Abstract

A key requirement for achieving high-density integration of terahertz (THz) systems is a strongly confining single-mode and low-loss waveguide. Several waveguide solutions based on technologies from both electronics and photonics have been proposed; among these, hollow-core waveguides are one of the best options for guiding THz radiation due to their very low material absorption of air. However, to minimize reflection losses, hollow-core waveguides typically have a core diameter larger than the operating wavelength, and as a consequence are multimode. Here, we report on a single-mode, single-polarization hollow-core THz fiber with a metamaterial cladding, consisting of subwavelength-diameter metal wires embedded in a dielectric host. The idea of using metal–dielectric hybrid cladding relies on the extreme anisotropy of wire metamaterials, which reflects transverse magnetic (TM) waves and transmits transverse electric waves, leading to a waveguide structure that only confines TM modes—thus halving the number of modes from the outset. Numerical simulations and experimental measurements confirm a wide single-mode single-polarization window ranging from 0.31 to 0.44 THz, with a wavelength-sized core (0.88 mm diameter). Our work overcomes a stumbling block for achieving compact and flexible single-mode THz waveguides, which may be important for future THz systems with high-density integration.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials

Shaghik Atakaramians, Alexander Argyros, Simon C. Fleming, and Boris T. Kuhlmey
J. Opt. Soc. Am. B 30(4) 851-867 (2013)

Analytic model for the complex effective index dispersion of metamaterial-cladding large-area hollow core fibers

Matthias Zeisberger, Alessandro Tuniz, and Markus A. Schmidt
Opt. Express 24(18) 20515-20528 (2016)

Linearly polarized single TM mode terahertz waveguide

Haisu Li, Guobin Ren, Shaghik Atakaramians, Boris T. Kuhlmey, and Shuisheng Jian
Opt. Lett. 41(17) 4004-4007 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  2. A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22, 365–379 (2016).
    [Crossref]
  3. A. Markov, H. Guerboukha, and M. Skorobogatiy, “Hybrid metal wire-dielectric terahertz waveguides: challenges and opportunities,” J. Opt. Soc. Am. B 31, 2587–2600 (2014).
    [Crossref]
  4. S. Atakaramians, V. S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photon. 5, 169–215 (2013).
    [Crossref]
  5. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431–1433 (1999).
    [Crossref]
  6. G. Ren, Y. Gong, P. Shum, X. Yu, J. Hu, G. Wang, M. O. L. Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16, 13593–13598 (2008).
    [Crossref]
  7. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in Kagome hollow-core microstructured fibers,” Opt Express 19, 18470–18478 (2011).
    [Crossref]
  8. N. Yudasari, J. Anthony, and R. Leonhardt, “Terahertz pulse propagation in 3D-printed waveguide with metal wires component,” Opt. Express 22, 26042–26054 (2014).
    [Crossref]
  9. H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
    [Crossref]
  10. D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett. 97, 133502 (2010).
    [Crossref]
  11. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
    [Crossref]
  12. M. Navarro-Cía, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Silver-coated teflon tubes for waveguiding at 1-2 THz,” J. Infrared Millim. Terahz. Waves 36, 542–555 (2015).
    [Crossref]
  13. S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions,” J. Opt. Soc. Am. B 29, 2462–2477 (2012).
    [Crossref]
  14. S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials,” J. Opt. Soc. Am. B 30, 851–867 (2013).
    [Crossref]
  15. M. Yan and N. A. Mortensen, “Hollow-core infrared fiber incorporating metal-wire metamaterial,” Opt. Express 17, 14851–14864 (2009).
    [Crossref]
  16. S. Jahani and Z. Jacob, “Transparent subdiffraction optics: nanoscale light confinement without metal,” Optica 1, 96–100 (2014).
    [Crossref]
  17. H. Li, S. Atakaramians, and B. T. Kuhlmey, “Low loss and single mode metal dielectric hybrid-clad waveguides for Terahertz radiation,” Proc. SPIE 8205, 96680H (2015).
    [Crossref]
  18. L. J. Wong, A. Fallahi, and F. X. Kartner, “Compact electron acceleration and bunch compression in THz waveguides,” Opt. Express 21, 9792–9806 (2013).
    [Crossref]
  19. O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. Al-Janabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mater. 1, 971–977 (2013).
    [Crossref]
  20. N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn double split ring resonators in the terahertz range,” Opt. Mater. Express 2, 1254–1259 (2012).
    [Crossref]
  21. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
    [Crossref]
  22. L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2014).
    [Crossref]
  23. P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1, 1–14 (2014).
    [Crossref]
  24. C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4229–4248 (2012).
    [Crossref]
  25. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  26. D. W. Vogt, J. Anthony, and R. Leonhardt, “Metallic and 3D-printed dielectric helical terahertz waveguides,” Opt. Express 23, 33359–33369 (2015).
    [Crossref]
  27. R. Koyama, N. Smith, and W. Spicer, “Optical properties of indium,” Phys. Rev. B 8, 2426–2432 (1973).
    [Crossref]
  28. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28, 1013–1018 (2011).
    [Crossref]
  29. A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Vis. Exp. 68, e4299 (2012).
    [Crossref]
  30. A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
    [Crossref]

2016 (1)

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22, 365–379 (2016).
[Crossref]

2015 (4)

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref]

M. Navarro-Cía, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Silver-coated teflon tubes for waveguiding at 1-2 THz,” J. Infrared Millim. Terahz. Waves 36, 542–555 (2015).
[Crossref]

H. Li, S. Atakaramians, and B. T. Kuhlmey, “Low loss and single mode metal dielectric hybrid-clad waveguides for Terahertz radiation,” Proc. SPIE 8205, 96680H (2015).
[Crossref]

D. W. Vogt, J. Anthony, and R. Leonhardt, “Metallic and 3D-printed dielectric helical terahertz waveguides,” Opt. Express 23, 33359–33369 (2015).
[Crossref]

2014 (5)

2013 (6)

S. Atakaramians, V. S. Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photon. 5, 169–215 (2013).
[Crossref]

L. J. Wong, A. Fallahi, and F. X. Kartner, “Compact electron acceleration and bunch compression in THz waveguides,” Opt. Express 21, 9792–9806 (2013).
[Crossref]

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. Al-Janabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mater. 1, 971–977 (2013).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials,” J. Opt. Soc. Am. B 30, 851–867 (2013).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref]

2012 (4)

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Vis. Exp. 68, e4299 (2012).
[Crossref]

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4229–4248 (2012).
[Crossref]

N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn double split ring resonators in the terahertz range,” Opt. Mater. Express 2, 1254–1259 (2012).
[Crossref]

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions,” J. Opt. Soc. Am. B 29, 2462–2477 (2012).
[Crossref]

2011 (2)

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in Kagome hollow-core microstructured fibers,” Opt Express 19, 18470–18478 (2011).
[Crossref]

J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28, 1013–1018 (2011).
[Crossref]

2010 (1)

D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett. 97, 133502 (2010).
[Crossref]

2009 (1)

2008 (2)

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[Crossref]

G. Ren, Y. Gong, P. Shum, X. Yu, J. Hu, G. Wang, M. O. L. Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16, 13593–13598 (2008).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

1999 (1)

1973 (1)

R. Koyama, N. Smith, and W. Spicer, “Optical properties of indium,” Phys. Rev. B 8, 2426–2432 (1973).
[Crossref]

Abbott, D.

Afshar, V. S.

Agrawal, G. P.

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22, 365–379 (2016).
[Crossref]

Al-Janabi, A. H.

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. Al-Janabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mater. 1, 971–977 (2013).
[Crossref]

Anthony, J.

Argyros, A.

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. Al-Janabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mater. 1, 971–977 (2013).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref]

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials,” J. Opt. Soc. Am. B 30, 851–867 (2013).
[Crossref]

N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn double split ring resonators in the terahertz range,” Opt. Mater. Express 2, 1254–1259 (2012).
[Crossref]

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions,” J. Opt. Soc. Am. B 29, 2462–2477 (2012).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Vis. Exp. 68, e4299 (2012).
[Crossref]

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in Kagome hollow-core microstructured fibers,” Opt Express 19, 18470–18478 (2011).
[Crossref]

J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B 28, 1013–1018 (2011).
[Crossref]

Atakaramians, S.

Atkinson, J.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1, 1–14 (2014).
[Crossref]

Atrashchenko, A. V.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4229–4248 (2012).
[Crossref]

Balanis, C. A.

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

Bang, O.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref]

Bao, H.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref]

Barh, A.

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22, 365–379 (2016).
[Crossref]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Belov, P. A.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4229–4248 (2012).
[Crossref]

Chang, H.-C.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[Crossref]

Chen, H.-W.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[Crossref]

Chen, Z.

D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett. 97, 133502 (2010).
[Crossref]

Chuen, M. O. L.

Fallahi, A.

Ferrari, L.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2014).
[Crossref]

Fischer, B. M.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref]

Fleming, S. C.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref]

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials,” J. Opt. Soc. Am. B 30, 851–867 (2013).
[Crossref]

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. Al-Janabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mater. 1, 971–977 (2013).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Vis. Exp. 68, e4299 (2012).
[Crossref]

N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn double split ring resonators in the terahertz range,” Opt. Mater. Express 2, 1254–1259 (2012).
[Crossref]

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions,” J. Opt. Soc. Am. B 29, 2462–2477 (2012).
[Crossref]

Gallot, G.

Gong, Y.

Grischkowsky, D.

Guerboukha, H.

Guo, X.

D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett. 97, 133502 (2010).
[Crossref]

Harrington, J. A.

M. Navarro-Cía, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Silver-coated teflon tubes for waveguiding at 1-2 THz,” J. Infrared Millim. Terahz. Waves 36, 542–555 (2015).
[Crossref]

Hu, J.

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Jacob, Z.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1, 1–14 (2014).
[Crossref]

S. Jahani and Z. Jacob, “Transparent subdiffraction optics: nanoscale light confinement without metal,” Optica 1, 96–100 (2014).
[Crossref]

Jahani, S.

Jepsen, P. U.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref]

Kaltenecker, K. J.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref]

Karatchevtseva, I.

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. Al-Janabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mater. 1, 971–977 (2013).
[Crossref]

Kartner, F. X.

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Kivshar, Y. S.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4229–4248 (2012).
[Crossref]

Koyama, R.

R. Koyama, N. Smith, and W. Spicer, “Optical properties of indium,” Phys. Rev. B 8, 2426–2432 (1973).
[Crossref]

Kuhlmey, B. T.

H. Li, S. Atakaramians, and B. T. Kuhlmey, “Low loss and single mode metal dielectric hybrid-clad waveguides for Terahertz radiation,” Proc. SPIE 8205, 96680H (2015).
[Crossref]

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. Al-Janabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mater. 1, 971–977 (2013).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref]

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials,” J. Opt. Soc. Am. B 30, 851–867 (2013).
[Crossref]

S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions,” J. Opt. Soc. Am. B 29, 2462–2477 (2012).
[Crossref]

N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn double split ring resonators in the terahertz range,” Opt. Mater. Express 2, 1254–1259 (2012).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Vis. Exp. 68, e4299 (2012).
[Crossref]

Large, M. C. J.

Leonhardt, R.

Leon-Saval, S. G.

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in Kagome hollow-core microstructured fibers,” Opt Express 19, 18470–18478 (2011).
[Crossref]

Lepage, D.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2014).
[Crossref]

Li, H.

H. Li, S. Atakaramians, and B. T. Kuhlmey, “Low loss and single mode metal dielectric hybrid-clad waveguides for Terahertz radiation,” Proc. SPIE 8205, 96680H (2015).
[Crossref]

Li, S.

D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett. 97, 133502 (2010).
[Crossref]

Li, Y.-T.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[Crossref]

Liu, Z.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2014).
[Crossref]

Lu, J.-Y.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[Crossref]

Lwin, R.

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. Al-Janabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mater. 1, 971–977 (2013).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Vis. Exp. 68, e4299 (2012).
[Crossref]

N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn double split ring resonators in the terahertz range,” Opt. Mater. Express 2, 1254–1259 (2012).
[Crossref]

Markov, A.

McGowan, R. W.

Melzer, J. E.

M. Navarro-Cía, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Silver-coated teflon tubes for waveguiding at 1-2 THz,” J. Infrared Millim. Terahz. Waves 36, 542–555 (2015).
[Crossref]

Mitrofanov, O.

M. Navarro-Cía, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Silver-coated teflon tubes for waveguiding at 1-2 THz,” J. Infrared Millim. Terahz. Waves 36, 542–555 (2015).
[Crossref]

Monro, T. M.

Mortensen, N. A.

Naman, O. T.

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. Al-Janabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mater. 1, 971–977 (2013).
[Crossref]

Navarro-Cía, M.

M. Navarro-Cía, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Silver-coated teflon tubes for waveguiding at 1-2 THz,” J. Infrared Millim. Terahz. Waves 36, 542–555 (2015).
[Crossref]

New-Tolley, M. R.

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. Al-Janabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mater. 1, 971–977 (2013).
[Crossref]

Nielsen, K.

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref]

Pal, B. P.

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22, 365–379 (2016).
[Crossref]

Pan, C.-L.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[Crossref]

Paulose, V.

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

Rahman, B. M. A.

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22, 365–379 (2016).
[Crossref]

Ren, G.

Shekhar, P.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1, 1–14 (2014).
[Crossref]

Shum, P.

Simovski, C. R.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4229–4248 (2012).
[Crossref]

Singh, N.

Skorobogatiy, M.

Smith, N.

R. Koyama, N. Smith, and W. Spicer, “Optical properties of indium,” Phys. Rev. B 8, 2426–2432 (1973).
[Crossref]

Spicer, W.

R. Koyama, N. Smith, and W. Spicer, “Optical properties of indium,” Phys. Rev. B 8, 2426–2432 (1973).
[Crossref]

Sun, C.-K.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[Crossref]

Tian, D.

D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett. 97, 133502 (2010).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Tuniz, A.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref]

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. Al-Janabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mater. 1, 971–977 (2013).
[Crossref]

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Vis. Exp. 68, e4299 (2012).
[Crossref]

N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fiber-drawn double split ring resonators in the terahertz range,” Opt. Mater. Express 2, 1254–1259 (2012).
[Crossref]

Varshney, R. K.

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22, 365–379 (2016).
[Crossref]

Vogt, D. W.

Walther, M.

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref]

Wang, G.

Wang, Z.

D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett. 97, 133502 (2010).
[Crossref]

Wen, Q.

D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett. 97, 133502 (2010).
[Crossref]

Wong, L. J.

Wu, C.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2014).
[Crossref]

Yan, M.

Yu, C.-P.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[Crossref]

Yu, X.

Yudasari, N.

Zhang, H.

D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett. 97, 133502 (2010).
[Crossref]

Zhang, X.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2014).
[Crossref]

Adv. Mater. (1)

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24, 4229–4248 (2012).
[Crossref]

Adv. Opt. Mater. (1)

O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. Al-Janabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, and A. Argyros, “Indefinite media based on wire array metamaterials for the THz and mid-IR,” Adv. Opt. Mater. 1, 971–977 (2013).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett. 97, 133502 (2010).
[Crossref]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, and B. M. A. Rahman, “Specialty fibers for terahertz generation and transmission: a review,” IEEE J. Sel. Top. Quantum Electron. 22, 365–379 (2016).
[Crossref]

J. Infrared Millim. Terahz. Waves (1)

M. Navarro-Cía, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Silver-coated teflon tubes for waveguiding at 1-2 THz,” J. Infrared Millim. Terahz. Waves 36, 542–555 (2015).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Vis. Exp. (1)

A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, “Fabricating metamaterials using the fiber drawing method,” J. Vis. Exp. 68, e4299 (2012).
[Crossref]

Nano Convergence (1)

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1, 1–14 (2014).
[Crossref]

Nat. Commun. (1)

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref]

Nat. Photonics (2)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7, 948–957 (2013).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Opt Express (1)

J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in Kagome hollow-core microstructured fibers,” Opt Express 19, 18470–18478 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. B (1)

R. Koyama, N. Smith, and W. Spicer, “Optical properties of indium,” Phys. Rev. B 8, 2426–2432 (1973).
[Crossref]

Proc. SPIE (1)

H. Li, S. Atakaramians, and B. T. Kuhlmey, “Low loss and single mode metal dielectric hybrid-clad waveguides for Terahertz radiation,” Proc. SPIE 8205, 96680H (2015).
[Crossref]

Prog. Quantum Electron. (1)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2014).
[Crossref]

Sci. Rep. (1)

H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, “Dielectric tube waveguides with absorptive cladding for broadband, low-dispersion and low loss THz guiding,” Sci. Rep. 5, 7620 (2015).
[Crossref]

Other (1)

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

Supplementary Material (1)

NameDescription
» Supplement 1: PDF (1425 KB)      supplementary material

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Isofrequency contours for waves in air (blue solid circle) and HMM (TE wave, red dashed circle; TM wave, green dash–dotted hyperbola). The orange dotted line shows an example of β value corresponding to TM-only guidance.
Fig. 2.
Fig. 2. Modal cutoffs of proposed HMM-clad waveguide (blue), metallic waveguide (red), and hollow dielectric waveguide (violet) as a function of normalized frequency.
Fig. 3.
Fig. 3. Schematic of waveguide with metal wire-based cladding.
Fig. 4.
Fig. 4. Simulation results: (a) neff and losses of the TM1 mode with different radii of metal wires as a function of frequency. (b) Propagation losses of the TM1 (black solid curve) and TE1 (red solid curve) modes at 0.3 THz as a function of normalized wire diameter. The blue dashed curve shows the ratio of losses between the TE1 and TM1 modes. Normalized electric fields and η values of the (c) TM1 mode and (d) TE1 mode with wire diameter value at point P. The electric field lines are shown with blue arrows in (c) and (d).
Fig. 5.
Fig. 5. Simulated neff and losses of the TM1 mode with different thickness between air core and metal wires as a function of frequency.
Fig. 6.
Fig. 6. (a) Schematic of hollow-core hybrid-clad waveguide for fabrication. (b) Photograph of fabricated waveguide. (c) Microscope image of end face of waveguide. Right-hand inset image shows one of the indium wires. (d) neff and losses of guided modes in fabricated waveguide (black and red curves represent TM1 and TM2 modes, respectively) and dielectric-coated metallic waveguide (blue and pink curves represent TE11 and TM01 modes, respectively) as a function of frequency.
Fig. 7.
Fig. 7. Experimental configurations with metallic tape half-blocking (a) perpendicular and (b) parallel to input linear polarized THz wave. (c) Comparison of normalized transmissions between two configurations. Black solid curve and red dotted curve are measured with the waveguide input-end face half-blocked perpendicularly and parallel to the polarization of the input THz wave, respectively.
Fig. 8.
Fig. 8. Normalized near-field modal profiles of fabricated waveguide at (a) 0.31 THz, (b) 0.37 THz, and (c) 0.44 THz. The green arrow on the left indicates the polarization direction of THz source and detector. (d) Simulated Ey of TM1 mode at 0.37 THz. (e) Normalized transmission after a pinhole located at x=0.15  mm and y=0.25  mm.
Fig. 9.
Fig. 9. (a) Normalized near-field scanned image of fabricated waveguide at 0.23 THz. (b) Simulated Ey for one of the SPP modes at 0.23 THz. (c) Normalized transmission after a pinhole located at x=0.15  mm and y=0.55  mm [dotted white circle in (a)].

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

TE:kt2ϵt+β2ϵt=k02,
TM:kt2ϵz+β2ϵt=k02,

Metrics