Abstract

Nonlinear polarization evolution-based passively mode-locked fiber lasers with ultrafast and high peak power pulses are a powerful tool for engineering applications and scientific research. However, their sensitivity to polarization limits their widespread application. To address this, automatic mode-locking immune to environmental disturbances is gaining attention. Here, we experimentally demonstrate the first intelligent programmable mode-locked fiber laser enabled by our proposed human-like algorithm, combining the human approach with machine speed, computing capability, and precision. The laser is capable of automatically locking onto multiple operation regimes, such as fundamental mode-locking, harmonic mode-locking, Q-switching, and even Q-switched mode-locking without physically altering its structure. The shortest initial mode-locking time and recovery time from detachment are only 0.22 s and 14.8 ms, respectively, which are the record values to date. We believe this intelligent laser with superior performance can find practical applications in engineering and provide infinite possibilities for scientific research.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Toward an autosetting mode-locked fiber laser cavity

U. Andral, J. Buguet, R. Si Fodil, F. Amrani, F. Billard, E. Hertz, and Ph. Grelu
J. Opt. Soc. Am. B 33(5) 825-833 (2016)

Mapping the dynamical regimes of a SESAM mode-locked VECSEL with a long cavity using time series analysis

Tushar Malica, Jipeng Lin, Thorsten Ackemann, Douglas J. Little, Joshua P. Toomey, David Pabœuf, Walter Lubeigt, Nils Hempler, Graeme Malcolm, Gareth T. Maker, and Deborah M. Kane
Opt. Express 26(13) 16624-16638 (2018)

Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers

Xuling Shen, Wenxue Li, Ming Yan, and Heping Zeng
Opt. Lett. 37(16) 3426-3428 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref]
  2. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [Crossref]
  3. J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
    [Crossref]
  4. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
    [Crossref]
  5. B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(−18) level,” Nature 506, 71–75 (2014).
    [Crossref]
  6. N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10-17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
    [Crossref]
  7. A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20, 4454–4469 (2012).
    [Crossref]
  8. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
    [Crossref]
  9. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
    [Crossref]
  10. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
    [Crossref]
  11. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452, 610–612 (2008).
    [Crossref]
  12. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
    [Crossref]
  13. J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photon. 8, 465–540 (2016).
    [Crossref]
  14. W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers,” Opt. Express 26, 9432–9463 (2018).
    [Crossref]
  15. Y. Meng, M. Salhi, A. Niang, K. Guesmi, G. Semaan, and F. Sanchez, “Mode-locked Er:Yb-doped double-clad fiber laser with 75-nm tuning range,” Opt. Lett. 40, 1153–1156 (2015).
    [Crossref]
  16. M. S. Kang, N. Y. Joly, and P. St. J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38, 561–563 (2013).
    [Crossref]
  17. F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34, 2120–2122 (2009).
    [Crossref]
  18. G. Pu, L. Yi, L. Zhang, and W. Hu, “Programmable and fast-switchable passively harmonic mode-locking fiber laser,” in Optical Fiber Communications Conference and Exposition (OFC), San Diego, California, 2018, paper W2A.9.
  19. S. Li, J. Xu, G. Chen, L. Mei, and B. Yi, “An automatic mode-locked system for passively mode-locked fiber laser,” in International Conference on Optical Instruments and Technology (OIT), Beijing, China, 2013, paper 9043.
  20. X. Shen, W. Li, M. Yan, and H. Zeng, “Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers,” Opt. Lett. 37, 3426–3428 (2012).
    [Crossref]
  21. T. Hellwig, T. Walbaum, P. Gro, and C. Fallnich, “Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation,” Appl. Phys. B 101, 565–570 (2010).
    [Crossref]
  22. S. Wang, Y.-B. Wang, G.-Y. Feng, and S.-H. Zhou, “Harmonically mode-locked Yb:CALGO laser pumped by a single-mode 1.2 W laser diode,” Opt. Express 26, 1521–1529 (2018).
    [Crossref]
  23. Z. Zhang, C. Mou, Z. Yan, Y. Wang, K. Zhou, and L. Zhang, “Switchable dual-wavelength Q-switched and mode-locked fiber lasers using a large-angle tilted fiber grating,” Opt. Express 23, 1353–1360 (2015).
    [Crossref]
  24. Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
    [Crossref]
  25. L. C. Kong, G. Q. Xie, P. Yuan, L. J. Qian, S. X. Wang, H. H. Yu, and H. J. Zhang, “Passive Q-switching and Q-switched mode-locking operations of 2  μm Tm: CLNGG laser with MoS 2 saturable absorber mirror,” Photon. Res. 3, A47–A50 (2015).
    [Crossref]
  26. A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176 (1966).
    [Crossref]
  27. R. I. Woodward and E. J. R. Kelleher, “Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” Sci. Rep. 6, 37616 (2016).
    [Crossref]
  28. D. G. Winters, M. S. Kirchner, S. J. Backus, and H. C. Kapteyn, “Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser,” Opt. Express 25, 33216–33225 (2017).
    [Crossref]
  29. U. Andral, R. Si Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, “Fiber laser mode locked through an evolutionary algorithm,” Optica 2, 275–278 (2015).
    [Crossref]
  30. U. Andral, J. Buguet, R. Si Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, “Toward an autosetting mode-locked fiber laser cavity,” J. Opt. Soc. Am. B 33, 825–833 (2016).
    [Crossref]
  31. R. I. Woodward and E. J. R. Kelleher, “Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers,” Opt. Lett. 42, 2952–2955 (2017).
    [Crossref]
  32. S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-seeking control of a mode-locked laser,” IEEE J. Quantum Electron. 49, 852–861 (2013).
    [Crossref]
  33. S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
    [Crossref]
  34. X. Fu, S. L. Brunton, and J. N. Kutz, “Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation,” Opt. Express 22, 8585–8597 (2014).
    [Crossref]
  35. J. N. Kutz and S. L. Brunton, “Intelligent systems for stabilizing mode-locked lasers and frequency combs: machine learning and equation-free control paradigms for self-tuning optics,” Nanophotonics 4, 459–471 (2015).
    [Crossref]
  36. T. Baumeister, S. L. Brunton, and J. N. Kutz, “Deep learning and model predictive control for self-tuning mode-locked lasers,” J. Opt. Soc. Am. B 35, 617–626 (2018).
    [Crossref]
  37. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
    [Crossref]
  38. H. H. Rosenbrock, “An automatic method for finding the greatest or least value of a function,” Comput. J. 3, 175–184 (1960).
    [Crossref]
  39. M. Karlsson, J. Brentel, and P. A. Andrekson, “Long-term measurement of PMD and polarisation drift in installed fibers,” J. Lightwave Technol. 18, 941–951 (2000).
    [Crossref]

2018 (3)

2017 (2)

2016 (4)

J. Kim and Y. Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photon. 8, 465–540 (2016).
[Crossref]

R. I. Woodward and E. J. R. Kelleher, “Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” Sci. Rep. 6, 37616 (2016).
[Crossref]

U. Andral, J. Buguet, R. Si Fodil, F. Amrani, F. Billard, E. Hertz, and P. Grelu, “Toward an autosetting mode-locked fiber laser cavity,” J. Opt. Soc. Am. B 33, 825–833 (2016).
[Crossref]

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10-17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
[Crossref]

2015 (6)

2014 (4)

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
[Crossref]

X. Fu, S. L. Brunton, and J. N. Kutz, “Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation,” Opt. Express 22, 8585–8597 (2014).
[Crossref]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(−18) level,” Nature 506, 71–75 (2014).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

2013 (2)

M. S. Kang, N. Y. Joly, and P. St. J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38, 561–563 (2013).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-seeking control of a mode-locked laser,” IEEE J. Quantum Electron. 49, 852–861 (2013).
[Crossref]

2012 (2)

2010 (2)

T. Hellwig, T. Walbaum, P. Gro, and C. Fallnich, “Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation,” Appl. Phys. B 101, 565–570 (2010).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

2009 (2)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

F. Amrani, A. Haboucha, M. Salhi, H. Leblond, A. Komarov, P. Grelu, and F. Sanchez, “Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic,” Opt. Lett. 34, 2120–2122 (2009).
[Crossref]

2008 (2)

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452, 610–612 (2008).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

2000 (3)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

M. Karlsson, J. Brentel, and P. A. Andrekson, “Long-term measurement of PMD and polarisation drift in installed fibers,” J. Lightwave Technol. 18, 941–951 (2000).
[Crossref]

1999 (2)

J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[Crossref]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
[Crossref]

1966 (1)

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176 (1966).
[Crossref]

1960 (1)

H. H. Rosenbrock, “An automatic method for finding the greatest or least value of a function,” Comput. J. 3, 175–184 (1960).
[Crossref]

Amrani, F.

Andral, U.

Andrekson, P. A.

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Backus, S.

Backus, S. J.

Bao, Q.

Baumeister, T.

Benedick, A. J.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452, 610–612 (2008).
[Crossref]

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Billard, F.

Bishof, M.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(−18) level,” Nature 506, 71–75 (2014).
[Crossref]

Bloom, B. J.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(−18) level,” Nature 506, 71–75 (2014).
[Crossref]

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Brentel, J.

Bromley, S. L.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(−18) level,” Nature 506, 71–75 (2014).
[Crossref]

Brunton, S. L.

T. Baumeister, S. L. Brunton, and J. N. Kutz, “Deep learning and model predictive control for self-tuning mode-locked lasers,” J. Opt. Soc. Am. B 35, 617–626 (2018).
[Crossref]

J. N. Kutz and S. L. Brunton, “Intelligent systems for stabilizing mode-locked lasers and frequency combs: machine learning and equation-free control paradigms for self-tuning optics,” Nanophotonics 4, 459–471 (2015).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
[Crossref]

X. Fu, S. L. Brunton, and J. N. Kutz, “Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation,” Opt. Express 22, 8585–8597 (2014).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-seeking control of a mode-locked laser,” IEEE J. Quantum Electron. 49, 852–861 (2013).
[Crossref]

Buguet, J.

Byun, H.

Campbell, S. L.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(−18) level,” Nature 506, 71–75 (2014).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Chen, G.

S. Li, J. Xu, G. Chen, L. Mei, and B. Yi, “An automatic mode-locked system for passively mode-locked fiber laser,” in International Conference on Optical Instruments and Technology (OIT), Beijing, China, 2013, paper 9043.

Chen, J.

Chen, S.

Chen, Y.

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Cundiff, S. T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Dahlem, M. S.

Das, M.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10-17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
[Crossref]

DeMaria, A. J.

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176 (1966).
[Crossref]

Diddams, S. A.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

DiLello, N. A.

Fallnich, C.

T. Hellwig, T. Walbaum, P. Gro, and C. Fallnich, “Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation,” Appl. Phys. B 101, 565–570 (2010).
[Crossref]

Fan, D.

Fendel, P.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452, 610–612 (2008).
[Crossref]

Feng, G.-Y.

Fu, W.

Fu, X.

X. Fu, S. L. Brunton, and J. N. Kutz, “Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation,” Opt. Express 22, 8585–8597 (2014).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-seeking control of a mode-locked laser,” IEEE J. Quantum Electron. 49, 852–861 (2013).
[Crossref]

Geis, M. W.

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Glenday, A. G.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452, 610–612 (2008).
[Crossref]

Grein, M. E.

Grelu, P.

Gro, P.

T. Hellwig, T. Walbaum, P. Gro, and C. Fallnich, “Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation,” Appl. Phys. B 101, 565–570 (2010).
[Crossref]

Guesmi, K.

Guo, Z.

Haboucha, A.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

Hänsch, T. W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[Crossref]

Hellwig, T.

T. Hellwig, T. Walbaum, P. Gro, and C. Fallnich, “Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation,” Appl. Phys. B 101, 565–570 (2010).
[Crossref]

Hertz, E.

Heynau, H.

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176 (1966).
[Crossref]

Holzwarth, C. W.

Holzwarth, R.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[Crossref]

Hönninger, C.

Hoyt, J. L.

Hu, W.

G. Pu, L. Yi, L. Zhang, and W. Hu, “Programmable and fast-switchable passively harmonic mode-locking fiber laser,” in Optical Fiber Communications Conference and Exposition (OFC), San Diego, California, 2018, paper W2A.9.

Ippen, E. P.

Jiang, G.

Joly, N. Y.

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Kang, M. S.

Kapteyn, H. C.

Karlsson, M.

Kärtner, F. X.

Katori, H.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10-17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
[Crossref]

Kelleher, E. J. R.

R. I. Woodward and E. J. R. Kelleher, “Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers,” Opt. Lett. 42, 2952–2955 (2017).
[Crossref]

R. I. Woodward and E. J. R. Kelleher, “Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” Sci. Rep. 6, 37616 (2016).
[Crossref]

Keller, U.

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Khilo, A.

Kim, J.

Kim, S.-W.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

Kim, Y.-J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

Kirchner, M. S.

Komarov, A.

Kong, L. C.

Kutz, J. N.

T. Baumeister, S. L. Brunton, and J. N. Kutz, “Deep learning and model predictive control for self-tuning mode-locked lasers,” J. Opt. Soc. Am. B 35, 617–626 (2018).
[Crossref]

J. N. Kutz and S. L. Brunton, “Intelligent systems for stabilizing mode-locked lasers and frequency combs: machine learning and equation-free control paradigms for self-tuning optics,” Nanophotonics 4, 459–471 (2015).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
[Crossref]

X. Fu, S. L. Brunton, and J. N. Kutz, “Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation,” Opt. Express 22, 8585–8597 (2014).
[Crossref]

S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-seeking control of a mode-locked laser,” IEEE J. Quantum Electron. 49, 852–861 (2013).
[Crossref]

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Leblond, H.

Lee, J.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

Lee, K.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

Lee, S.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

Li, C.-H.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452, 610–612 (2008).
[Crossref]

Li, S.

S. Li, J. Xu, G. Chen, L. Mei, and B. Yi, “An automatic mode-locked system for passively mode-locked fiber laser,” in International Conference on Optical Instruments and Technology (OIT), Beijing, China, 2013, paper 9043.

Li, W.

Lyszczarz, T. M.

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Manescau, A.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Mei, L.

S. Li, J. Xu, G. Chen, L. Mei, and B. Yi, “An automatic mode-locked system for passively mode-locked fiber laser,” in International Conference on Optical Instruments and Technology (OIT), Beijing, China, 2013, paper 9043.

Meng, Y.

Morier-Genoud, F.

Moser, M.

Motamedi, A.

Mou, C.

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Nejadmalayeri, A. H.

Nemitz, N.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10-17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
[Crossref]

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Niang, A.

Nicholson, T. L.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(−18) level,” Nature 506, 71–75 (2014).
[Crossref]

Ohkubo, T.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10-17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
[Crossref]

Ohmae, N.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10-17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Orcutt, J. S.

Paschotta, R.

Pasquini, L.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Peng, M. Y.

Perrott, M.

Phillips, D. F.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452, 610–612 (2008).
[Crossref]

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Popovic, M. A.

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Pu, G.

G. Pu, L. Yi, L. Zhang, and W. Hu, “Programmable and fast-switchable passively harmonic mode-locking fiber laser,” in Optical Fiber Communications Conference and Exposition (OFC), San Diego, California, 2018, paper W2A.9.

Qian, L. J.

Ram, R. J.

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Reichert, J.

J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[Crossref]

Rosenbrock, H. H.

H. H. Rosenbrock, “An automatic method for finding the greatest or least value of a function,” Comput. J. 3, 175–184 (1960).
[Crossref]

Russell, P. St. J.

Salhi, M.

Sanchez, F.

Sander, M. Y.

Sasselov, D.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452, 610–612 (2008).
[Crossref]

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Semaan, G.

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Shen, X.

Si Fodil, R.

Sidorenko, P.

Smith, H. I.

Song, Y.

Sorace-Agaskar, C. M.

Spector, S. J.

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Stetser, D. A.

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176 (1966).
[Crossref]

Sun, J.

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

Szentgyorgyi, A.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452, 610–612 (2008).
[Crossref]

Takamoto, M.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10-17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
[Crossref]

Tang, D.

Udem, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[Crossref]

Ushijima, I.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10-17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
[Crossref]

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

Walbaum, T.

T. Hellwig, T. Walbaum, P. Gro, and C. Fallnich, “Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation,” Appl. Phys. B 101, 565–570 (2010).
[Crossref]

Walsworth, R. L.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452, 610–612 (2008).
[Crossref]

Wang, J. P.

Wang, S.

Wang, S. X.

Wang, Y.

Wang, Y.-B.

Wen, S.

Wilken, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Williams, J. R.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(−18) level,” Nature 506, 71–75 (2014).
[Crossref]

Windeler, R. S.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

Winters, D. G.

Wise, F. W.

Woodward, R. I.

R. I. Woodward and E. J. R. Kelleher, “Genetic algorithm-based control of birefringent filtering for self-tuning, self-pulsing fiber lasers,” Opt. Lett. 42, 2952–2955 (2017).
[Crossref]

R. I. Woodward and E. J. R. Kelleher, “Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” Sci. Rep. 6, 37616 (2016).
[Crossref]

Wright, L. G.

Xie, G. Q.

Xu, J.

S. Li, J. Xu, G. Chen, L. Mei, and B. Yi, “An automatic mode-locked system for passively mode-locked fiber laser,” in International Conference on Optical Instruments and Technology (OIT), Beijing, China, 2013, paper 9043.

Yan, M.

Yan, Z.

Ye, J.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(−18) level,” Nature 506, 71–75 (2014).
[Crossref]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

Yi, B.

S. Li, J. Xu, G. Chen, L. Mei, and B. Yi, “An automatic mode-locked system for passively mode-locked fiber laser,” in International Conference on Optical Instruments and Technology (OIT), Beijing, China, 2013, paper 9043.

Yi, L.

G. Pu, L. Yi, L. Zhang, and W. Hu, “Programmable and fast-switchable passively harmonic mode-locking fiber laser,” in Optical Fiber Communications Conference and Exposition (OFC), San Diego, California, 2018, paper W2A.9.

Yoon, J. U.

Yu, H. H.

Yu, X.

Yuan, P.

Zeng, H.

Zhang, H.

Zhang, H. J.

Zhang, L.

Z. Zhang, C. Mou, Z. Yan, Y. Wang, K. Zhou, and L. Zhang, “Switchable dual-wavelength Q-switched and mode-locked fiber lasers using a large-angle tilted fiber grating,” Opt. Express 23, 1353–1360 (2015).
[Crossref]

G. Pu, L. Yi, L. Zhang, and W. Hu, “Programmable and fast-switchable passively harmonic mode-locking fiber laser,” in Optical Fiber Communications Conference and Exposition (OFC), San Diego, California, 2018, paper W2A.9.

Zhang, W.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(−18) level,” Nature 506, 71–75 (2014).
[Crossref]

Zhang, X.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(−18) level,” Nature 506, 71–75 (2014).
[Crossref]

Zhang, Z.

Zhao, C.

Zhou, G.-R.

Zhou, K.

Zhou, S.-H.

Adv. Opt. Photon. (1)

Appl. Phys. B (1)

T. Hellwig, T. Walbaum, P. Gro, and C. Fallnich, “Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation,” Appl. Phys. B 101, 565–570 (2010).
[Crossref]

Appl. Phys. Lett. (1)

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176 (1966).
[Crossref]

Comput. J. (1)

H. H. Rosenbrock, “An automatic method for finding the greatest or least value of a function,” Comput. J. 3, 175–184 (1960).
[Crossref]

IEEE J. Quantum Electron. (1)

S. L. Brunton, X. Fu, and J. N. Kutz, “Extremum-seeking control of a mode-locked laser,” IEEE J. Quantum Electron. 49, 852–861 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. L. Brunton, X. Fu, and J. N. Kutz, “Self-tuning fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20, 464–471 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (3)

Nanophotonics (1)

J. N. Kutz and S. L. Brunton, “Intelligent systems for stabilizing mode-locked lasers and frequency combs: machine learning and equation-free control paradigms for self-tuning optics,” Nanophotonics 4, 459–471 (2015).
[Crossref]

Nat. Photonics (3)

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4, 716–720 (2010).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351–356 (2009).
[Crossref]

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10-17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10, 258–261 (2016).
[Crossref]

Nature (4)

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(−18) level,” Nature 506, 71–75 (2014).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507, 341–345 (2014).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1,” Nature 452, 610–612 (2008).
[Crossref]

Opt. Commun. (1)

J. Reichert, R. Holzwarth, T. Udem, and T. W. Hänsch, “Measuring the frequency of light with mode-locked lasers,” Opt. Commun. 172, 59–68 (1999).
[Crossref]

Opt. Express (7)

A. Khilo, S. J. Spector, M. E. Grein, A. H. Nejadmalayeri, C. W. Holzwarth, M. Y. Sander, M. S. Dahlem, M. Y. Peng, M. W. Geis, N. A. DiLello, J. U. Yoon, A. Motamedi, J. S. Orcutt, J. P. Wang, C. M. Sorace-Agaskar, M. A. Popović, J. Sun, G.-R. Zhou, H. Byun, J. Chen, J. L. Hoyt, H. I. Smith, R. J. Ram, M. Perrott, T. M. Lyszczarz, E. P. Ippen, and F. X. Kärtner, “Photonic ADC: overcoming the bottleneck of electronic jitter,” Opt. Express 20, 4454–4469 (2012).
[Crossref]

W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers,” Opt. Express 26, 9432–9463 (2018).
[Crossref]

X. Fu, S. L. Brunton, and J. N. Kutz, “Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation,” Opt. Express 22, 8585–8597 (2014).
[Crossref]

D. G. Winters, M. S. Kirchner, S. J. Backus, and H. C. Kapteyn, “Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser,” Opt. Express 25, 33216–33225 (2017).
[Crossref]

S. Wang, Y.-B. Wang, G.-Y. Feng, and S.-H. Zhou, “Harmonically mode-locked Yb:CALGO laser pumped by a single-mode 1.2 W laser diode,” Opt. Express 26, 1521–1529 (2018).
[Crossref]

Z. Zhang, C. Mou, Z. Yan, Y. Wang, K. Zhou, and L. Zhang, “Switchable dual-wavelength Q-switched and mode-locked fiber lasers using a large-angle tilted fiber grating,” Opt. Express 23, 1353–1360 (2015).
[Crossref]

Y. Chen, G. Jiang, S. Chen, Z. Guo, X. Yu, C. Zhao, H. Zhang, Q. Bao, S. Wen, D. Tang, and D. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23, 12823–12833 (2015).
[Crossref]

Opt. Lett. (5)

Optica (1)

Photon. Res. (1)

Phys. Rev. Lett. (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[Crossref]

Sci. Rep. (1)

R. I. Woodward and E. J. R. Kelleher, “Towards ‘smart lasers’: self-optimisation of an ultrafast pulse source using a genetic algorithm,” Sci. Rep. 6, 37616 (2016).
[Crossref]

Science (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref]

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008).
[Crossref]

Other (2)

G. Pu, L. Yi, L. Zhang, and W. Hu, “Programmable and fast-switchable passively harmonic mode-locking fiber laser,” in Optical Fiber Communications Conference and Exposition (OFC), San Diego, California, 2018, paper W2A.9.

S. Li, J. Xu, G. Chen, L. Mei, and B. Yi, “An automatic mode-locked system for passively mode-locked fiber laser,” in International Conference on Optical Instruments and Technology (OIT), Beijing, China, 2013, paper 9043.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Comparisons with other recent works and the human-like algorithm. (a) Comparisons between recent automatic mode-locking works and our work on initial lock time, recovery time, and number of regimes. (b) Schematic of human-like algorithm. Advanced Rosenbrock searching keeps on running until the desired regime is achieved. A discrimination-based monitoring phase is used to detect detachment. Once detachment appears, random collision recovery tries to return to the desired regime. Human-like algorithm initializes advanced Rosenbrock searching from the breakpoint when random collision recovery fails to recover.
Fig. 2.
Fig. 2. Real-time intelligent MLFL.
Fig. 3.
Fig. 3. Advanced Rosenbrock searching and random collision recovery. (a) The flowchart of advanced Rosenbrock searching. The first step is the initialization of necessary parameters. (b) The random collision recovery principle. Target area, which corresponds to the desired regime, where before and after the birefringence variation are illustrated on the Poincaré sphere via different colors.
Fig. 4.
Fig. 4. Dual-region count scheme and FFT results. (a) Dual-region count scheme. (b) FFT result of the second-order HML regime. (c) FFT result of the third-order HML regime. (d) FFT result of the QS regime. The low-frequency domain of the QS regime FFT result (inset). (e) FFT result of the QML regime. The low-frequency domain of the QML regime FFT result (left inset). The higher-frequency domain of the QML regime FFT result (right inset).
Fig. 5.
Fig. 5. Operation regimes. From left to right: FML, second-order HML, third-order HML, QS, and QML operation regimes are shown. In each column, the top row shows oscilloscope traces, the middle row illustrates optical spectra, and the bottom plots are frequency spectra. The fundamental repetition frequency is 7.2MHz, which is evident from the frequency spectra of the FML regime. The oscilloscope traces of two HML regimes are distinctly denser than that of the FML regime, and the features of their frequency spectrum are in accordance with the HML discrimination. The repetition frequency of the QS regime is 115 kHz. The envelope frequency of QML is 200 kHz, and the carrier frequency is 14.4MHz.
Fig. 6.
Fig. 6. Scanning results and optimization path toward the FML regime. (a) Distribution of the FML objective function value. (b) Distribution of the FML regime. (c) Optimization path toward the FML regime. Oscilloscope traces of each effective optimization on the FML objective function value (Insets).
Fig. 7.
Fig. 7. Time-consumption performance, long-period running record, autocorrelation traces, and FWHM variation. (a) Time consumption of ten successive experiments of the FML on initial mode-locking and recovery. (b) Long-period running record. (c) The autocorrelation traces of ten successive experiments. (d) FWHM variation of ten successive experiments.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Cideal=floor(Ntotal_ptsNperiod_pts) or floor(Ntotal_ptsNperiod_pts)+1.
OFML=1Ci=1CAi,
OHML=2Ln+L2n+L3ni=1MLi,
OQS&QML=Flfi=1NFi.

Metrics