, I. Riven, S. S. Cohen, N. Zohar, Y. Barak, G. Haran, “Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein,” Nat. Commun. 2, 493 (2011).
[Crossref]

Nat. Methods (1)

F. Vollmer, S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Nat. Nanotechnol. (1)

P. Zijlstra, P. M. R. Paulo, M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol. 7, 379–382 (2012).
[Crossref]

Nat. Photonics (2)

M. Celebrano, P. Kukura, A. Renn, V. Sandoghdar, “Single-molecule imaging by optical absorption,” Nat. Photonics 5, 95–98 (2011).
[Crossref]

J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Opt. Commun. (1)

G. Adamovsky, S. F. Lyuksyutov, J. R. Mackey, B. M. Floyd, U. Abeywickrema, I. Fedin, M. Rackaitis, “Peculiarities of thermo-optic coefficient under different temperature regimes in optical fibers containing fiber Bragg gratings,” Opt. Commun. 285, 766–773 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Phys. Chem. Chem. Phys. (1)

P. G. Etchegoin, E. C. Le Ru, “A perspective on single molecule SERS: current status and future challenges,” Phys. Chem. Chem. Phys. 10, 6079–6089 (2008).
[Crossref]

Phys. Rev. A (2)

J. A. Barnes, G. Gagliardi, H. P. Loock, “Phase-shift cavity ring-down spectroscopy on a microresonator by Rayleigh backscattering,” Phys. Rev. A 87, 053843 (2013).
[Crossref]

J. A. Barnes, G. Gagliardi, H. P. Loock, “Erratum: Phase-shift cavity ring-down spectroscopy on a microsphere resonator by Rayleigh backscattering [Phys. Rev. A 87, 053843 (2013)],” Phys. Rev. A 88, 059905 (2013).
[Crossref]

Phys. Rev. Lett. (2)

A. C. R. Pipino, “Ultrasensitive surface spectroscopy with a miniature optical resonator,” Phys. Rev. Lett. 83, 3093–3096 (1999).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

T. Lu, H. Lee, T. Chen, S. Herchak, J. H. Kim, S. E. Fraser, R. C. Flagan, K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. USA 108, 5976–5979 (2011).
[Crossref]

Proc. R. Soc. A (1)

J. D. Lambert, E. D. T. Strong, “The dimerization of ammonia and amines,” Proc. R. Soc. A 200, 566–572 (1950).
[Crossref]

Science (3)

A. M. Armani, “Label-free, single-molecule detection with optical microcavities (August, pg 783, 2007),” Science 334, 1496 (2011).
[Crossref]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[Crossref]

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science 330, 1081–1084 (2010).
[Crossref]

Sens. Actuators B (1)

M. T. S. R. Gomes, M. I. S. Verissimo, J. A. B. P. Oliveira, “Detection of volatile amines using a quartz crystal with gold electrodes,” Sens. Actuators B 57, 261–267 (1999).
[Crossref]

Other (4)

J. Rezac, “Properties and applications of whispering-gallery mode resonances in fused silica microspheres,” Ph.D. thesis (Oklahoma State University, 2002).

J. A. Barnes, H. P. Loock, G. Gagliardi, “Phase shift cavity ring-down measurements on silica sphere microresponators,” in Cavity Enhanced Spectroscopy and Sensing, H. P. Loock, G. Gagliardi, eds. (Springer, 2013).

M. Buback, H. P. Vogele, FT-NIR Atlas (VCH, 1993).

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic representation of the experimental setup. The output of a distributed feedback (DFB) laser at 1549 nm is directed through an optical isolator and an erbium-doped fiber amplifier to a Mach–Zehnder modulator. The polarization of the amplitude-modulated beam is then polarization controlled before being coupled into a silica microsphere resonator. The Rayleigh backscattered light is directed though a circulator to a photodetector (PD) (3). The intensity and phase of the signal from the PD is measured using a lock-in amplifier. Photodiode (2) and another lock-in amplifier are used to measure the intensity and phase of light that is transmitted through the fiber taper. The backscattered light is also used to lock the center frequency of the laser to the cavity resonance with the Pound–Drever–Hall (PDH) method. The coverage is obtained from the frequency shift of the WGM as described below. The FM and AM frequencies are kept sufficiently different to allow the lock-in amplifiers to accurately extract intensity and, simultaneously, phase angle values without cross talk. Typically the Rayleigh-backscattered signal is used to lock the laser to the WGM resonance.
Fig. 2.
Fig. 2. Response of WGM to dosing of EDA onto the silica microsphere surface. Very low concentrations of EDA have been mixed into a stream of dry nitrogen starting at t=300s. (a) Frequency response of the QCM. The readout is digitized with 1 Hz resolution. (b) Wavelength shift, δλ, of the WGM resonance as measured by the correction voltage supplied to the PDH-locked DFB laser, (c) absorption coefficient, αm, and (d) coupling coefficient, κ, calculated from the observed phase shifts and Eqs. (3)–(5).
Fig. 3.
Fig. 3. Observed phase delay of the amplitude-modulated light of a WGM of a clean microresonator (solid black circles) and after dosing (open blue circles). From a fit to Eq. (4) (lines), ringdown times of τ=12.3±0.2 and 11.4±0.2ns were obtained, respectively. At a vacuum wavelength of 1.549 μm (ν=1.93×1014Hz), this corresponds to a Q-factor of about 1.5×107. The coupling constants of γ=31±3 and 30±4ns were unchanged.
Fig. 4.
Fig. 4. Data shown in Fig. 2 were processed using Eqs. (3)–(5) to obtain (a) the coupling coefficient, κ, (b) the attenuation coefficient, αm, and (c) the molecular absorption cross section, σ, as a function of the surface coverage, which was calculated from the frequency shift of the WGM [Fig. 2(b)] and Eq. (4). The vertical dashed line indicates the approximate coverage corresponding to one monolayer, and the horizontal line in (c) indicates the absorption cross section of bulk liquid EDA, σbulk.
Fig. 5.
Fig. 5. Schematic depiction of EDA molecules adsorbed to silica through either hydrogen bonding to a surface silanol group (left molecule), electrostatic interactions following proton transfer (right), or weak dispersion forces (top). (Image inspired by Fig. 3 of Ref. [32]).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

(δkk0)TE=αtθε0R1(n12n22).
(δkk0)TM(δkk0)TE[2(n2n1)2],
ΔΦtrans=2tan1[ΩneffL2c2lnΓ(lnΓ)2(αmL/2)2],
ΔΦbs=2tan1[2Ω/τΩ2(1/τ2+1/γ2)],
τ=Lneffc0(αmL2lnΓ),
σ=(αmα0)lEDAfthinθ,
(δkk0)=VpδεrE0*·Epdr2VεrE0*·E0dr,
(δkk0)TE=1R(n12n22)RR+ΔR(np(r)2n22)dr,
(δkk0)TE=αtσε0R1(n12n22),
fthick=εmr=Rjl2(k0nsR)exp(2(rR)/rev)r2drϕ=02πθ=0π[Ylm(ϕ,θ)]2sinθdθdϕεsr=0Rjl2(k0nsr)r2drϕ=02πθ=0π[Ylm(ϕ,θ)]2sinθdθdϕε0nm2jl2(k0nsR)r=Rexp(2(rR)/rev)r2drε0ns2jl2(k0nsR)R32ns2nm2ns2(R2rev/2+Rrev2/2+rev3/4)2R3nm2ns2nm2revRnm2ns2nm2λ02πRnm2(ns2nm2)3/2,
fthinεEDAr=RR+ΔRjl2(k0nsR)r2drϕ=02πθ=0π[Ylm(ϕ,θ)]2sinθdθdϕεsr=0R+ΔRjl2(k0nsr)r2drϕ=02πθ=0π[Ylm(ϕ,θ)]2sinθdθdϕε0nEDA2jl2(k0nsR)((R+ΔR)33R33)ε0ns2jl2(k0ns(R+ΔR))(R+ΔR)32ns2nm2ns223(R+ΔR)3R3(R+ΔR)3nEDA2ns2nm2.

Metrics