Abstract

Enhancing the optical absorption in a graphene monolayer has always been a challenge which is essentially due to small thickness. We propose a theoretical analysis for a configuration with graphene monolayer embedded in a metal-terminated distributed-Bragg-reflector (DBR) which supports a Tamm plasmon polariton (TPP). The field localisation at metal-dielectric interface for a TPP-mode ensures substantial enhancement in absorption by an embedded graphene monolayer. In addition, the graphene monolayer positioning plays a vital role in tunability in overall absorption by the photonic geometry. The manifestation of enhanced absorption is illustrated through the impact on nonlinear optical (NLO) response of graphene monolayer.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons

Hua Lu, Xuetao Gan, Baohua Jia, Dong Mao, and Jianlin Zhao
Opt. Lett. 41(20) 4743-4746 (2016)

Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure

Jigang Hu, Enxu Yao, Weiqiang Xie, Wei Liu, Dongmei Li, Yonghua Lu, and Qiwen Zhan
Opt. Express 27(13) 18642-18652 (2019)

Terahertz refractive index sensor based on Tamm plasmon-polaritons with graphene

M. Mehdi Keshavarz and Abbas Alighanbari
Appl. Opt. 58(13) 3604-3612 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Q. Bao and K. P. Loh, “Graphene phototnics, plasmonics and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
    [Crossref] [PubMed]
  2. C. Liu, Y. Chang, T. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
    [Crossref] [PubMed]
  3. H. Wang, H. Zhao, G. Hu, S. Li, H. Su, and J. Zhang, “Graphene based surface plasmon polariton modulator controlled by ferroelectric domains in lithium niobate,” Sci. Rep. 5, 18258 (2015).
    [Crossref] [PubMed]
  4. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
    [Crossref] [PubMed]
  5. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
    [Crossref]
  6. H. Lu, C. Zeng, Q. Zhang, X. Liu, M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
    [Crossref] [PubMed]
  7. C. Lee, G. Lee, A. Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
    [Crossref] [PubMed]
  8. B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
    [Crossref] [PubMed]
  9. H. Lu, X. Gan, D. Mao, and J. Zhao, “Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides,” Photon. Res. 5(3), 162–167 (2017).
    [Crossref]
  10. Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 41(13), 2773–2777 (2012).
  11. H. Lu, D. Mao, C. Zeng, F. Xiao, D. Yang, T. Mei, and J. Zhao, “Plasmonic Fano spectral response from graphene metasurfaces in the MIR region,” Opt. Mater. Express 8(4), 1058–1068 (2018).
    [Crossref]
  12. M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect,” Opt. Lett. 38(18), 3550–3552 (2013).
    [Crossref] [PubMed]
  13. J.-T. Liu, N.-H. Liu, J. Li, X. J. Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101, 052104 (2012).
    [Crossref]
  14. M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
    [Crossref] [PubMed]
  15. M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102, 231111 (2013).
    [Crossref]
  16. T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
    [Crossref] [PubMed]
  17. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
    [Crossref]
  18. B. Liu, C. Tang, J. Chen, Q. Wang, M. Pei, and H. Tang, “Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials,” Opt. Express 25(10), 12061–12068 (2017).
    [Crossref] [PubMed]
  19. B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
    [Crossref] [PubMed]
  20. B. Liu, C. Tang, J. Chen, N. Xie, L. Zheng, and S. Wang, “Tri-band absorption enhancement in monolayer graphene in visible spectrum due to multiple plasmon resonances in metal-insulator-metal nanostructure,” Appl. Phys. Express 11(7), 0722201 (2018).
    [Crossref]
  21. M. Kaliteevski, I Iorsh, S. Brand, R. A. Abram, I. A. Shelykh, and A. V. Kavokin, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
    [Crossref]
  22. M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
    [Crossref]
  23. R. Das, T. Srivastava, and R. Jha, “Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures,” Opt. Lett. 39(4), 896–899 (2014).
    [Crossref] [PubMed]
  24. W. L. Zhang, F. Wang, Y. J. Rao, and Y. Jiang, “Novel sensing concept based on optical Tamm plasmon,” Opt. Express 22(12), 14524–14529 (2014).
    [Crossref] [PubMed]
  25. B. Auguie, M. C. Fuertes, P. C. Angelome, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photon. 1(9), 775–780 (2014).
    [Crossref]
  26. S. N. Sanchez, M. L. Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular-dielectric photonic integration,” ACS Photon. 3(5), 743–748 (2016).
    [Crossref]
  27. H. Lu, X. Gan, B. Jia, D. Mao, and J. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons,” Opt. Lett. 41(20), 4743–4746 (2016).
    [Crossref] [PubMed]
  28. H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25(18), 21630–21636 (2017).
    [Crossref] [PubMed]
  29. P. S. Maji, M. K. Shukla, and R. Das, “Blood component detection based on miniaturized self-referenced hybrid Tamm-plasmon-polariton sensor,” Sens. Actuators B 255, 729–734 (2018).
    [Crossref]
  30. S. Kumar, M. K. Shukla, P. S. Maji, and R. Das, “Self-referenced refractive index sensing with hybrid-Tamm-plasmon-polariton modes in sub-wavelength analyte layers,” J. Phys. D 50(37), 375106 (2017).
    [Crossref]
  31. P. S. Maji and R. Das, “Hybrid-Tamm-plasmon-polariton based self-reference temperature sensor,” J. Lightwave Technol. 35(14), 2833–2839 (2017).
    [Crossref]
  32. C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85, 245407 (2012).
    [Crossref]
  33. X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6, 32616 (2016).
    [Crossref]
  34. J. Wang, X. Wang, H. Shao, Z. Hu, G. Zeng, and F. Zhang, “Peak modulation in multicavity-coupled graphene-based waveguide system,” Nanoscale Res. Lett. 12(9), 474 (2017).
    [Crossref]
  35. A. K. Ghatak, K. Thayagarajan, and M. R. Shenoy, “Numerical analysis of planar waveguide using matrix method,” J. Lightwave Technol. 5(5), 660–667 (1987).
    [Crossref]
  36. L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–496 (1999).
    [Crossref]
  37. G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells,” Adv. Mater. 22(30), 3293–3297 (2010).
    [Crossref] [PubMed]
  38. A. Kumari, S. Kumar, M. K. Shukla, G. Kumar, P. S. Maji, R. Vijaya, and R. Das, “Coupling to Tamm-plasmon-polaritons: dependence on structural parameters,” J. Phys. D 51(25), 255103 (2018).
    [Crossref]
  39. B. Gu, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Theory of Gaussian beam Z scan with simultaneous third- and fifth-order nonlinear refraction based on a Gaussian decomposition method,” J. Opt. Soc. Am. B 306 (22), 2651–2659 (2005).
    [Crossref]
  40. K. V. Anil Kumar, S. Kumar, S. M. Dharmaprakash, and R. Das, “Impact of α − β transition in the ultrafast high-order nonlinear optical properties of metal-free phthalocyanine thin films,” J. Phys. Chem. C 120(12), 6733–6740 (2016).
    [Crossref]
  41. E. Dremetsika, B. Dlubak, S.P. Gorza, C. Ciret, M.B. Martin, S. Hofmann, P. Seneor, D. Dolfi, S. Massar, P. Emplit, and P. Kockaert, “Measuring the nonlinear refractive index of graphene using the optical Kerr effect method,” Opt. Lett. 41(14), 3281–3284 (2016).
    [Crossref] [PubMed]
  42. http://photonics-benelux.org/images/stories/media/proceedings/2016/s16p057.pdf
  43. H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
    [Crossref] [PubMed]

2018 (5)

H. Lu, D. Mao, C. Zeng, F. Xiao, D. Yang, T. Mei, and J. Zhao, “Plasmonic Fano spectral response from graphene metasurfaces in the MIR region,” Opt. Mater. Express 8(4), 1058–1068 (2018).
[Crossref]

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
[Crossref] [PubMed]

B. Liu, C. Tang, J. Chen, N. Xie, L. Zheng, and S. Wang, “Tri-band absorption enhancement in monolayer graphene in visible spectrum due to multiple plasmon resonances in metal-insulator-metal nanostructure,” Appl. Phys. Express 11(7), 0722201 (2018).
[Crossref]

P. S. Maji, M. K. Shukla, and R. Das, “Blood component detection based on miniaturized self-referenced hybrid Tamm-plasmon-polariton sensor,” Sens. Actuators B 255, 729–734 (2018).
[Crossref]

A. Kumari, S. Kumar, M. K. Shukla, G. Kumar, P. S. Maji, R. Vijaya, and R. Das, “Coupling to Tamm-plasmon-polaritons: dependence on structural parameters,” J. Phys. D 51(25), 255103 (2018).
[Crossref]

2017 (6)

2016 (6)

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

S. N. Sanchez, M. L. Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular-dielectric photonic integration,” ACS Photon. 3(5), 743–748 (2016).
[Crossref]

H. Lu, X. Gan, B. Jia, D. Mao, and J. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons,” Opt. Lett. 41(20), 4743–4746 (2016).
[Crossref] [PubMed]

X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6, 32616 (2016).
[Crossref]

K. V. Anil Kumar, S. Kumar, S. M. Dharmaprakash, and R. Das, “Impact of α − β transition in the ultrafast high-order nonlinear optical properties of metal-free phthalocyanine thin films,” J. Phys. Chem. C 120(12), 6733–6740 (2016).
[Crossref]

E. Dremetsika, B. Dlubak, S.P. Gorza, C. Ciret, M.B. Martin, S. Hofmann, P. Seneor, D. Dolfi, S. Massar, P. Emplit, and P. Kockaert, “Measuring the nonlinear refractive index of graphene using the optical Kerr effect method,” Opt. Lett. 41(14), 3281–3284 (2016).
[Crossref] [PubMed]

2015 (3)

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

H. Wang, H. Zhao, G. Hu, S. Li, H. Su, and J. Zhang, “Graphene based surface plasmon polariton modulator controlled by ferroelectric domains in lithium niobate,” Sci. Rep. 5, 18258 (2015).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

2014 (6)

C. Liu, Y. Chang, T. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref] [PubMed]

C. Lee, G. Lee, A. Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

R. Das, T. Srivastava, and R. Jha, “Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures,” Opt. Lett. 39(4), 896–899 (2014).
[Crossref] [PubMed]

W. L. Zhang, F. Wang, Y. J. Rao, and Y. Jiang, “Novel sensing concept based on optical Tamm plasmon,” Opt. Express 22(12), 14524–14529 (2014).
[Crossref] [PubMed]

B. Auguie, M. C. Fuertes, P. C. Angelome, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photon. 1(9), 775–780 (2014).
[Crossref]

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

2013 (2)

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102, 231111 (2013).
[Crossref]

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect,” Opt. Lett. 38(18), 3550–3552 (2013).
[Crossref] [PubMed]

2012 (6)

J.-T. Liu, N.-H. Liu, J. Li, X. J. Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101, 052104 (2012).
[Crossref]

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
[Crossref]

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 41(13), 2773–2777 (2012).

Q. Bao and K. P. Loh, “Graphene phototnics, plasmonics and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85, 245407 (2012).
[Crossref]

2011 (2)

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

2010 (1)

G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells,” Adv. Mater. 22(30), 3293–3297 (2010).
[Crossref] [PubMed]

2008 (1)

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

2007 (1)

M. Kaliteevski, I Iorsh, S. Brand, R. A. Abram, I. A. Shelykh, and A. V. Kavokin, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

2005 (1)

B. Gu, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Theory of Gaussian beam Z scan with simultaneous third- and fifth-order nonlinear refraction based on a Gaussian decomposition method,” J. Opt. Soc. Am. B 306 (22), 2651–2659 (2005).
[Crossref]

1999 (1)

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–496 (1999).
[Crossref]

1987 (1)

A. K. Ghatak, K. Thayagarajan, and M. R. Shenoy, “Numerical analysis of planar waveguide using matrix method,” J. Lightwave Technol. 5(5), 660–667 (1987).
[Crossref]

Abdala, N. L.

B. Auguie, M. C. Fuertes, P. C. Angelome, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photon. 1(9), 775–780 (2014).
[Crossref]

Abdel-Hady, A. G.

S. N. Sanchez, M. L. Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular-dielectric photonic integration,” ACS Photon. 3(5), 743–748 (2016).
[Crossref]

Abram, R. A.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

M. Kaliteevski, I Iorsh, S. Brand, R. A. Abram, I. A. Shelykh, and A. V. Kavokin, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Adawi, A. M.

S. N. Sanchez, M. L. Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular-dielectric photonic integration,” ACS Photon. 3(5), 743–748 (2016).
[Crossref]

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Andrews, A. M.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Angelome, P. C.

B. Auguie, M. C. Fuertes, P. C. Angelome, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photon. 1(9), 775–780 (2014).
[Crossref]

Anil Kumar, K. V.

K. V. Anil Kumar, S. Kumar, S. M. Dharmaprakash, and R. Das, “Impact of α − β transition in the ultrafast high-order nonlinear optical properties of metal-free phthalocyanine thin films,” J. Phys. Chem. C 120(12), 6733–6740 (2016).
[Crossref]

Arefe, G.

C. Lee, G. Lee, A. Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Auguie, B.

B. Auguie, M. C. Fuertes, P. C. Angelome, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photon. 1(9), 775–780 (2014).
[Crossref]

Bao, Q.

Q. Bao and K. P. Loh, “Graphene phototnics, plasmonics and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Barnes, W. L.

S. N. Sanchez, M. L. Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular-dielectric photonic integration,” ACS Photon. 3(5), 743–748 (2016).
[Crossref]

Bianco, G. V.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102, 231111 (2013).
[Crossref]

Brand, S.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

M. Kaliteevski, I Iorsh, S. Brand, R. A. Abram, I. A. Shelykh, and A. V. Kavokin, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Britnell, L.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

Bruno, G.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102, 231111 (2013).
[Crossref]

Burkhard, G. F.

G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells,” Adv. Mater. 22(30), 3293–3297 (2010).
[Crossref] [PubMed]

Cai, W.

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

Chamberlain, J. M.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Chang, Y.

C. Liu, Y. Chang, T. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref] [PubMed]

Chen, C.

X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6, 32616 (2016).
[Crossref]

Chen, J.

B. Liu, C. Tang, J. Chen, N. Xie, L. Zheng, and S. Wang, “Tri-band absorption enhancement in monolayer graphene in visible spectrum due to multiple plasmon resonances in metal-insulator-metal nanostructure,” Appl. Phys. Express 11(7), 0722201 (2018).
[Crossref]

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
[Crossref] [PubMed]

B. Liu, C. Tang, J. Chen, Q. Wang, M. Pei, and H. Tang, “Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials,” Opt. Express 25(10), 12061–12068 (2017).
[Crossref] [PubMed]

B. Gu, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Theory of Gaussian beam Z scan with simultaneous third- and fifth-order nonlinear refraction based on a Gaussian decomposition method,” J. Opt. Soc. Am. B 306 (22), 2651–2659 (2005).
[Crossref]

Chen, S.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 41(13), 2773–2777 (2012).

Chen, W.

C. Lee, G. Lee, A. Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Cheng, H.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 41(13), 2773–2777 (2012).

Ciret, C.

Cui, X.

C. Lee, G. Lee, A. Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

D’Orazio, A.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102, 231111 (2013).
[Crossref]

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect,” Opt. Lett. 38(18), 3550–3552 (2013).
[Crossref] [PubMed]

Das, R.

A. Kumari, S. Kumar, M. K. Shukla, G. Kumar, P. S. Maji, R. Vijaya, and R. Das, “Coupling to Tamm-plasmon-polaritons: dependence on structural parameters,” J. Phys. D 51(25), 255103 (2018).
[Crossref]

P. S. Maji, M. K. Shukla, and R. Das, “Blood component detection based on miniaturized self-referenced hybrid Tamm-plasmon-polariton sensor,” Sens. Actuators B 255, 729–734 (2018).
[Crossref]

S. Kumar, M. K. Shukla, P. S. Maji, and R. Das, “Self-referenced refractive index sensing with hybrid-Tamm-plasmon-polariton modes in sub-wavelength analyte layers,” J. Phys. D 50(37), 375106 (2017).
[Crossref]

P. S. Maji and R. Das, “Hybrid-Tamm-plasmon-polariton based self-reference temperature sensor,” J. Lightwave Technol. 35(14), 2833–2839 (2017).
[Crossref]

K. V. Anil Kumar, S. Kumar, S. M. Dharmaprakash, and R. Das, “Impact of α − β transition in the ultrafast high-order nonlinear optical properties of metal-free phthalocyanine thin films,” J. Phys. Chem. C 120(12), 6733–6740 (2016).
[Crossref]

R. Das, T. Srivastava, and R. Jha, “Tamm-plasmon and surface-plasmon hybrid-mode based refractometry in photonic bandgap structures,” Opt. Lett. 39(4), 896–899 (2014).
[Crossref] [PubMed]

de Ceglia, D.

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect,” Opt. Lett. 38(18), 3550–3552 (2013).
[Crossref] [PubMed]

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102, 231111 (2013).
[Crossref]

De Vittorio, M.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102, 231111 (2013).
[Crossref]

Detz, H.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Dharmaprakash, S. M.

K. V. Anil Kumar, S. Kumar, S. M. Dharmaprakash, and R. Das, “Impact of α − β transition in the ultrafast high-order nonlinear optical properties of metal-free phthalocyanine thin films,” J. Phys. Chem. C 120(12), 6733–6740 (2016).
[Crossref]

Ding, J.

B. Gu, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Theory of Gaussian beam Z scan with simultaneous third- and fifth-order nonlinear refraction based on a Gaussian decomposition method,” J. Opt. Soc. Am. B 306 (22), 2651–2659 (2005).
[Crossref]

Dlubak, B.

Dolfi, D.

Dremetsika, E.

Du, J.

Echtermeyer, T. J.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

Emplit, P.

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Fainstein, A.

B. Auguie, M. C. Fuertes, P. C. Angelome, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photon. 1(9), 775–780 (2014).
[Crossref]

Fan, Y.

Fan, Y. X.

B. Gu, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Theory of Gaussian beam Z scan with simultaneous third- and fifth-order nonlinear refraction based on a Gaussian decomposition method,” J. Opt. Soc. Am. B 306 (22), 2651–2659 (2005).
[Crossref]

Ferrari, A. C.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

Fuertes, M. C.

B. Auguie, M. C. Fuertes, P. C. Angelome, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photon. 1(9), 775–780 (2014).
[Crossref]

Furchi, M.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Gan, X.

Garcia, M. L.

S. N. Sanchez, M. L. Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular-dielectric photonic integration,” ACS Photon. 3(5), 743–748 (2016).
[Crossref]

Garcia de Abajo, F. J.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Garcia-Vidal, F. J.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
[Crossref]

Geim, A. K.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

Geng, J.

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

Ghatak, A. K.

A. K. Ghatak, K. Thayagarajan, and M. R. Shenoy, “Numerical analysis of planar waveguide using matrix method,” J. Lightwave Technol. 5(5), 660–667 (1987).
[Crossref]

Gorbachev, R. V.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

Gorza, S.P.

Grande, M.

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect,” Opt. Lett. 38(18), 3550–3552 (2013).
[Crossref] [PubMed]

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102, 231111 (2013).
[Crossref]

Grigorenko, A. N.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

Gu, B.

B. Gu, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Theory of Gaussian beam Z scan with simultaneous third- and fifth-order nonlinear refraction based on a Gaussian decomposition method,” J. Opt. Soc. Am. B 306 (22), 2651–2659 (2005).
[Crossref]

Gu, M.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Guinea, F.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
[Crossref]

Guo, J.

C. Lee, G. Lee, A. Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Han, M.

C. Lee, G. Lee, A. Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Hanson, G. W.

C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85, 245407 (2012).
[Crossref]

Heinz, T.

C. Lee, G. Lee, A. Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Hofmann, S.

Hoke, E. T.

G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells,” Adv. Mater. 22(30), 3293–3297 (2010).
[Crossref] [PubMed]

Hone, J.

C. Lee, G. Lee, A. Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Hossain, M.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Hu, G.

H. Wang, H. Zhao, G. Hu, S. Li, H. Su, and J. Zhang, “Graphene based surface plasmon polariton modulator controlled by ferroelectric domains in lithium niobate,” Sci. Rep. 5, 18258 (2015).
[Crossref] [PubMed]

Hu, Z.

J. Wang, X. Wang, H. Shao, Z. Hu, G. Zeng, and F. Zhang, “Peak modulation in multicavity-coupled graphene-based waveguide system,” Nanoscale Res. Lett. 12(9), 474 (2017).
[Crossref]

Huang, J.-H.

J.-T. Liu, N.-H. Liu, J. Li, X. J. Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101, 052104 (2012).
[Crossref]

Inganas, O.

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–496 (1999).
[Crossref]

Iorsh, I

M. Kaliteevski, I Iorsh, S. Brand, R. A. Abram, I. A. Shelykh, and A. V. Kavokin, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Jasnos, P. K.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

Jha, R.

Jia, B.

Jiang, Y.

Kaipa, C. S. R.

C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85, 245407 (2012).
[Crossref]

Kaliteevski, M.

M. Kaliteevski, I Iorsh, S. Brand, R. A. Abram, I. A. Shelykh, and A. V. Kavokin, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Kalitteevski, M. A.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Kavokin, A. V.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

M. Kaliteevski, I Iorsh, S. Brand, R. A. Abram, I. A. Shelykh, and A. V. Kavokin, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Kim, P.

C. Lee, G. Lee, A. Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Klang, P.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Kockaert, P.

Kumar, G.

A. Kumari, S. Kumar, M. K. Shukla, G. Kumar, P. S. Maji, R. Vijaya, and R. Das, “Coupling to Tamm-plasmon-polaritons: dependence on structural parameters,” J. Phys. D 51(25), 255103 (2018).
[Crossref]

Kumar, S.

A. Kumari, S. Kumar, M. K. Shukla, G. Kumar, P. S. Maji, R. Vijaya, and R. Das, “Coupling to Tamm-plasmon-polaritons: dependence on structural parameters,” J. Phys. D 51(25), 255103 (2018).
[Crossref]

S. Kumar, M. K. Shukla, P. S. Maji, and R. Das, “Self-referenced refractive index sensing with hybrid-Tamm-plasmon-polariton modes in sub-wavelength analyte layers,” J. Phys. D 50(37), 375106 (2017).
[Crossref]

K. V. Anil Kumar, S. Kumar, S. M. Dharmaprakash, and R. Das, “Impact of α − β transition in the ultrafast high-order nonlinear optical properties of metal-free phthalocyanine thin films,” J. Phys. Chem. C 120(12), 6733–6740 (2016).
[Crossref]

Kumari, A.

A. Kumari, S. Kumar, M. K. Shukla, G. Kumar, P. S. Maji, R. Vijaya, and R. Das, “Coupling to Tamm-plasmon-polaritons: dependence on structural parameters,” J. Phys. D 51(25), 255103 (2018).
[Crossref]

Lee, C.

C. Lee, G. Lee, A. Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Lee, G.

C. Lee, G. Lee, A. Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Li, J.

J.-T. Liu, N.-H. Liu, J. Li, X. J. Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101, 052104 (2012).
[Crossref]

Li, S.

H. Wang, H. Zhao, G. Hu, S. Li, H. Su, and J. Zhang, “Graphene based surface plasmon polariton modulator controlled by ferroelectric domains in lithium niobate,” Sci. Rep. 5, 18258 (2015).
[Crossref] [PubMed]

Li, X. J.

J.-T. Liu, N.-H. Liu, J. Li, X. J. Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101, 052104 (2012).
[Crossref]

Li, Y.

C. Lee, G. Lee, A. Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Li, Z.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 41(13), 2773–2777 (2012).

Lilley, G.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Lim, C.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Liu, B.

B. Liu, C. Tang, J. Chen, N. Xie, L. Zheng, and S. Wang, “Tri-band absorption enhancement in monolayer graphene in visible spectrum due to multiple plasmon resonances in metal-insulator-metal nanostructure,” Appl. Phys. Express 11(7), 0722201 (2018).
[Crossref]

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
[Crossref] [PubMed]

B. Liu, C. Tang, J. Chen, Q. Wang, M. Pei, and H. Tang, “Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials,” Opt. Express 25(10), 12061–12068 (2017).
[Crossref] [PubMed]

Liu, C.

C. Liu, Y. Chang, T. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref] [PubMed]

Liu, J.-T.

J.-T. Liu, N.-H. Liu, J. Li, X. J. Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101, 052104 (2012).
[Crossref]

Liu, N.-H.

J.-T. Liu, N.-H. Liu, J. Li, X. J. Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101, 052104 (2012).
[Crossref]

Liu, W.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 41(13), 2773–2777 (2012).

Liu, X.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Loh, K. P.

H. Zhang, S. B. Lu, J. Zheng, J. Du, S. C. Wen, D. Y. Tang, and K. P. Loh, “Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics,” Opt. Express 22(6), 7249–7260 (2014).
[Crossref] [PubMed]

Q. Bao and K. P. Loh, “Graphene phototnics, plasmonics and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Lombardo, A.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

Lu, H.

Lu, S. B.

Maji, P. S.

A. Kumari, S. Kumar, M. K. Shukla, G. Kumar, P. S. Maji, R. Vijaya, and R. Das, “Coupling to Tamm-plasmon-polaritons: dependence on structural parameters,” J. Phys. D 51(25), 255103 (2018).
[Crossref]

P. S. Maji, M. K. Shukla, and R. Das, “Blood component detection based on miniaturized self-referenced hybrid Tamm-plasmon-polariton sensor,” Sens. Actuators B 255, 729–734 (2018).
[Crossref]

S. Kumar, M. K. Shukla, P. S. Maji, and R. Das, “Self-referenced refractive index sensing with hybrid-Tamm-plasmon-polariton modes in sub-wavelength analyte layers,” J. Phys. D 50(37), 375106 (2017).
[Crossref]

P. S. Maji and R. Das, “Hybrid-Tamm-plasmon-polariton based self-reference temperature sensor,” J. Lightwave Technol. 35(14), 2833–2839 (2017).
[Crossref]

Mao, D.

Martin, M.B.

Martin-Moreno, L.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
[Crossref]

Massar, S.

McGehee, M. D.

G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells,” Adv. Mater. 22(30), 3293–3297 (2010).
[Crossref] [PubMed]

Medina, F.

C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85, 245407 (2012).
[Crossref]

Mei, T.

Mesa, F.

C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85, 245407 (2012).
[Crossref]

Mikhrin, V. S.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Mueller, T.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Murshidy, M. M.

S. N. Sanchez, M. L. Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular-dielectric photonic integration,” ACS Photon. 3(5), 743–748 (2016).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Nikitin, A. Y.

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
[Crossref]

Norris, T.

C. Liu, Y. Chang, T. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref] [PubMed]

Novoselov, K. S.

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

Nuckolls, C.

C. Lee, G. Lee, A. Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Oulton, R.

S. N. Sanchez, M. L. Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular-dielectric photonic integration,” ACS Photon. 3(5), 743–748 (2016).
[Crossref]

Padooru, Y. R.

C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85, 245407 (2012).
[Crossref]

Pan, L.

X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6, 32616 (2016).
[Crossref]

Park, G. S.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
[Crossref] [PubMed]

Pei, M.

Petruzzelli, V.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102, 231111 (2013).
[Crossref]

Pettersson, L. A. A.

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–496 (1999).
[Crossref]

Pospischil, A.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Rao, Y. J.

Rarity, J. G.

S. N. Sanchez, M. L. Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular-dielectric photonic integration,” ACS Photon. 3(5), 743–748 (2016).
[Crossref]

Reineck, P.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Ren, M.

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

Rodrigo, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Roman, L. S.

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–496 (1999).
[Crossref]

Sanchez, S. N.

S. N. Sanchez, M. L. Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular-dielectric photonic integration,” ACS Photon. 3(5), 743–748 (2016).
[Crossref]

Sasin, M. E.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Scalora, M.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102, 231111 (2013).
[Crossref]

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect,” Opt. Lett. 38(18), 3550–3552 (2013).
[Crossref] [PubMed]

Schrenk, W.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Seisyan, R. P.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Seneor, P.

Serry, M.

S. N. Sanchez, M. L. Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular-dielectric photonic integration,” ACS Photon. 3(5), 743–748 (2016).
[Crossref]

Shao, H.

J. Wang, X. Wang, H. Shao, Z. Hu, G. Zeng, and F. Zhang, “Peak modulation in multicavity-coupled graphene-based waveguide system,” Nanoscale Res. Lett. 12(9), 474 (2017).
[Crossref]

Shelykh, I. A.

M. Kaliteevski, I Iorsh, S. Brand, R. A. Abram, I. A. Shelykh, and A. V. Kavokin, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

Shenoy, M. R.

A. K. Ghatak, K. Thayagarajan, and M. R. Shenoy, “Numerical analysis of planar waveguide using matrix method,” J. Lightwave Technol. 5(5), 660–667 (1987).
[Crossref]

Shi, B.

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

Shukla, M. K.

A. Kumari, S. Kumar, M. K. Shukla, G. Kumar, P. S. Maji, R. Vijaya, and R. Das, “Coupling to Tamm-plasmon-polaritons: dependence on structural parameters,” J. Phys. D 51(25), 255103 (2018).
[Crossref]

P. S. Maji, M. K. Shukla, and R. Das, “Blood component detection based on miniaturized self-referenced hybrid Tamm-plasmon-polariton sensor,” Sens. Actuators B 255, 729–734 (2018).
[Crossref]

S. Kumar, M. K. Shukla, P. S. Maji, and R. Das, “Self-referenced refractive index sensing with hybrid-Tamm-plasmon-polariton modes in sub-wavelength analyte layers,” J. Phys. D 50(37), 375106 (2017).
[Crossref]

Soler Illia, G. J. A. A.

B. Auguie, M. C. Fuertes, P. C. Angelome, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photon. 1(9), 775–780 (2014).
[Crossref]

Srivastava, T.

Stomeo, T.

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102, 231111 (2013).
[Crossref]

Strasser, G.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Su, H.

H. Wang, H. Zhao, G. Hu, S. Li, H. Su, and J. Zhang, “Graphene based surface plasmon polariton modulator controlled by ferroelectric domains in lithium niobate,” Sci. Rep. 5, 18258 (2015).
[Crossref] [PubMed]

Tang, C.

B. Liu, C. Tang, J. Chen, N. Xie, L. Zheng, and S. Wang, “Tri-band absorption enhancement in monolayer graphene in visible spectrum due to multiple plasmon resonances in metal-insulator-metal nanostructure,” Appl. Phys. Express 11(7), 0722201 (2018).
[Crossref]

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
[Crossref] [PubMed]

B. Liu, C. Tang, J. Chen, Q. Wang, M. Pei, and H. Tang, “Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials,” Opt. Express 25(10), 12061–12068 (2017).
[Crossref] [PubMed]

Tang, D.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Tang, D. Y.

Tang, H.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
[Crossref] [PubMed]

B. Liu, C. Tang, J. Chen, Q. Wang, M. Pei, and H. Tang, “Dual-band light absorption enhancement of monolayer graphene from surface plasmon polaritons and magnetic dipole resonances in metamaterials,” Opt. Express 25(10), 12061–12068 (2017).
[Crossref] [PubMed]

Thayagarajan, K.

A. K. Ghatak, K. Thayagarajan, and M. R. Shenoy, “Numerical analysis of planar waveguide using matrix method,” J. Lightwave Technol. 5(5), 660–667 (1987).
[Crossref]

Tian, J.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Tunable dual-band asymmetric transmission for circularly polarized waves with graphene planar chiral metasurfaces,” Opt. Lett. 41(13), 2773–2777 (2012).

Unterrainer, K.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Urich, A.

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Vasil’ev, A. P.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Vijaya, R.

A. Kumari, S. Kumar, M. K. Shukla, G. Kumar, P. S. Maji, R. Vijaya, and R. Das, “Coupling to Tamm-plasmon-polaritons: dependence on structural parameters,” J. Phys. D 51(25), 255103 (2018).
[Crossref]

Vincenti, M. A.

M. A. Vincenti, D. de Ceglia, M. Grande, A. D’Orazio, and M. Scalora, “Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect,” Opt. Lett. 38(18), 3550–3552 (2013).
[Crossref] [PubMed]

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102, 231111 (2013).
[Crossref]

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Wang, F.

Wang, H.

H. Wang, H. Zhao, G. Hu, S. Li, H. Su, and J. Zhang, “Graphene based surface plasmon polariton modulator controlled by ferroelectric domains in lithium niobate,” Sci. Rep. 5, 18258 (2015).
[Crossref] [PubMed]

Wang, H. T.

B. Gu, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Theory of Gaussian beam Z scan with simultaneous third- and fifth-order nonlinear refraction based on a Gaussian decomposition method,” J. Opt. Soc. Am. B 306 (22), 2651–2659 (2005).
[Crossref]

Wang, J.

J. Wang, X. Wang, H. Shao, Z. Hu, G. Zeng, and F. Zhang, “Peak modulation in multicavity-coupled graphene-based waveguide system,” Nanoscale Res. Lett. 12(9), 474 (2017).
[Crossref]

X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6, 32616 (2016).
[Crossref]

Wang, Q.

Wang, S.

B. Liu, C. Tang, J. Chen, N. Xie, L. Zheng, and S. Wang, “Tri-band absorption enhancement in monolayer graphene in visible spectrum due to multiple plasmon resonances in metal-insulator-metal nanostructure,” Appl. Phys. Express 11(7), 0722201 (2018).
[Crossref]

Wang, X.

J. Wang, X. Wang, H. Shao, Z. Hu, G. Zeng, and F. Zhang, “Peak modulation in multicavity-coupled graphene-based waveguide system,” Nanoscale Res. Lett. 12(9), 474 (2017).
[Crossref]

X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6, 32616 (2016).
[Crossref]

Wang, Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Wen, S. C.

Xiang, Y.

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

Xiao, F.

Xie, N.

B. Liu, C. Tang, J. Chen, N. Xie, L. Zheng, and S. Wang, “Tri-band absorption enhancement in monolayer graphene in visible spectrum due to multiple plasmon resonances in metal-insulator-metal nanostructure,” Appl. Phys. Express 11(7), 0722201 (2018).
[Crossref]

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
[Crossref] [PubMed]

Xu, J.

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

Yakovlev, A. B.

C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85, 245407 (2012).
[Crossref]

Yang, D.

Yu. Egorov, A.

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

Zande, A.

C. Lee, G. Lee, A. Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Zeng, C.

H. Lu, D. Mao, C. Zeng, F. Xiao, D. Yang, T. Mei, and J. Zhao, “Plasmonic Fano spectral response from graphene metasurfaces in the MIR region,” Opt. Mater. Express 8(4), 1058–1068 (2018).
[Crossref]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Zeng, G.

J. Wang, X. Wang, H. Shao, Z. Hu, G. Zeng, and F. Zhang, “Peak modulation in multicavity-coupled graphene-based waveguide system,” Nanoscale Res. Lett. 12(9), 474 (2017).
[Crossref]

Zhan, Y.

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

Zhang, F.

J. Wang, X. Wang, H. Shao, Z. Hu, G. Zeng, and F. Zhang, “Peak modulation in multicavity-coupled graphene-based waveguide system,” Nanoscale Res. Lett. 12(9), 474 (2017).
[Crossref]

Zhang, H.

Zhang, J.

H. Wang, H. Zhao, G. Hu, S. Li, H. Su, and J. Zhang, “Graphene based surface plasmon polariton modulator controlled by ferroelectric domains in lithium niobate,” Sci. Rep. 5, 18258 (2015).
[Crossref] [PubMed]

Zhang, Q.

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

Zhang, W. L.

Zhang, X.

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

Zhao, H.

H. Wang, H. Zhao, G. Hu, S. Li, H. Su, and J. Zhang, “Graphene based surface plasmon polariton modulator controlled by ferroelectric domains in lithium niobate,” Sci. Rep. 5, 18258 (2015).
[Crossref] [PubMed]

Zhao, J.

Zheng, J.

Zheng, L.

B. Liu, C. Tang, J. Chen, N. Xie, L. Zheng, and S. Wang, “Tri-band absorption enhancement in monolayer graphene in visible spectrum due to multiple plasmon resonances in metal-insulator-metal nanostructure,” Appl. Phys. Express 11(7), 0722201 (2018).
[Crossref]

Zhong, Z.

C. Liu, Y. Chang, T. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref] [PubMed]

Zhu, X.

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
[Crossref] [PubMed]

ACS Nano (1)

Q. Bao and K. P. Loh, “Graphene phototnics, plasmonics and broadband optoelectronic devices,” ACS Nano 6(5), 3677–3694 (2012).
[Crossref] [PubMed]

ACS Photon. (2)

B. Auguie, M. C. Fuertes, P. C. Angelome, N. L. Abdala, G. J. A. A. Soler Illia, and A. Fainstein, “Tamm plasmon resonance in mesoporous multilayers: toward a sensing application,” ACS Photon. 1(9), 775–780 (2014).
[Crossref]

S. N. Sanchez, M. L. Garcia, M. M. Murshidy, A. G. Abdel-Hady, M. Serry, A. M. Adawi, J. G. Rarity, R. Oulton, and W. L. Barnes, “Excitonic optical Tamm states: a step toward a full molecular-dielectric photonic integration,” ACS Photon. 3(5), 743–748 (2016).
[Crossref]

Adv. Mater. (1)

G. F. Burkhard, E. T. Hoke, and M. D. McGehee, “Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells,” Adv. Mater. 22(30), 3293–3297 (2010).
[Crossref] [PubMed]

Appl. Phys. Express (1)

B. Liu, C. Tang, J. Chen, N. Xie, L. Zheng, and S. Wang, “Tri-band absorption enhancement in monolayer graphene in visible spectrum due to multiple plasmon resonances in metal-insulator-metal nanostructure,” Appl. Phys. Express 11(7), 0722201 (2018).
[Crossref]

Appl. Phys. Lett. (3)

M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008).
[Crossref]

J.-T. Liu, N.-H. Liu, J. Li, X. J. Li, and J.-H. Huang, “Enhanced absorption of graphene with one-dimensional photonic crystal,” Appl. Phys. Lett. 101, 052104 (2012).
[Crossref]

M. Grande, T. Stomeo, G. V. Bianco, M. A. Vincenti, D. de Ceglia, V. Petruzzelli, G. Bruno, M. De Vittorio, M. Scalora, and A. D’Orazio, “Fabrication of doubly resonant plasmonic nanopatch arrays on graphene,” Appl. Phys. Lett. 102, 231111 (2013).
[Crossref]

J. Appl. Phys. (1)

L. A. A. Pettersson, L. S. Roman, and O. Inganas, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys. 86, 487–496 (1999).
[Crossref]

J. Lightwave Technol. (2)

P. S. Maji and R. Das, “Hybrid-Tamm-plasmon-polariton based self-reference temperature sensor,” J. Lightwave Technol. 35(14), 2833–2839 (2017).
[Crossref]

A. K. Ghatak, K. Thayagarajan, and M. R. Shenoy, “Numerical analysis of planar waveguide using matrix method,” J. Lightwave Technol. 5(5), 660–667 (1987).
[Crossref]

J. Opt. Soc. Am. B (1)

B. Gu, J. Chen, Y. X. Fan, J. Ding, and H. T. Wang, “Theory of Gaussian beam Z scan with simultaneous third- and fifth-order nonlinear refraction based on a Gaussian decomposition method,” J. Opt. Soc. Am. B 306 (22), 2651–2659 (2005).
[Crossref]

J. Phys. Chem. C (1)

K. V. Anil Kumar, S. Kumar, S. M. Dharmaprakash, and R. Das, “Impact of α − β transition in the ultrafast high-order nonlinear optical properties of metal-free phthalocyanine thin films,” J. Phys. Chem. C 120(12), 6733–6740 (2016).
[Crossref]

J. Phys. D (2)

A. Kumari, S. Kumar, M. K. Shukla, G. Kumar, P. S. Maji, R. Vijaya, and R. Das, “Coupling to Tamm-plasmon-polaritons: dependence on structural parameters,” J. Phys. D 51(25), 255103 (2018).
[Crossref]

S. Kumar, M. K. Shukla, P. S. Maji, and R. Das, “Self-referenced refractive index sensing with hybrid-Tamm-plasmon-polariton modes in sub-wavelength analyte layers,” J. Phys. D 50(37), 375106 (2017).
[Crossref]

Nano Lett. (1)

M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, and T. Mueller, “Microcavity-integrated graphene photodetector,” Nano Lett. 12(6), 2773–2777 (2012).
[Crossref] [PubMed]

Nanoscale Res. Lett. (2)

J. Wang, X. Wang, H. Shao, Z. Hu, G. Zeng, and F. Zhang, “Peak modulation in multicavity-coupled graphene-based waveguide system,” Nanoscale Res. Lett. 12(9), 474 (2017).
[Crossref]

B. Liu, C. Tang, J. Chen, N. Xie, H. Tang, X. Zhu, and G. S. Park, “Multiband and broadband absorption enhancement of monolayer graphene at optical frequencies from multiple magnetic dipole resonances in metamaterials,” Nanoscale Res. Lett. 13(1), 153 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

T. J. Echtermeyer, L. Britnell, P. K. Jasnos, A. Lombardo, R. V. Gorbachev, A. N. Grigorenko, A. K. Geim, A. C. Ferrari, and K. S. Novoselov, “Strong plasmonic enhancement of photovoltage in graphene,” Nat. Commun. 2, 458 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

C. Liu, Y. Chang, T. Norris, and Z. Zhong, “Graphene photodetectors with ultra-broadband and high responsivity at room temperature,” Nat. Nanotechnol. 9, 273–278 (2014).
[Crossref] [PubMed]

C. Lee, G. Lee, A. Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. Heinz, J. Guo, J. Hone, and P. Kim, “Atomically thin p-n junctions with van der Waals heterointerfaces,” Nat. Nanotechnol. 9, 676–681 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, D. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Opt. Mater. Express (1)

Photon. Res. (1)

Phys. Rev. B (3)

A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405 (2012).
[Crossref]

M. Kaliteevski, I Iorsh, S. Brand, R. A. Abram, I. A. Shelykh, and A. V. Kavokin, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[Crossref]

C. S. R. Kaipa, A. B. Yakovlev, G. W. Hanson, Y. R. Padooru, F. Medina, and F. Mesa, “Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies,” Phys. Rev. B 85, 245407 (2012).
[Crossref]

Sci. Rep. (4)

X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6, 32616 (2016).
[Crossref]

H. Lu, C. Zeng, Q. Zhang, X. Liu, M. Hossain, P. Reineck, and M. Gu, “Graphene-based active slow surface plasmon polaritons,” Sci. Rep. 5, 8443 (2015).
[Crossref] [PubMed]

B. Shi, W. Cai, X. Zhang, Y. Xiang, Y. Zhan, J. Geng, M. Ren, and J. Xu, “Tunable band-stop filters for graphene plasmons based on periodically modulated graphene,” Sci. Rep. 6, 26796 (2016).
[Crossref] [PubMed]

H. Wang, H. Zhao, G. Hu, S. Li, H. Su, and J. Zhang, “Graphene based surface plasmon polariton modulator controlled by ferroelectric domains in lithium niobate,” Sci. Rep. 5, 18258 (2015).
[Crossref] [PubMed]

Science (1)

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. Garcia de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Sens. Actuators B (1)

P. S. Maji, M. K. Shukla, and R. Das, “Blood component detection based on miniaturized self-referenced hybrid Tamm-plasmon-polariton sensor,” Sens. Actuators B 255, 729–734 (2018).
[Crossref]

Other (1)

http://photonics-benelux.org/images/stories/media/proceedings/2016/s16p057.pdf

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the proposed multilayer configuration which has graphene monolayer embedded in the spacer layer. (b) Reflection and absorption spectrum of the multilayer configuration shown in Fig. 1(a). Shaded area represents the photonic bandgap (PBG) of DBR. (c) Mode-field distribution of TPP-mode at λr.
Fig. 2
Fig. 2 Mode-field distribution at resonance wavelength superimposed on the RIP of the geometry for TPP configurations terminated by high-index constituent layer (no spacer layer) (a) without graphene and (b) with graphene monolayer.
Fig. 3
Fig. 3 (a) Reflection and absorption spectrum of the multilayer configuration with monolayer graphene being present within the spacer layer. (b) Mode-field distribution at λr = 628.5 nm superimposed on the RIP of the geometry. Graphene is positioned at ds1 as per Fig. 1(a).
Fig. 4
Fig. 4 (a) Variation of monolayer graphene absorption and the total absorption as a function of wavelength. Inset: Graphene absorption in TPP structure in comparison with free-standing monolayer graphene. (b) Map representing the variation in absorption spectrum as a function of ds1.
Fig. 5
Fig. 5 Normalised closed aperture (CA) transmittance for (a) free-standing monolayer graphene and (b) monolayer graphene embedded in Ag-DBR geometry. Normalised open-aperture (OA) transmittance for (c) free-standing monolayer graphene and (d) monolayer graphene embedded in Ag-DBR geometry.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

σ intra = i e 2 k B T π 2 ( ω + i τ 1 ) [ μ c k B T + 2 ln [ 1 + exp ( μ c k B T ) ] ]
σ inter = i e 2 4 π ln [ 2 μ c ( ω + i τ 1 ) 2 μ c + ( ω + i τ 1 ) ]
x = y = i σ s o ω Δ
z = r
S = [ S 11 S 12 S 21 S 21 ] = ( n = 1 m I ( n 1 ) n L n ) . I m ( m + 1 )
I j k = 1 t j k [ 1 Γ j k Γ j k 1 ]
L j = [ e i ξ d j 0 0 e i ξ d j ]
T ( z , ϕ 0 ) = 1 + 4 x ϕ 01 ( x 2 + 1 ) ( x 2 + 9 )
T ( z ) = [ 1 + β I 0 L ( x 2 + 1 ) ] / ( 1 α 0 L )

Metrics