Abstract

The development of ultimate microcavity lasers requires precise engineering of the gain medium. Of particular interest are microlasers based on discrete gain centers, which are aligned to the field maximum of the cavity mode to maximize the modal gain. Here, we report on micropillar lasers with a gain medium composed of site-controlled quantum dots (SCQDs). Adjusting the size of a buried stressor, we define the number of high-quality SCQDs located at the antinode of the fundamental cavity mode. Our deterministic nanoprocessing platform allows us to tightly control the emission properties of high-β microlasers operating in the few-QD regime.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonic-crystal microcavity laser with site-controlled quantum-wire active medium

Kirill A. Atlasov, Milan Calic, Karl Fredrik Karlsson, Pascal Gallo, Alok Rudra, Benjamin Dwir, and Eli Kapon
Opt. Express 17(20) 18178-18183 (2009)

Single quantum dot controlled lasing effects in high-Q micropillar cavities

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V.D. Kulakovskii, and A. Forchel
Opt. Express 16(7) 4848-4857 (2008)

Tailoring the mode-switching dynamics in quantum-dot micropillar lasers via time-delayed optical feedback

Steffen Holzinger, Christoph Redlich, Benjamin Lingnau, Marco Schmidt, Martin von Helversen, Jörn Beyer, Christian Schneider, Martin Kamp, Sven Höfling, Kathy Lüdge, Xavier Porte, and Stephan Reitzenstein
Opt. Express 26(17) 22457-22470 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256, 66–70 (1992).
    [Crossref]
  2. S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
    [Crossref]
  3. T. Wang, G. P. Puccioni, and G. L. Lippi, “Dynamical buildup of lasing in mesoscale devices,” Sci. Rep. 5, 15858 (2015).
    [Crossref]
  4. W. W. Chow, F. Jahnke, and C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light. Sci. Appl. 3, e201 (2014).
    [Crossref]
  5. F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. A. M. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
    [Crossref]
  6. S. H. Pan, Q. Gu, A. El Amili, F. Vallini, and Y. Fainman, “Dynamic hysteresis in a coherent high-beta nanolaser,” Optica 3, 1260–1265 (2016).
    [Crossref]
  7. S. Kreinberg, T. Grbešić, M. Strauß, A. Carmele, M. Emmerling, C. Schneider, S. Höfling, X. Porte, and S. Reitzenstein, “Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source,” Light Sci. Appl. 7, 41 (2018).
    [Crossref]
  8. Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett. 98, 117401 (2007).
    [Crossref]
  9. S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16, 4848–4857 (2008).
    [Crossref]
  10. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system,” Nat. Phys. 6, 279–283 (2010).
    [Crossref]
  11. S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
    [Crossref]
  12. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
    [Crossref]
  13. I. Prieto, J. M. Llorens, L. E. Muñoz-Camúñez, A. G. Taboada, J. Canet-Ferrer, J. M. Ripalda, C. Robles, G. Muñoz-Matutano, J. P. Martínez-Pastor, and P. A. Postigo, “Near thresholdless laser operation at room temperature,” Optica 2, 66–69 (2015).
    [Crossref]
  14. Y. Ota, M. Kakuda, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Thresholdless quantum dot nanolaser,” Opt. Express 25, 19981–19994 (2017).
    [Crossref]
  15. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
    [Crossref]
  16. M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
    [Crossref]
  17. J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303 (2008).
    [Crossref]
  18. M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
    [Crossref]
  19. N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
    [Crossref]
  20. S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24, 8539–8546 (2016).
    [Crossref]
  21. M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
    [Crossref]
  22. A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
    [Crossref]
  23. C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
    [Crossref]
  24. T. Sünner, C. Schneider, M. Strauß, A. Huggenberger, D. Wiener, S. Höfling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. Lett. 33, 1759–1761 (2008).
    [Crossref]
  25. J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
    [Crossref]
  26. A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T. D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. A. Ostapenko, S. Rodt, W. Unrau, U. W. Pohl, A. Hoffmann, D. Bimberg, and V. Haisler, “Site-controlled quantum dot growth on buried oxide stressor layers,” Phys. Status Solidi A 209, 2411–2420 (2012).
    [Crossref]
  27. M. Strauß, A. Kaganskiy, R. Voigt, P. Schnauber, J.-H. Schulze, S. Rodt, A. Strittmatter, and S. Reitzenstein, “Resonance fluorescence of a site-controlled quantum dot realized by the buried-stressor growth technique,” Appl. Phys. Lett. 110, 111101 (2017).
    [Crossref]
  28. A. Kaganskiy, S. Fischbach, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses,” Opt. Commun. 413, 162–166 (2018).
    [Crossref]
  29. A. Kaganskiy, F. Gericke, T. Heuser, T. Heindel, X. Porte, and S. Reitzenstein, “Micropillars with a controlled number of site-controlled quantum dots,” Appl. Phys. Lett. 112, 071101 (2018).
    [Crossref]
  30. W. Unrau, D. Quandt, J.-H. Schulze, T. Heindel, T. D. Germann, O. Hitzemann, A. Strittmatter, S. Reitzenstein, U. W. Pohl, and D. Bimberg, “Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection,” Appl. Phys. Lett. 101, 211119 (2012).
    [Crossref]
  31. A. Surrente, P. Gallo, M. Felici, B. Dwir, A. Rudra, and E. Kapon, “Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra,” Nanotechnology 20, 415205 (2009).
    [Crossref]
  32. A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6, 1268–1272 (2010).
    [Crossref]
  33. A. Huggenberger, S. Heckelmann, C. Schneider, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, and A. Forchel, “Narrow spectral linewidth from single site-controlled InGaAs quantum dots with high uniformity,” Appl. Phys. Lett. 98, 131104 (2011).
    [Crossref]
  34. S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
    [Crossref]
  35. G. Björk, A. Karlsson, and Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A 50, 1675–1680 (1994).
    [Crossref]
  36. M. D. Sturge, “Optical absorption of gallium arsenide between 0.6 and 2.75 ev,” Phys. Rev. 127, 768–773 (1962).
    [Crossref]
  37. S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photon. Rev. 5, 607–633 (2011).
    [Crossref]
  38. JCMwave GmbH, “JCMsuite.”
  39. A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17, 1552–1567 (2011).
    [Crossref]
  40. M. Florian, P. Gartner, C. Gies, and F. Jahnke, “Phonon-mediated off-resonant coupling effects in semiconductor quantum-dot lasers,” New J. Phys. 15, 035019 (2013).
    [Crossref]
  41. U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80, 201311 (2009).
    [Crossref]
  42. M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103, 207403 (2009).
    [Crossref]

2018 (3)

A. Kaganskiy, S. Fischbach, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses,” Opt. Commun. 413, 162–166 (2018).
[Crossref]

A. Kaganskiy, F. Gericke, T. Heuser, T. Heindel, X. Porte, and S. Reitzenstein, “Micropillars with a controlled number of site-controlled quantum dots,” Appl. Phys. Lett. 112, 071101 (2018).
[Crossref]

S. Kreinberg, T. Grbešić, M. Strauß, A. Carmele, M. Emmerling, C. Schneider, S. Höfling, X. Porte, and S. Reitzenstein, “Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source,” Light Sci. Appl. 7, 41 (2018).
[Crossref]

2017 (4)

M. Strauß, A. Kaganskiy, R. Voigt, P. Schnauber, J.-H. Schulze, S. Rodt, A. Strittmatter, and S. Reitzenstein, “Resonance fluorescence of a site-controlled quantum dot realized by the buried-stressor growth technique,” Appl. Phys. Lett. 110, 111101 (2017).
[Crossref]

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

Y. Ota, M. Kakuda, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Thresholdless quantum dot nanolaser,” Opt. Express 25, 19981–19994 (2017).
[Crossref]

2016 (4)

S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24, 8539–8546 (2016).
[Crossref]

S. H. Pan, Q. Gu, A. El Amili, F. Vallini, and Y. Fainman, “Dynamic hysteresis in a coherent high-beta nanolaser,” Optica 3, 1260–1265 (2016).
[Crossref]

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. A. M. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

2015 (4)

T. Wang, G. P. Puccioni, and G. L. Lippi, “Dynamical buildup of lasing in mesoscale devices,” Sci. Rep. 5, 15858 (2015).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref]

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

I. Prieto, J. M. Llorens, L. E. Muñoz-Camúñez, A. G. Taboada, J. Canet-Ferrer, J. M. Ripalda, C. Robles, G. Muñoz-Matutano, J. P. Martínez-Pastor, and P. A. Postigo, “Near thresholdless laser operation at room temperature,” Optica 2, 66–69 (2015).
[Crossref]

2014 (1)

W. W. Chow, F. Jahnke, and C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light. Sci. Appl. 3, e201 (2014).
[Crossref]

2013 (1)

M. Florian, P. Gartner, C. Gies, and F. Jahnke, “Phonon-mediated off-resonant coupling effects in semiconductor quantum-dot lasers,” New J. Phys. 15, 035019 (2013).
[Crossref]

2012 (3)

W. Unrau, D. Quandt, J.-H. Schulze, T. Heindel, T. D. Germann, O. Hitzemann, A. Strittmatter, S. Reitzenstein, U. W. Pohl, and D. Bimberg, “Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection,” Appl. Phys. Lett. 101, 211119 (2012).
[Crossref]

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T. D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. A. Ostapenko, S. Rodt, W. Unrau, U. W. Pohl, A. Hoffmann, D. Bimberg, and V. Haisler, “Site-controlled quantum dot growth on buried oxide stressor layers,” Phys. Status Solidi A 209, 2411–2420 (2012).
[Crossref]

2011 (3)

A. Huggenberger, S. Heckelmann, C. Schneider, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, and A. Forchel, “Narrow spectral linewidth from single site-controlled InGaAs quantum dots with high uniformity,” Appl. Phys. Lett. 98, 131104 (2011).
[Crossref]

S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photon. Rev. 5, 607–633 (2011).
[Crossref]

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17, 1552–1567 (2011).
[Crossref]

2010 (2)

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[Crossref]

A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6, 1268–1272 (2010).
[Crossref]

2009 (4)

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80, 201311 (2009).
[Crossref]

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

A. Surrente, P. Gallo, M. Felici, B. Dwir, A. Rudra, and E. Kapon, “Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra,” Nanotechnology 20, 415205 (2009).
[Crossref]

2008 (4)

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303 (2008).
[Crossref]

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16, 4848–4857 (2008).
[Crossref]

T. Sünner, C. Schneider, M. Strauß, A. Huggenberger, D. Wiener, S. Höfling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. Lett. 33, 1759–1761 (2008).
[Crossref]

2007 (2)

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett. 98, 117401 (2007).
[Crossref]

2006 (1)

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

2002 (1)

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
[Crossref]

2001 (1)

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref]

1994 (1)

G. Björk, A. Karlsson, and Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A 50, 1675–1680 (1994).
[Crossref]

1992 (1)

H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256, 66–70 (1992).
[Crossref]

1962 (1)

M. D. Sturge, “Optical absorption of gallium arsenide between 0.6 and 2.75 ev,” Phys. Rev. 127, 768–773 (1962).
[Crossref]

Almeida, M. P.

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Antón, C.

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Arakawa, Y.

Y. Ota, M. Kakuda, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Thresholdless quantum dot nanolaser,” Opt. Express 25, 19981–19994 (2017).
[Crossref]

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[Crossref]

Aßmann, M.

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. A. M. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

Auffeves, A.

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Badolato, A.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Bayer, M.

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. A. M. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
[Crossref]

Bazhenov, A.

Beveratos, A.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

Bichler, M.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80, 201311 (2009).
[Crossref]

Bimberg, D.

A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T. D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. A. Ostapenko, S. Rodt, W. Unrau, U. W. Pohl, A. Hoffmann, D. Bimberg, and V. Haisler, “Site-controlled quantum dot growth on buried oxide stressor layers,” Phys. Status Solidi A 209, 2411–2420 (2012).
[Crossref]

W. Unrau, D. Quandt, J.-H. Schulze, T. Heindel, T. D. Germann, O. Hitzemann, A. Strittmatter, S. Reitzenstein, U. W. Pohl, and D. Bimberg, “Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection,” Appl. Phys. Lett. 101, 211119 (2012).
[Crossref]

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref]

Björk, G.

G. Björk, A. Karlsson, and Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A 50, 1675–1680 (1994).
[Crossref]

Bloch, J.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

Böckler, C.

Borri, P.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref]

Bouwmeester, D.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Burger, S.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref]

Canet-Ferrer, J.

Cao, H.

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett. 98, 117401 (2007).
[Crossref]

Carmele, A.

S. Kreinberg, T. Grbešić, M. Strauß, A. Carmele, M. Emmerling, C. Schneider, S. Höfling, X. Porte, and S. Reitzenstein, “Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source,” Light Sci. Appl. 7, 41 (2018).
[Crossref]

Choi, Y.-S.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Chow, W. W.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

W. W. Chow, F. Jahnke, and C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light. Sci. Appl. 3, e201 (2014).
[Crossref]

Davanco, M.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

De Miranda Cardoso, J. V.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

de Santis, L.

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Demory, J.

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Dousse, A.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

Dreismann, A.

A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T. D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. A. Ostapenko, S. Rodt, W. Unrau, U. W. Pohl, A. Hoffmann, D. Bimberg, and V. Haisler, “Site-controlled quantum dot growth on buried oxide stressor layers,” Phys. Status Solidi A 209, 2411–2420 (2012).
[Crossref]

Dwir, B.

A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6, 1268–1272 (2010).
[Crossref]

A. Surrente, P. Gallo, M. Felici, B. Dwir, A. Rudra, and E. Kapon, “Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra,” Nanotechnology 20, 415205 (2009).
[Crossref]

El Amili, A.

Emmerling, M.

S. Kreinberg, T. Grbešić, M. Strauß, A. Carmele, M. Emmerling, C. Schneider, S. Höfling, X. Porte, and S. Reitzenstein, “Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source,” Light Sci. Appl. 7, 41 (2018).
[Crossref]

Fainman, Y.

S. H. Pan, Q. Gu, A. El Amili, F. Vallini, and Y. Fainman, “Dynamic hysteresis in a coherent high-beta nanolaser,” Optica 3, 1260–1265 (2016).
[Crossref]

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Faist, J.

A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6, 1268–1272 (2010).
[Crossref]

Fang, W.

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett. 98, 117401 (2007).
[Crossref]

Felici, M.

A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6, 1268–1272 (2010).
[Crossref]

A. Surrente, P. Gallo, M. Felici, B. Dwir, A. Rudra, and E. Kapon, “Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra,” Nanotechnology 20, 415205 (2009).
[Crossref]

Finley, J.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

Finley, J. J.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80, 201311 (2009).
[Crossref]

Fischbach, S.

A. Kaganskiy, S. Fischbach, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses,” Opt. Commun. 413, 162–166 (2018).
[Crossref]

Florian, M.

M. Florian, P. Gartner, C. Gies, and F. Jahnke, “Phonon-mediated off-resonant coupling effects in semiconductor quantum-dot lasers,” New J. Phys. 15, 035019 (2013).
[Crossref]

Foerster, A.

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. A. M. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

Forchel, A.

A. Huggenberger, S. Heckelmann, C. Schneider, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, and A. Forchel, “Narrow spectral linewidth from single site-controlled InGaAs quantum dots with high uniformity,” Appl. Phys. Lett. 98, 131104 (2011).
[Crossref]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]

T. Sünner, C. Schneider, M. Strauß, A. Huggenberger, D. Wiener, S. Höfling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. Lett. 33, 1759–1761 (2008).
[Crossref]

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16, 4848–4857 (2008).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
[Crossref]

Gallo, P.

A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6, 1268–1272 (2010).
[Crossref]

A. Surrente, P. Gallo, M. Felici, B. Dwir, A. Rudra, and E. Kapon, “Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra,” Nanotechnology 20, 415205 (2009).
[Crossref]

Gartner, P.

M. Florian, P. Gartner, C. Gies, and F. Jahnke, “Phonon-mediated off-resonant coupling effects in semiconductor quantum-dot lasers,” New J. Phys. 15, 035019 (2013).
[Crossref]

Gerhardt, S.

Gericke, F.

A. Kaganskiy, F. Gericke, T. Heuser, T. Heindel, X. Porte, and S. Reitzenstein, “Micropillars with a controlled number of site-controlled quantum dots,” Appl. Phys. Lett. 112, 071101 (2018).
[Crossref]

Germann, T. D.

W. Unrau, D. Quandt, J.-H. Schulze, T. Heindel, T. D. Germann, O. Hitzemann, A. Strittmatter, S. Reitzenstein, U. W. Pohl, and D. Bimberg, “Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection,” Appl. Phys. Lett. 101, 211119 (2012).
[Crossref]

A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T. D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. A. Ostapenko, S. Rodt, W. Unrau, U. W. Pohl, A. Hoffmann, D. Bimberg, and V. Haisler, “Site-controlled quantum dot growth on buried oxide stressor layers,” Phys. Status Solidi A 209, 2411–2420 (2012).
[Crossref]

Gies, C.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. A. M. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

W. W. Chow, F. Jahnke, and C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light. Sci. Appl. 3, e201 (2014).
[Crossref]

M. Florian, P. Gartner, C. Gies, and F. Jahnke, “Phonon-mediated off-resonant coupling effects in semiconductor quantum-dot lasers,” New J. Phys. 15, 035019 (2013).
[Crossref]

Giesz, V.

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Gómez, C.

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Gorbunov, A.

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16, 4848–4857 (2008).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Götzinger, S.

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett. 98, 117401 (2007).
[Crossref]

Grange, T.

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Grbešic, T.

S. Kreinberg, T. Grbešić, M. Strauß, A. Carmele, M. Emmerling, C. Schneider, S. Höfling, X. Porte, and S. Reitzenstein, “Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source,” Light Sci. Appl. 7, 41 (2018).
[Crossref]

Gregersen, N.

Gschrey, M.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref]

Gu, Q.

Haisler, V.

A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T. D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. A. Ostapenko, S. Rodt, W. Unrau, U. W. Pohl, A. Hoffmann, D. Bimberg, and V. Haisler, “Site-controlled quantum dot growth on buried oxide stressor layers,” Phys. Status Solidi A 209, 2411–2420 (2012).
[Crossref]

Hauke, N.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80, 201311 (2009).
[Crossref]

He, Y.-M.

Heckelmann, S.

A. Huggenberger, S. Heckelmann, C. Schneider, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, and A. Forchel, “Narrow spectral linewidth from single site-controlled InGaAs quantum dots with high uniformity,” Appl. Phys. Lett. 98, 131104 (2011).
[Crossref]

Heindel, T.

A. Kaganskiy, S. Fischbach, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses,” Opt. Commun. 413, 162–166 (2018).
[Crossref]

A. Kaganskiy, F. Gericke, T. Heuser, T. Heindel, X. Porte, and S. Reitzenstein, “Micropillars with a controlled number of site-controlled quantum dots,” Appl. Phys. Lett. 112, 071101 (2018).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref]

W. Unrau, D. Quandt, J.-H. Schulze, T. Heindel, T. D. Germann, O. Hitzemann, A. Strittmatter, S. Reitzenstein, U. W. Pohl, and D. Bimberg, “Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection,” Appl. Phys. Lett. 101, 211119 (2012).
[Crossref]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]

Hennessy, K.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Hennessy, K. J.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

Heuser, T.

A. Kaganskiy, F. Gericke, T. Heuser, T. Heindel, X. Porte, and S. Reitzenstein, “Micropillars with a controlled number of site-controlled quantum dots,” Appl. Phys. Lett. 112, 071101 (2018).
[Crossref]

Hitzemann, O.

W. Unrau, D. Quandt, J.-H. Schulze, T. Heindel, T. D. Germann, O. Hitzemann, A. Strittmatter, S. Reitzenstein, U. W. Pohl, and D. Bimberg, “Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection,” Appl. Phys. Lett. 101, 211119 (2012).
[Crossref]

A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T. D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. A. Ostapenko, S. Rodt, W. Unrau, U. W. Pohl, A. Hoffmann, D. Bimberg, and V. Haisler, “Site-controlled quantum dot growth on buried oxide stressor layers,” Phys. Status Solidi A 209, 2411–2420 (2012).
[Crossref]

Ho, J.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

Hoffmann, A.

A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T. D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. A. Ostapenko, S. Rodt, W. Unrau, U. W. Pohl, A. Hoffmann, D. Bimberg, and V. Haisler, “Site-controlled quantum dot growth on buried oxide stressor layers,” Phys. Status Solidi A 209, 2411–2420 (2012).
[Crossref]

Höfling, S.

S. Kreinberg, T. Grbešić, M. Strauß, A. Carmele, M. Emmerling, C. Schneider, S. Höfling, X. Porte, and S. Reitzenstein, “Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source,” Light Sci. Appl. 7, 41 (2018).
[Crossref]

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. A. M. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24, 8539–8546 (2016).
[Crossref]

A. Huggenberger, S. Heckelmann, C. Schneider, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, and A. Forchel, “Narrow spectral linewidth from single site-controlled InGaAs quantum dots with high uniformity,” Appl. Phys. Lett. 98, 131104 (2011).
[Crossref]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]

T. Sünner, C. Schneider, M. Strauß, A. Huggenberger, D. Wiener, S. Höfling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. Lett. 33, 1759–1761 (2008).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Hofmann, C.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Hohenester, U.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80, 201311 (2009).
[Crossref]

Holzbecher, A.

A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T. D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. A. Ostapenko, S. Rodt, W. Unrau, U. W. Pohl, A. Hoffmann, D. Bimberg, and V. Haisler, “Site-controlled quantum dot growth on buried oxide stressor layers,” Phys. Status Solidi A 209, 2411–2420 (2012).
[Crossref]

Hornecker, G.

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Hu, E. L.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Huggenberger, A.

A. Huggenberger, S. Heckelmann, C. Schneider, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, and A. Forchel, “Narrow spectral linewidth from single site-controlled InGaAs quantum dots with high uniformity,” Appl. Phys. Lett. 98, 131104 (2011).
[Crossref]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]

T. Sünner, C. Schneider, M. Strauß, A. Huggenberger, D. Wiener, S. Höfling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. Lett. 33, 1759–1761 (2008).
[Crossref]

Hvam, J. M.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303 (2008).
[Crossref]

Imamoglu, A.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

Iwamoto, S.

Y. Ota, M. Kakuda, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Thresholdless quantum dot nanolaser,” Opt. Express 25, 19981–19994 (2017).
[Crossref]

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[Crossref]

Jahnke, F.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. A. M. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

W. W. Chow, F. Jahnke, and C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light. Sci. Appl. 3, e201 (2014).
[Crossref]

M. Florian, P. Gartner, C. Gies, and F. Jahnke, “Phonon-mediated off-resonant coupling effects in semiconductor quantum-dot lasers,” New J. Phys. 15, 035019 (2013).
[Crossref]

S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photon. Rev. 5, 607–633 (2011).
[Crossref]

Johansen, J.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303 (2008).
[Crossref]

Kaganskiy, A.

A. Kaganskiy, S. Fischbach, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses,” Opt. Commun. 413, 162–166 (2018).
[Crossref]

A. Kaganskiy, F. Gericke, T. Heuser, T. Heindel, X. Porte, and S. Reitzenstein, “Micropillars with a controlled number of site-controlled quantum dots,” Appl. Phys. Lett. 112, 071101 (2018).
[Crossref]

M. Strauß, A. Kaganskiy, R. Voigt, P. Schnauber, J.-H. Schulze, S. Rodt, A. Strittmatter, and S. Reitzenstein, “Resonance fluorescence of a site-controlled quantum dot realized by the buried-stressor growth technique,” Appl. Phys. Lett. 110, 111101 (2017).
[Crossref]

Kako, S.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

Kakuda, M.

Kamp, M.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. A. M. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24, 8539–8546 (2016).
[Crossref]

A. Huggenberger, S. Heckelmann, C. Schneider, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, and A. Forchel, “Narrow spectral linewidth from single site-controlled InGaAs quantum dots with high uniformity,” Appl. Phys. Lett. 98, 131104 (2011).
[Crossref]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16, 4848–4857 (2008).
[Crossref]

T. Sünner, C. Schneider, M. Strauß, A. Huggenberger, D. Wiener, S. Höfling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. Lett. 33, 1759–1761 (2008).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Kaniber, M.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80, 201311 (2009).
[Crossref]

Kapon, E.

A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6, 1268–1272 (2010).
[Crossref]

A. Surrente, P. Gallo, M. Felici, B. Dwir, A. Rudra, and E. Kapon, “Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra,” Nanotechnology 20, 415205 (2009).
[Crossref]

Karlsson, A.

G. Björk, A. Karlsson, and Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A 50, 1675–1680 (1994).
[Crossref]

Katz, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Khajavikhan, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Kistner, C.

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]

Kreinberg, S.

S. Kreinberg, T. Grbešić, M. Strauß, A. Carmele, M. Emmerling, C. Schneider, S. Höfling, X. Porte, and S. Reitzenstein, “Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source,” Light Sci. Appl. 7, 41 (2018).
[Crossref]

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

Kristensen, P. T.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303 (2008).
[Crossref]

Krüger, L.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref]

Kulakovskii, V. D.

Kumagai, N.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[Crossref]

Kwon, S. H.

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Lanco, L.

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

Langbein, W.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref]

Lanzillotti-Kimura, N. D.

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Larsson, A.

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17, 1552–1567 (2011).
[Crossref]

Laucht, A.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80, 201311 (2009).
[Crossref]

Lee, J. H.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Lemaítre, A.

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Lemaître, A.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

Leymann, H. A. M.

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. A. M. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

Lippi, G. L.

T. Wang, G. P. Puccioni, and G. L. Lippi, “Dynamical buildup of lasing in mesoscale devices,” Sci. Rep. 5, 15858 (2015).
[Crossref]

Liu, J.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

Liu, L.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

Llorens, J. M.

Lodahl, P.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303 (2008).
[Crossref]

Löffler, A.

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16, 4848–4857 (2008).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Lomakin, V.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Loredo, J. C.

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Lu, C.-Y.

Lund-Hansen, T.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303 (2008).
[Crossref]

Maier, S.

Martínez-Pastor, J. P.

Miard, A.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

Mirin, R.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

Mizrahi, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Mohan, A.

A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6, 1268–1272 (2010).
[Crossref]

Mohtashami, A.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80, 201311 (2009).
[Crossref]

Muñoz-Camúñez, L. E.

Muñoz-Matutano, G.

Nam, S. W.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

Neumann, A.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80, 201311 (2009).
[Crossref]

Nikolaev, I. S.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303 (2008).
[Crossref]

Nomura, M.

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[Crossref]

Ostapenko, I. A.

A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T. D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. A. Ostapenko, S. Rodt, W. Unrau, U. W. Pohl, A. Hoffmann, D. Bimberg, and V. Haisler, “Site-controlled quantum dot growth on buried oxide stressor layers,” Phys. Status Solidi A 209, 2411–2420 (2012).
[Crossref]

Ota, Y.

Y. Ota, M. Kakuda, K. Watanabe, S. Iwamoto, and Y. Arakawa, “Thresholdless quantum dot nanolaser,” Opt. Express 25, 19981–19994 (2017).
[Crossref]

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[Crossref]

Ouyang, D.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref]

Pan, J.-W.

Pan, S. H.

Petroff, P. M.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Pohl, U. W.

A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T. D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. A. Ostapenko, S. Rodt, W. Unrau, U. W. Pohl, A. Hoffmann, D. Bimberg, and V. Haisler, “Site-controlled quantum dot growth on buried oxide stressor layers,” Phys. Status Solidi A 209, 2411–2420 (2012).
[Crossref]

W. Unrau, D. Quandt, J.-H. Schulze, T. Heindel, T. D. Germann, O. Hitzemann, A. Strittmatter, S. Reitzenstein, U. W. Pohl, and D. Bimberg, “Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection,” Appl. Phys. Lett. 101, 211119 (2012).
[Crossref]

Portalupi, S. L.

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Porte, X.

S. Kreinberg, T. Grbešić, M. Strauß, A. Carmele, M. Emmerling, C. Schneider, S. Höfling, X. Porte, and S. Reitzenstein, “Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source,” Light Sci. Appl. 7, 41 (2018).
[Crossref]

A. Kaganskiy, F. Gericke, T. Heuser, T. Heindel, X. Porte, and S. Reitzenstein, “Micropillars with a controlled number of site-controlled quantum dots,” Appl. Phys. Lett. 112, 071101 (2018).
[Crossref]

Portolan, S.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

Postigo, P. A.

Prieto, I.

Puccioni, G. P.

T. Wang, G. P. Puccioni, and G. L. Lippi, “Dynamical buildup of lasing in mesoscale devices,” Sci. Rep. 5, 15858 (2015).
[Crossref]

Quandt, D.

W. Unrau, D. Quandt, J.-H. Schulze, T. Heindel, T. D. Germann, O. Hitzemann, A. Strittmatter, S. Reitzenstein, U. W. Pohl, and D. Bimberg, “Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection,” Appl. Phys. Lett. 101, 211119 (2012).
[Crossref]

A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T. D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. A. Ostapenko, S. Rodt, W. Unrau, U. W. Pohl, A. Hoffmann, D. Bimberg, and V. Haisler, “Site-controlled quantum dot growth on buried oxide stressor layers,” Phys. Status Solidi A 209, 2411–2420 (2012).
[Crossref]

Rakher, M. T.

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Reitzenstein, S.

S. Kreinberg, T. Grbešić, M. Strauß, A. Carmele, M. Emmerling, C. Schneider, S. Höfling, X. Porte, and S. Reitzenstein, “Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source,” Light Sci. Appl. 7, 41 (2018).
[Crossref]

A. Kaganskiy, F. Gericke, T. Heuser, T. Heindel, X. Porte, and S. Reitzenstein, “Micropillars with a controlled number of site-controlled quantum dots,” Appl. Phys. Lett. 112, 071101 (2018).
[Crossref]

A. Kaganskiy, S. Fischbach, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses,” Opt. Commun. 413, 162–166 (2018).
[Crossref]

M. Strauß, A. Kaganskiy, R. Voigt, P. Schnauber, J.-H. Schulze, S. Rodt, A. Strittmatter, and S. Reitzenstein, “Resonance fluorescence of a site-controlled quantum dot realized by the buried-stressor growth technique,” Appl. Phys. Lett. 110, 111101 (2017).
[Crossref]

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref]

W. Unrau, D. Quandt, J.-H. Schulze, T. Heindel, T. D. Germann, O. Hitzemann, A. Strittmatter, S. Reitzenstein, U. W. Pohl, and D. Bimberg, “Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection,” Appl. Phys. Lett. 101, 211119 (2012).
[Crossref]

A. Huggenberger, S. Heckelmann, C. Schneider, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, and A. Forchel, “Narrow spectral linewidth from single site-controlled InGaAs quantum dots with high uniformity,” Appl. Phys. Lett. 98, 131104 (2011).
[Crossref]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16, 4848–4857 (2008).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Ripalda, J. M.

Robles, C.

Roblin, C.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

Rodt, S.

A. Kaganskiy, S. Fischbach, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses,” Opt. Commun. 413, 162–166 (2018).
[Crossref]

M. Strauß, A. Kaganskiy, R. Voigt, P. Schnauber, J.-H. Schulze, S. Rodt, A. Strittmatter, and S. Reitzenstein, “Resonance fluorescence of a site-controlled quantum dot realized by the buried-stressor growth technique,” Appl. Phys. Lett. 110, 111101 (2017).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref]

A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T. D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. A. Ostapenko, S. Rodt, W. Unrau, U. W. Pohl, A. Hoffmann, D. Bimberg, and V. Haisler, “Site-controlled quantum dot growth on buried oxide stressor layers,” Phys. Status Solidi A 209, 2411–2420 (2012).
[Crossref]

Rudra, A.

A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6, 1268–1272 (2010).
[Crossref]

A. Surrente, P. Gallo, M. Felici, B. Dwir, A. Rudra, and E. Kapon, “Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra,” Nanotechnology 20, 415205 (2009).
[Crossref]

Sagnes, I.

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

Sapienza, L.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

Savona, V.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

Schliwa, A.

A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T. D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. A. Ostapenko, S. Rodt, W. Unrau, U. W. Pohl, A. Hoffmann, D. Bimberg, and V. Haisler, “Site-controlled quantum dot growth on buried oxide stressor layers,” Phys. Status Solidi A 209, 2411–2420 (2012).
[Crossref]

Schmidt, F.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref]

Schmidt, R.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref]

Schnauber, P.

M. Strauß, A. Kaganskiy, R. Voigt, P. Schnauber, J.-H. Schulze, S. Rodt, A. Strittmatter, and S. Reitzenstein, “Resonance fluorescence of a site-controlled quantum dot realized by the buried-stressor growth technique,” Appl. Phys. Lett. 110, 111101 (2017).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref]

Schneider, C.

S. Kreinberg, T. Grbešić, M. Strauß, A. Carmele, M. Emmerling, C. Schneider, S. Höfling, X. Porte, and S. Reitzenstein, “Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source,” Light Sci. Appl. 7, 41 (2018).
[Crossref]

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. A. M. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, “Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency,” Opt. Express 24, 8539–8546 (2016).
[Crossref]

A. Huggenberger, S. Heckelmann, C. Schneider, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, and A. Forchel, “Narrow spectral linewidth from single site-controlled InGaAs quantum dots with high uniformity,” Appl. Phys. Lett. 98, 131104 (2011).
[Crossref]

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]

T. Sünner, C. Schneider, M. Strauß, A. Huggenberger, D. Wiener, S. Höfling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. Lett. 33, 1759–1761 (2008).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Schneider, S.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref]

Schulze, J.-H.

M. Strauß, A. Kaganskiy, R. Voigt, P. Schnauber, J.-H. Schulze, S. Rodt, A. Strittmatter, and S. Reitzenstein, “Resonance fluorescence of a site-controlled quantum dot realized by the buried-stressor growth technique,” Appl. Phys. Lett. 110, 111101 (2017).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref]

A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T. D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. A. Ostapenko, S. Rodt, W. Unrau, U. W. Pohl, A. Hoffmann, D. Bimberg, and V. Haisler, “Site-controlled quantum dot growth on buried oxide stressor layers,” Phys. Status Solidi A 209, 2411–2420 (2012).
[Crossref]

W. Unrau, D. Quandt, J.-H. Schulze, T. Heindel, T. D. Germann, O. Hitzemann, A. Strittmatter, S. Reitzenstein, U. W. Pohl, and D. Bimberg, “Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection,” Appl. Phys. Lett. 101, 211119 (2012).
[Crossref]

Seifried, M.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref]

Seliger, M.

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80, 201311 (2009).
[Crossref]

Sellin, R. L.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref]

Semenova, E.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

Senellart, P.

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

Simic, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Slutsky, B.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

Solomon, G. S.

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett. 98, 117401 (2007).
[Crossref]

Somaschi, N.

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Srinivasan, K.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

Stobbe, S.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303 (2008).
[Crossref]

Stock, E.

A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T. D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. A. Ostapenko, S. Rodt, W. Unrau, U. W. Pohl, A. Hoffmann, D. Bimberg, and V. Haisler, “Site-controlled quantum dot growth on buried oxide stressor layers,” Phys. Status Solidi A 209, 2411–2420 (2012).
[Crossref]

Strauf, S.

S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photon. Rev. 5, 607–633 (2011).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

Strauß, M.

S. Kreinberg, T. Grbešić, M. Strauß, A. Carmele, M. Emmerling, C. Schneider, S. Höfling, X. Porte, and S. Reitzenstein, “Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source,” Light Sci. Appl. 7, 41 (2018).
[Crossref]

M. Strauß, A. Kaganskiy, R. Voigt, P. Schnauber, J.-H. Schulze, S. Rodt, A. Strittmatter, and S. Reitzenstein, “Resonance fluorescence of a site-controlled quantum dot realized by the buried-stressor growth technique,” Appl. Phys. Lett. 110, 111101 (2017).
[Crossref]

T. Sünner, C. Schneider, M. Strauß, A. Huggenberger, D. Wiener, S. Höfling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. Lett. 33, 1759–1761 (2008).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

Strittmatter, A.

A. Kaganskiy, S. Fischbach, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses,” Opt. Commun. 413, 162–166 (2018).
[Crossref]

M. Strauß, A. Kaganskiy, R. Voigt, P. Schnauber, J.-H. Schulze, S. Rodt, A. Strittmatter, and S. Reitzenstein, “Resonance fluorescence of a site-controlled quantum dot realized by the buried-stressor growth technique,” Appl. Phys. Lett. 110, 111101 (2017).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref]

A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T. D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. A. Ostapenko, S. Rodt, W. Unrau, U. W. Pohl, A. Hoffmann, D. Bimberg, and V. Haisler, “Site-controlled quantum dot growth on buried oxide stressor layers,” Phys. Status Solidi A 209, 2411–2420 (2012).
[Crossref]

W. Unrau, D. Quandt, J.-H. Schulze, T. Heindel, T. D. Germann, O. Hitzemann, A. Strittmatter, S. Reitzenstein, U. W. Pohl, and D. Bimberg, “Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection,” Appl. Phys. Lett. 101, 211119 (2012).
[Crossref]

Sturge, M. D.

M. D. Sturge, “Optical absorption of gallium arsenide between 0.6 and 2.75 ev,” Phys. Rev. 127, 768–773 (1962).
[Crossref]

Suffczynski, J.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

Sünner, T.

Surrente, A.

A. Surrente, P. Gallo, M. Felici, B. Dwir, A. Rudra, and E. Kapon, “Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra,” Nanotechnology 20, 415205 (2009).
[Crossref]

Taboada, A. G.

Tarel, G.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

Tatebayashi, J.

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

Thoma, A.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref]

Unrau, W.

A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T. D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. A. Ostapenko, S. Rodt, W. Unrau, U. W. Pohl, A. Hoffmann, D. Bimberg, and V. Haisler, “Site-controlled quantum dot growth on buried oxide stressor layers,” Phys. Status Solidi A 209, 2411–2420 (2012).
[Crossref]

W. Unrau, D. Quandt, J.-H. Schulze, T. Heindel, T. D. Germann, O. Hitzemann, A. Strittmatter, S. Reitzenstein, U. W. Pohl, and D. Bimberg, “Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection,” Appl. Phys. Lett. 101, 211119 (2012).
[Crossref]

Unsleber, S.

Vallini, F.

Verma, V.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

Voigt, R.

M. Strauß, A. Kaganskiy, R. Voigt, P. Schnauber, J.-H. Schulze, S. Rodt, A. Strittmatter, and S. Reitzenstein, “Resonance fluorescence of a site-controlled quantum dot realized by the buried-stressor growth technique,” Appl. Phys. Lett. 110, 111101 (2017).
[Crossref]

Volz, T.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

Vos, W. L.

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303 (2008).
[Crossref]

Wang, T.

T. Wang, G. P. Puccioni, and G. L. Lippi, “Dynamical buildup of lasing in mesoscale devices,” Sci. Rep. 5, 15858 (2015).
[Crossref]

Watanabe, K.

Weinmann, P.

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]

White, A. G.

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

Wiener, D.

Wiersig, J.

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. A. M. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

Winger, M.

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

Woggon, U.

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref]

Wohlfeil, B.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref]

Wolters, J.

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

Worschech, L.

A. Huggenberger, S. Heckelmann, C. Schneider, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, and A. Forchel, “Narrow spectral linewidth from single site-controlled InGaAs quantum dots with high uniformity,” Appl. Phys. Lett. 98, 131104 (2011).
[Crossref]

Xie, Z. G.

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett. 98, 117401 (2007).
[Crossref]

Yamamoto, Y.

G. Björk, A. Karlsson, and Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A 50, 1675–1680 (1994).
[Crossref]

Yokoyama, H.

H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256, 66–70 (1992).
[Crossref]

Zhang, C.-Z.

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

Appl. Phys. Lett. (6)

C. Schneider, T. Heindel, A. Huggenberger, P. Weinmann, C. Kistner, M. Kamp, S. Reitzenstein, S. Höfling, and A. Forchel, “Single photon emission from a site-controlled quantum dot-micropillar cavity system,” Appl. Phys. Lett. 94, 111111 (2009).
[Crossref]

M. Strauß, A. Kaganskiy, R. Voigt, P. Schnauber, J.-H. Schulze, S. Rodt, A. Strittmatter, and S. Reitzenstein, “Resonance fluorescence of a site-controlled quantum dot realized by the buried-stressor growth technique,” Appl. Phys. Lett. 110, 111101 (2017).
[Crossref]

A. Kaganskiy, F. Gericke, T. Heuser, T. Heindel, X. Porte, and S. Reitzenstein, “Micropillars with a controlled number of site-controlled quantum dots,” Appl. Phys. Lett. 112, 071101 (2018).
[Crossref]

W. Unrau, D. Quandt, J.-H. Schulze, T. Heindel, T. D. Germann, O. Hitzemann, A. Strittmatter, S. Reitzenstein, U. W. Pohl, and D. Bimberg, “Electrically driven single photon source based on a site-controlled quantum dot with self-aligned current injection,” Appl. Phys. Lett. 101, 211119 (2012).
[Crossref]

A. Huggenberger, S. Heckelmann, C. Schneider, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, and A. Forchel, “Narrow spectral linewidth from single site-controlled InGaAs quantum dots with high uniformity,” Appl. Phys. Lett. 98, 131104 (2011).
[Crossref]

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauß, S. H. Kwon, C. Schneider, A. Löffler, S. Höfling, M. Kamp, and A. Forchel, “AlAs/GaAs micropillar cavities with quality factors exceeding 150.000,” Appl. Phys. Lett. 90, 251109 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17, 1552–1567 (2011).
[Crossref]

Laser Photon. Rev. (1)

S. Strauf and F. Jahnke, “Single quantum dot nanolaser,” Laser Photon. Rev. 5, 607–633 (2011).
[Crossref]

Light Sci. Appl. (1)

S. Kreinberg, T. Grbešić, M. Strauß, A. Carmele, M. Emmerling, C. Schneider, S. Höfling, X. Porte, and S. Reitzenstein, “Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source,” Light Sci. Appl. 7, 41 (2018).
[Crossref]

Light. Sci. Appl. (1)

W. W. Chow, F. Jahnke, and C. Gies, “Emission properties of nanolasers during the transition to lasing,” Light. Sci. Appl. 3, e201 (2014).
[Crossref]

Light: Sci. Appl. (1)

S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, and S. Reitzenstein, “Emission from quantum-dot high-beta microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling,” Light: Sci. Appl. 6, e17030 (2017).
[Crossref]

Nanotechnology (1)

A. Surrente, P. Gallo, M. Felici, B. Dwir, A. Rudra, and E. Kapon, “Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra,” Nanotechnology 20, 415205 (2009).
[Crossref]

Nat. Commun. (3)

F. Jahnke, C. Gies, M. Aßmann, M. Bayer, H. A. M. Leymann, A. Foerster, J. Wiersig, C. Schneider, M. Kamp, and S. Höfling, “Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers,” Nat. Commun. 7, 11540 (2016).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6, 7662 (2015).
[Crossref]

M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. De Miranda Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, “Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices,” Nat. Commun. 8, 889 (2017).
[Crossref]

Nat. Photonics (2)

N. Somaschi, V. Giesz, L. de Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart, “Near-optimal single-photon sources in the solid state,” Nat. Photonics 10, 340–345 (2016).
[Crossref]

J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, and Y. Arakawa, “Room-temperature lasing in a single nanowire with quantum dots,” Nat. Photonics 9, 501–505 (2015).
[Crossref]

Nat. Phys. (1)

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system,” Nat. Phys. 6, 279–283 (2010).
[Crossref]

Nature (1)

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref]

New J. Phys. (1)

M. Florian, P. Gartner, C. Gies, and F. Jahnke, “Phonon-mediated off-resonant coupling effects in semiconductor quantum-dot lasers,” New J. Phys. 15, 035019 (2013).
[Crossref]

Opt. Commun. (1)

A. Kaganskiy, S. Fischbach, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “Enhancing the photon-extraction efficiency of site-controlled quantum dots by deterministically fabricated microlenses,” Opt. Commun. 413, 162–166 (2018).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Optica (2)

Phys. Rev. (1)

M. D. Sturge, “Optical absorption of gallium arsenide between 0.6 and 2.75 ev,” Phys. Rev. 127, 768–773 (1962).
[Crossref]

Phys. Rev. A (1)

G. Björk, A. Karlsson, and Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A 50, 1675–1680 (1994).
[Crossref]

Phys. Rev. B (3)

U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. J. Finley, “Phonon-assisted transitions from quantum dot excitons to cavity photons,” Phys. Rev. B 80, 201311 (2009).
[Crossref]

M. Bayer and A. Forchel, “Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots,” Phys. Rev. B 65, 041308 (2002).
[Crossref]

J. Johansen, S. Stobbe, I. S. Nikolaev, T. Lund-Hansen, P. T. Kristensen, J. M. Hvam, W. L. Vos, and P. Lodahl, “Size dependence of the wavefunction of self-assembled InAs quantum dots from time-resolved optical measurements,” Phys. Rev. B 77, 073303 (2008).
[Crossref]

Phys. Rev. Lett. (5)

P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001).
[Crossref]

S. Strauf, K. Hennessy, M. T. Rakher, Y.-S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006).
[Crossref]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101, 267404 (2008).
[Crossref]

M. Winger, T. Volz, G. Tarel, S. Portolan, A. Badolato, K. J. Hennessy, E. L. Hu, A. Beveratos, J. Finley, V. Savona, and A. Imamoğlu, “Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot-cavity system,” Phys. Rev. Lett. 103, 207403 (2009).
[Crossref]

Z. G. Xie, S. Götzinger, W. Fang, H. Cao, and G. S. Solomon, “Influence of a single quantum dot state on the characteristics of a microdisk laser,” Phys. Rev. Lett. 98, 117401 (2007).
[Crossref]

Phys. Status Solidi A (1)

A. Strittmatter, A. Holzbecher, A. Schliwa, J.-H. Schulze, D. Quandt, T. D. Germann, A. Dreismann, O. Hitzemann, E. Stock, I. A. Ostapenko, S. Rodt, W. Unrau, U. W. Pohl, A. Hoffmann, D. Bimberg, and V. Haisler, “Site-controlled quantum dot growth on buried oxide stressor layers,” Phys. Status Solidi A 209, 2411–2420 (2012).
[Crossref]

Sci. Rep. (1)

T. Wang, G. P. Puccioni, and G. L. Lippi, “Dynamical buildup of lasing in mesoscale devices,” Sci. Rep. 5, 15858 (2015).
[Crossref]

Science (1)

H. Yokoyama, “Physics and device applications of optical microcavities,” Science 256, 66–70 (1992).
[Crossref]

Small (1)

A. Mohan, P. Gallo, M. Felici, B. Dwir, A. Rudra, J. Faist, and E. Kapon, “Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics,” Small 6, 1268–1272 (2010).
[Crossref]

Other (1)

JCMwave GmbH, “JCMsuite.”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Top side: spectra at low (black trace) and higher (red trace) excitation powers of the micropillar with a diameter of 5.2 μm and an aperture diameter of 1400 nm. Bottom part: derivative (only positive values) of the low-power spectrum. The noise band is marked by a blue line, and identified SCQD lines are marked by red arrows. (b) Number of SCQDs as a function of the aperture diameter of micropillars with a diameter of 5.2 μm. Two excitonic emission lines (i.e., exciton and biexciton) per SCQD are assumed. Insets: schematic illustration of a micropillar structure (top) and scanning electron microscope (SEM) image of a fully fabricated micropillar (bottom). (c) Spectral distribution of the SCQD emission lines for all investigated micropillars. For the sake of clarity, the corresponding aperture diameters are subdivided into three groups: 700–950 nm (black bars), 950–1200 nm (red bars), and 1200–1400 nm (blue bars). Inset: wavelength of the fundamental pillar mode as a function of the aperture diameter. The fundamental mode experiences lower lateral light confinement and red-shifts with increasing aperture diameter [29]. (d) Number of the SCQD emission lines as a function of spectral detuning from the fundamental cavity mode for micropillars with an aperture diameter of 975 nm (pillar 2, blue bars) and 1250 nm (pillar 4, red bars).
Fig. 2.
Fig. 2. (a) Input–output curves of the strong mode and the weak mode of a micropillar with an oxide aperture diameter of 975 nm. The input–output curve of the strong mode is approximated using the rate equations model from [35]. Inset: spectra of both modes taken at a pump power of 5.2 mW. (b) Linewidth of the strong mode and the weak mode as a function of the input power. The spectral resolution limit is indicated with a dashed horizontal line. (c) Excitation power-dependent autocorrelation values g ( 2 ) ( τ = 0 ) for the strong mode and for the weak mode. Inset: autocorrelation histograms recorded from the strong mode at 5.1 mW (blue, below threshold) and 6.2 mW (black, above threshold), respectively. The corresponding working points are marked with arrows. Black squares and red circles in (a)–(c) correspond to the strong mode and the weak mode, respectively.
Fig. 3.
Fig. 3. (a) Input–output curves, (b) power-dependent emission linewidth, and (c)  g ( 2 ) ( τ = 0 ) for the micropillars 1–4 with respective oxide aperture diameters of 780 nm (black), 975 nm (blue), 1115 nm (olive), and 1250 nm (red). The threshold power for each micropillar is marked with a dashed line of its respective color.
Fig. 4.
Fig. 4. (a) Measured (black triangles) and simulated (blue rhombuses) Q -factor as a function of the aperture diameter. Inset: simulated Q -factor in a wider aperture range. (b)  Γ -factor (black squares) and the threshold pump power (red circles) as a function of the aperture diameter. The horizontal dashed line refers to the Γ -factor of a micropillar with a diameter of 5.2 μm randomly distributed QDs with a density of 10 9 / cm 2 . The vertical dashed line separates the micropillars exhibiting transition to lasing (aperture diameters from 700 nm to 1200 nm) from the non-lasing ones.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ = Γ trans · Γ long = SCQDs | E x , y , z | 2 d x d y d z Mode | E x , y , z | 2 d x d y d z ,

Metrics