Abstract

Visualization of the field evolution of the continuous waves in the terahertz (THz) range with high phase and spatial resolution is a new approach to the study of the physical dynamics of unique beams, such as nondiffractive, self-reconstructing, and vortex beams. As near-field visualization can reveal device dynamics, it is also useful for diagnosing the THz devices. Here, we demonstrate the visualization of the spatial–temporal evolution of freely propagating continuous THz waves by adapting the nonpolarimetric electro-optic (EO) detection technique to the self-heterodyne system. The amplitude and phase of a THz wave (125 GHz, λ=2.4mm, 650 μW) radiated from a horn antenna were simultaneously and precisely measured in the self-heterodyne system, in which two frequency-detuned free-running lasers were used both for the generation (photomixing) and EO detection of THz waves. The nonpolarimetric EO detection technique has solved an intrinsic problem of the conventional polarimetric EO detection technique, in which the sensitivity of the measurements can be changed drastically by the fluctuation of the polarization state of the optical local oscillator signal for the EO detection. As a result, field evolution could be visualized with a maximum signal-to-noise ratio of 27 dB and a phase resolution of 2π/78rad (80 mrad), by scanning an optical fiber-mounted EO crystal (ZnTe) in a free space repeatedly.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Continuous-wave terahertz field imaging based on photonics-based self-heterodyne electro-optic detection

Shintaro Hisatake and Tadao Nagatsuma
Opt. Lett. 38(13) 2307-2310 (2013)

Non-ellipsometric detection of terahertz radiation using heterodyne EO sampling in the Cherenkov velocity matching scheme

Masahiko Tani, Tetsuya Kinoshita, Tomohiro Nagase, Kazuki Horita, Christopher T. Que, Elmer Estacio, Kohji Yamamoto, and Michael I. Bakunov
Opt. Express 21(8) 9277-9288 (2013)

Continuous-wave THz vector imaging system utilizing two-tone signal generation and self-mixing detection

Hajun Song, Sejin Hwang, Hongsung An, Ho-Jin Song, and Jong-In Song
Opt. Express 25(17) 20718-20726 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. J. Lee, E. M. Ferren, D. P. Woolen, K. M. Lee, “Near-field probe used as a diagnostic tool to locate defective elements in an array antenna,” IEEE Trans. Antennas Propag. 36, 884–889 (1988).
    [Crossref]
  2. T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, H. Takahashi, “Terahertz wireless communications based on photonics technologies,” Opt. Express 21, 23736–23747 (2013).
    [Crossref]
  3. D. Kim, J. Hirokawa, M. Ando, J. Takeuchi, A. Hirata, “4 × 4-element corporate-feed waveguide slot array antenna with cavities for the 120 GHz-band,” IEEE Trans. Antennas Propag. 61, 5968–5975 (2013).
    [Crossref]
  4. J. R. Knab, A. J. L. Adam, M. Nagel, E. Shaner, M. A. Seo, D. S. Kim, P. C. M. Planken, “Terahertz near-field vectorial imaging of subwavelength apertures and aperture arrays,” Opt. Express 17, 15072–15086 (2009).
    [Crossref]
  5. A. Bitzer, A. Ortner, H. Merbold, T. Feurer, M. Walther, “Terahertz near-field microscopy of complementary planar metamaterials: Babinet’s principle,” Opt. Express 19, 2537–2545 (2011).
    [Crossref]
  6. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009).
    [Crossref]
  7. J. He, X. Wang, D. Hu, J. Ye, S. Feng, Q. Kan, Y. Zhang, “Generation and evolution of the terahertz vortex beam,” Opt. Express 21, 20230–20239 (2013).
    [Crossref]
  8. M. Tsuchiya, A. Kanno, K. Sasagawa, T. Shiozawa, “Image and/or movie analyses of 100-GHz traveling waves on the basis of real-time observation with a live electrooptic imaging camera,” IEEE Trans. Microwave Theor. Tech. 57, 3373–3379 (2009).
  9. M. Tsuchiya, T. Shiozawa, “Phase-space analyses of electrooptically visualized 100  GHz waves employing complex phasor images,” Appl. Phys. Express 7, 032401 (2014).
    [Crossref]
  10. S. Hisatake, G. Kitahara, K. Ajito, Y. Fukada, N. Yoshimoto, T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature-grown GaAs photoconductor at 1.55  μm,” IEEE Sens. J. 13, 31–36 (2013).
    [Crossref]
  11. S. Hisatake, J.-Y. Kim, K. Ajito, T. Nagatsuma, “Self-heterodyne spectrometer using uni-traveling-carrier photodiodes for terahertz-wave generators and optoelectronic mixers,” J. Lightwave Technol. 32, 3683–3689 (2014).
    [Crossref]
  12. S. Hisatake, T. Nagatsuma, “Continuous-wave terahertz field imaging based on photonics-based self-heterodyne electro-optic detection,” Opt. Lett. 38, 2307–2310 (2013).
    [Crossref]
  13. D.-J. Lee, J. F. Whitaker, “An optical-fiber-scale electro-optic probe for minimally invasive high-frequency field sensing,” Opt. Express 16, 21587–21597 (2008).
    [Crossref]
  14. A. Garzarella, S. B. Qadri, D. H. Wu, R. J. Hinton, “Responsivity optimization and stabilization in electro-optic field sensors,” Appl. Opt. 46, 6636–6640 (2007).
    [Crossref]
  15. K. Yang, L. P. B. Katehi, J. F. Whitaker, “Electric field mapping system using an optical-fiber-based electrooptic probe,” IEEE Microw. Wirel. Compon. Lett. 11, 164–166 (2001).
    [Crossref]
  16. S. Hisatake, T. Nagatsuma, “Nonpolarimetric technique for homodyne-type electrooptic field detection,” Appl. Phys. Express 5, 012701 (2012).
    [Crossref]
  17. H. Togo, A. Sasaki, A. Hirata, T. Nagatsuma, “Characterization of millimeter-wave antenna using photonic measurement techniques,” Int. J. RF Microwave Comput. Aided Eng. 14, 290–297 (2004).
  18. C. T. Rodenbeck, K. A. Peterson, C. E. Sandoval, K. Brakora, J. Thiesen, E. M. Russick, R. A. Ortiz, “Electrooptic inspection of vector leakage in radiofrequency multichip modules,” IEEE Trans. Electromagn. Compat. 55, 1093–1099 (2013).
    [Crossref]

2014 (2)

M. Tsuchiya, T. Shiozawa, “Phase-space analyses of electrooptically visualized 100  GHz waves employing complex phasor images,” Appl. Phys. Express 7, 032401 (2014).
[Crossref]

S. Hisatake, J.-Y. Kim, K. Ajito, T. Nagatsuma, “Self-heterodyne spectrometer using uni-traveling-carrier photodiodes for terahertz-wave generators and optoelectronic mixers,” J. Lightwave Technol. 32, 3683–3689 (2014).
[Crossref]

2013 (6)

S. Hisatake, T. Nagatsuma, “Continuous-wave terahertz field imaging based on photonics-based self-heterodyne electro-optic detection,” Opt. Lett. 38, 2307–2310 (2013).
[Crossref]

J. He, X. Wang, D. Hu, J. Ye, S. Feng, Q. Kan, Y. Zhang, “Generation and evolution of the terahertz vortex beam,” Opt. Express 21, 20230–20239 (2013).
[Crossref]

T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, H. Takahashi, “Terahertz wireless communications based on photonics technologies,” Opt. Express 21, 23736–23747 (2013).
[Crossref]

S. Hisatake, G. Kitahara, K. Ajito, Y. Fukada, N. Yoshimoto, T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature-grown GaAs photoconductor at 1.55  μm,” IEEE Sens. J. 13, 31–36 (2013).
[Crossref]

D. Kim, J. Hirokawa, M. Ando, J. Takeuchi, A. Hirata, “4 × 4-element corporate-feed waveguide slot array antenna with cavities for the 120 GHz-band,” IEEE Trans. Antennas Propag. 61, 5968–5975 (2013).
[Crossref]

C. T. Rodenbeck, K. A. Peterson, C. E. Sandoval, K. Brakora, J. Thiesen, E. M. Russick, R. A. Ortiz, “Electrooptic inspection of vector leakage in radiofrequency multichip modules,” IEEE Trans. Electromagn. Compat. 55, 1093–1099 (2013).
[Crossref]

2012 (1)

S. Hisatake, T. Nagatsuma, “Nonpolarimetric technique for homodyne-type electrooptic field detection,” Appl. Phys. Express 5, 012701 (2012).
[Crossref]

2011 (1)

2009 (3)

2008 (1)

2007 (1)

2004 (1)

H. Togo, A. Sasaki, A. Hirata, T. Nagatsuma, “Characterization of millimeter-wave antenna using photonic measurement techniques,” Int. J. RF Microwave Comput. Aided Eng. 14, 290–297 (2004).

2001 (1)

K. Yang, L. P. B. Katehi, J. F. Whitaker, “Electric field mapping system using an optical-fiber-based electrooptic probe,” IEEE Microw. Wirel. Compon. Lett. 11, 164–166 (2001).
[Crossref]

1988 (1)

J. J. Lee, E. M. Ferren, D. P. Woolen, K. M. Lee, “Near-field probe used as a diagnostic tool to locate defective elements in an array antenna,” IEEE Trans. Antennas Propag. 36, 884–889 (1988).
[Crossref]

Adam, A. J.

Adam, A. J. L.

Ajito, K.

S. Hisatake, J.-Y. Kim, K. Ajito, T. Nagatsuma, “Self-heterodyne spectrometer using uni-traveling-carrier photodiodes for terahertz-wave generators and optoelectronic mixers,” J. Lightwave Technol. 32, 3683–3689 (2014).
[Crossref]

S. Hisatake, G. Kitahara, K. Ajito, Y. Fukada, N. Yoshimoto, T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature-grown GaAs photoconductor at 1.55  μm,” IEEE Sens. J. 13, 31–36 (2013).
[Crossref]

Ando, M.

D. Kim, J. Hirokawa, M. Ando, J. Takeuchi, A. Hirata, “4 × 4-element corporate-feed waveguide slot array antenna with cavities for the 120 GHz-band,” IEEE Trans. Antennas Propag. 61, 5968–5975 (2013).
[Crossref]

Bang, O.

Bitzer, A.

Brakora, K.

C. T. Rodenbeck, K. A. Peterson, C. E. Sandoval, K. Brakora, J. Thiesen, E. M. Russick, R. A. Ortiz, “Electrooptic inspection of vector leakage in radiofrequency multichip modules,” IEEE Trans. Electromagn. Compat. 55, 1093–1099 (2013).
[Crossref]

Feng, S.

Ferren, E. M.

J. J. Lee, E. M. Ferren, D. P. Woolen, K. M. Lee, “Near-field probe used as a diagnostic tool to locate defective elements in an array antenna,” IEEE Trans. Antennas Propag. 36, 884–889 (1988).
[Crossref]

Feurer, T.

Fukada, Y.

S. Hisatake, G. Kitahara, K. Ajito, Y. Fukada, N. Yoshimoto, T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature-grown GaAs photoconductor at 1.55  μm,” IEEE Sens. J. 13, 31–36 (2013).
[Crossref]

Garzarella, A.

He, J.

Hinton, R. J.

Hirata, A.

D. Kim, J. Hirokawa, M. Ando, J. Takeuchi, A. Hirata, “4 × 4-element corporate-feed waveguide slot array antenna with cavities for the 120 GHz-band,” IEEE Trans. Antennas Propag. 61, 5968–5975 (2013).
[Crossref]

H. Togo, A. Sasaki, A. Hirata, T. Nagatsuma, “Characterization of millimeter-wave antenna using photonic measurement techniques,” Int. J. RF Microwave Comput. Aided Eng. 14, 290–297 (2004).

Hirokawa, J.

D. Kim, J. Hirokawa, M. Ando, J. Takeuchi, A. Hirata, “4 × 4-element corporate-feed waveguide slot array antenna with cavities for the 120 GHz-band,” IEEE Trans. Antennas Propag. 61, 5968–5975 (2013).
[Crossref]

Hisatake, S.

Horiguchi, S.

Hu, D.

Jepsen, P. U.

Kan, Q.

Kanno, A.

M. Tsuchiya, A. Kanno, K. Sasagawa, T. Shiozawa, “Image and/or movie analyses of 100-GHz traveling waves on the basis of real-time observation with a live electrooptic imaging camera,” IEEE Trans. Microwave Theor. Tech. 57, 3373–3379 (2009).

Katehi, L. P. B.

K. Yang, L. P. B. Katehi, J. F. Whitaker, “Electric field mapping system using an optical-fiber-based electrooptic probe,” IEEE Microw. Wirel. Compon. Lett. 11, 164–166 (2001).
[Crossref]

Kim, D.

D. Kim, J. Hirokawa, M. Ando, J. Takeuchi, A. Hirata, “4 × 4-element corporate-feed waveguide slot array antenna with cavities for the 120 GHz-band,” IEEE Trans. Antennas Propag. 61, 5968–5975 (2013).
[Crossref]

Kim, D. S.

Kim, J.-Y.

Kitahara, G.

S. Hisatake, G. Kitahara, K. Ajito, Y. Fukada, N. Yoshimoto, T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature-grown GaAs photoconductor at 1.55  μm,” IEEE Sens. J. 13, 31–36 (2013).
[Crossref]

Knab, J. R.

Kuwano, S.

Lee, D.-J.

Lee, J. J.

J. J. Lee, E. M. Ferren, D. P. Woolen, K. M. Lee, “Near-field probe used as a diagnostic tool to locate defective elements in an array antenna,” IEEE Trans. Antennas Propag. 36, 884–889 (1988).
[Crossref]

Lee, K. M.

J. J. Lee, E. M. Ferren, D. P. Woolen, K. M. Lee, “Near-field probe used as a diagnostic tool to locate defective elements in an array antenna,” IEEE Trans. Antennas Propag. 36, 884–889 (1988).
[Crossref]

Merbold, H.

Minamikata, Y.

Nagatsuma, T.

S. Hisatake, J.-Y. Kim, K. Ajito, T. Nagatsuma, “Self-heterodyne spectrometer using uni-traveling-carrier photodiodes for terahertz-wave generators and optoelectronic mixers,” J. Lightwave Technol. 32, 3683–3689 (2014).
[Crossref]

T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, H. Takahashi, “Terahertz wireless communications based on photonics technologies,” Opt. Express 21, 23736–23747 (2013).
[Crossref]

S. Hisatake, T. Nagatsuma, “Continuous-wave terahertz field imaging based on photonics-based self-heterodyne electro-optic detection,” Opt. Lett. 38, 2307–2310 (2013).
[Crossref]

S. Hisatake, G. Kitahara, K. Ajito, Y. Fukada, N. Yoshimoto, T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature-grown GaAs photoconductor at 1.55  μm,” IEEE Sens. J. 13, 31–36 (2013).
[Crossref]

S. Hisatake, T. Nagatsuma, “Nonpolarimetric technique for homodyne-type electrooptic field detection,” Appl. Phys. Express 5, 012701 (2012).
[Crossref]

H. Togo, A. Sasaki, A. Hirata, T. Nagatsuma, “Characterization of millimeter-wave antenna using photonic measurement techniques,” Int. J. RF Microwave Comput. Aided Eng. 14, 290–297 (2004).

Nagel, M.

Nielsen, K.

Ortiz, R. A.

C. T. Rodenbeck, K. A. Peterson, C. E. Sandoval, K. Brakora, J. Thiesen, E. M. Russick, R. A. Ortiz, “Electrooptic inspection of vector leakage in radiofrequency multichip modules,” IEEE Trans. Electromagn. Compat. 55, 1093–1099 (2013).
[Crossref]

Ortner, A.

Peterson, K. A.

C. T. Rodenbeck, K. A. Peterson, C. E. Sandoval, K. Brakora, J. Thiesen, E. M. Russick, R. A. Ortiz, “Electrooptic inspection of vector leakage in radiofrequency multichip modules,” IEEE Trans. Electromagn. Compat. 55, 1093–1099 (2013).
[Crossref]

Planken, P. C.

Planken, P. C. M.

Qadri, S. B.

Rasmussen, H. K.

Rodenbeck, C. T.

C. T. Rodenbeck, K. A. Peterson, C. E. Sandoval, K. Brakora, J. Thiesen, E. M. Russick, R. A. Ortiz, “Electrooptic inspection of vector leakage in radiofrequency multichip modules,” IEEE Trans. Electromagn. Compat. 55, 1093–1099 (2013).
[Crossref]

Russick, E. M.

C. T. Rodenbeck, K. A. Peterson, C. E. Sandoval, K. Brakora, J. Thiesen, E. M. Russick, R. A. Ortiz, “Electrooptic inspection of vector leakage in radiofrequency multichip modules,” IEEE Trans. Electromagn. Compat. 55, 1093–1099 (2013).
[Crossref]

Sandoval, C. E.

C. T. Rodenbeck, K. A. Peterson, C. E. Sandoval, K. Brakora, J. Thiesen, E. M. Russick, R. A. Ortiz, “Electrooptic inspection of vector leakage in radiofrequency multichip modules,” IEEE Trans. Electromagn. Compat. 55, 1093–1099 (2013).
[Crossref]

Sasagawa, K.

M. Tsuchiya, A. Kanno, K. Sasagawa, T. Shiozawa, “Image and/or movie analyses of 100-GHz traveling waves on the basis of real-time observation with a live electrooptic imaging camera,” IEEE Trans. Microwave Theor. Tech. 57, 3373–3379 (2009).

Sasaki, A.

H. Togo, A. Sasaki, A. Hirata, T. Nagatsuma, “Characterization of millimeter-wave antenna using photonic measurement techniques,” Int. J. RF Microwave Comput. Aided Eng. 14, 290–297 (2004).

Seo, M. A.

Shaner, E.

Shiozawa, T.

M. Tsuchiya, T. Shiozawa, “Phase-space analyses of electrooptically visualized 100  GHz waves employing complex phasor images,” Appl. Phys. Express 7, 032401 (2014).
[Crossref]

M. Tsuchiya, A. Kanno, K. Sasagawa, T. Shiozawa, “Image and/or movie analyses of 100-GHz traveling waves on the basis of real-time observation with a live electrooptic imaging camera,” IEEE Trans. Microwave Theor. Tech. 57, 3373–3379 (2009).

Takahashi, H.

Takeuchi, J.

D. Kim, J. Hirokawa, M. Ando, J. Takeuchi, A. Hirata, “4 × 4-element corporate-feed waveguide slot array antenna with cavities for the 120 GHz-band,” IEEE Trans. Antennas Propag. 61, 5968–5975 (2013).
[Crossref]

Terada, J.

Thiesen, J.

C. T. Rodenbeck, K. A. Peterson, C. E. Sandoval, K. Brakora, J. Thiesen, E. M. Russick, R. A. Ortiz, “Electrooptic inspection of vector leakage in radiofrequency multichip modules,” IEEE Trans. Electromagn. Compat. 55, 1093–1099 (2013).
[Crossref]

Togo, H.

H. Togo, A. Sasaki, A. Hirata, T. Nagatsuma, “Characterization of millimeter-wave antenna using photonic measurement techniques,” Int. J. RF Microwave Comput. Aided Eng. 14, 290–297 (2004).

Tsuchiya, M.

M. Tsuchiya, T. Shiozawa, “Phase-space analyses of electrooptically visualized 100  GHz waves employing complex phasor images,” Appl. Phys. Express 7, 032401 (2014).
[Crossref]

M. Tsuchiya, A. Kanno, K. Sasagawa, T. Shiozawa, “Image and/or movie analyses of 100-GHz traveling waves on the basis of real-time observation with a live electrooptic imaging camera,” IEEE Trans. Microwave Theor. Tech. 57, 3373–3379 (2009).

Walther, M.

Wang, X.

Whitaker, J. F.

D.-J. Lee, J. F. Whitaker, “An optical-fiber-scale electro-optic probe for minimally invasive high-frequency field sensing,” Opt. Express 16, 21587–21597 (2008).
[Crossref]

K. Yang, L. P. B. Katehi, J. F. Whitaker, “Electric field mapping system using an optical-fiber-based electrooptic probe,” IEEE Microw. Wirel. Compon. Lett. 11, 164–166 (2001).
[Crossref]

Woolen, D. P.

J. J. Lee, E. M. Ferren, D. P. Woolen, K. M. Lee, “Near-field probe used as a diagnostic tool to locate defective elements in an array antenna,” IEEE Trans. Antennas Propag. 36, 884–889 (1988).
[Crossref]

Wu, D. H.

Yang, K.

K. Yang, L. P. B. Katehi, J. F. Whitaker, “Electric field mapping system using an optical-fiber-based electrooptic probe,” IEEE Microw. Wirel. Compon. Lett. 11, 164–166 (2001).
[Crossref]

Ye, J.

Yoshimizu, Y.

Yoshimoto, N.

S. Hisatake, G. Kitahara, K. Ajito, Y. Fukada, N. Yoshimoto, T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature-grown GaAs photoconductor at 1.55  μm,” IEEE Sens. J. 13, 31–36 (2013).
[Crossref]

T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, H. Takahashi, “Terahertz wireless communications based on photonics technologies,” Opt. Express 21, 23736–23747 (2013).
[Crossref]

Zhang, Y.

Appl. Opt. (1)

Appl. Phys. Express (2)

S. Hisatake, T. Nagatsuma, “Nonpolarimetric technique for homodyne-type electrooptic field detection,” Appl. Phys. Express 5, 012701 (2012).
[Crossref]

M. Tsuchiya, T. Shiozawa, “Phase-space analyses of electrooptically visualized 100  GHz waves employing complex phasor images,” Appl. Phys. Express 7, 032401 (2014).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

K. Yang, L. P. B. Katehi, J. F. Whitaker, “Electric field mapping system using an optical-fiber-based electrooptic probe,” IEEE Microw. Wirel. Compon. Lett. 11, 164–166 (2001).
[Crossref]

IEEE Sens. J. (1)

S. Hisatake, G. Kitahara, K. Ajito, Y. Fukada, N. Yoshimoto, T. Nagatsuma, “Phase-sensitive terahertz self-heterodyne system based on photodiode and low-temperature-grown GaAs photoconductor at 1.55  μm,” IEEE Sens. J. 13, 31–36 (2013).
[Crossref]

IEEE Trans. Antennas Propag. (2)

D. Kim, J. Hirokawa, M. Ando, J. Takeuchi, A. Hirata, “4 × 4-element corporate-feed waveguide slot array antenna with cavities for the 120 GHz-band,” IEEE Trans. Antennas Propag. 61, 5968–5975 (2013).
[Crossref]

J. J. Lee, E. M. Ferren, D. P. Woolen, K. M. Lee, “Near-field probe used as a diagnostic tool to locate defective elements in an array antenna,” IEEE Trans. Antennas Propag. 36, 884–889 (1988).
[Crossref]

IEEE Trans. Electromagn. Compat. (1)

C. T. Rodenbeck, K. A. Peterson, C. E. Sandoval, K. Brakora, J. Thiesen, E. M. Russick, R. A. Ortiz, “Electrooptic inspection of vector leakage in radiofrequency multichip modules,” IEEE Trans. Electromagn. Compat. 55, 1093–1099 (2013).
[Crossref]

IEEE Trans. Microwave Theor. Tech. (1)

M. Tsuchiya, A. Kanno, K. Sasagawa, T. Shiozawa, “Image and/or movie analyses of 100-GHz traveling waves on the basis of real-time observation with a live electrooptic imaging camera,” IEEE Trans. Microwave Theor. Tech. 57, 3373–3379 (2009).

Int. J. RF Microwave Comput. Aided Eng. (1)

H. Togo, A. Sasaki, A. Hirata, T. Nagatsuma, “Characterization of millimeter-wave antenna using photonic measurement techniques,” Int. J. RF Microwave Comput. Aided Eng. 14, 290–297 (2004).

J. Lightwave Technol. (1)

Opt. Express (6)

Opt. Lett. (1)

Supplementary Material (2)

» Media 1: MP4 (10494 KB)     
» Media 2: MP4 (10494 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental setup. LD, laser diode; FS, electrooptic frequency shifter; EDFA, erbium-doped fiber amplifier; FBG, fiber Bragg grating; PD, photodiode; PMF, polarization-maintaining fiber.
Fig. 2.
Fig. 2. Principle of the nonpolarimetric self-heterodyne EO detection technique.
Fig. 3.
Fig. 3. Measured THz E-field. (a) Normalized amplitude and (b) phase. The EO sensor was placed at the center of the antenna surface. The lock-in time constant was 30 ms.
Fig. 4.
Fig. 4. Typical correlation map between two independently measured amplitude distributions, A1(X,0,Z8) and A2(X,0,Z8).
Fig. 5.
Fig. 5. Measured and simulated near-field (E-field) distributions of the horn antenna. (a) and (b) distributions in the E-plane. (c) and (d) distributions in the H-plane.
Fig. 6.
Fig. 6. Measured (a) amplitude and (b) phase of the THz E-field. Calculated (c) amplitude and (d) phase.
Fig. 7.
Fig. 7. Measured spatial–temporal phase evolution of the freely propagating CW-THz field (Media 1). The horn antenna is the polygon data used in the simulation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

θRF=(ϕLD2ϕLD1)+(ϕ32ϕ12)+(ϕ2g2ϕ2g1)+φRF,
θLOc=ϕLD2+ϕ34+ϕ4s2,
θLOs=ϕLD1+ϕ14+ϕ4s1+θRF,
θIF=θLOsθLOc=(ϕ32ϕ34)+(ϕ14ϕ12)+(ϕ4s1ϕ4s2)+(ϕ2g2ϕ2g1)+φRF.

Metrics