Abstract

This paper reports on the design optimization of compact optical ON-OFF switches based on a GST-clad silicon rib waveguide and compares it to a GST-clad silicon nanowire at the telecommunication wavelength 1.55 µm. Effective index and modal loss of the quasi-TE modes are calculated by a full-vectorial H-field finite element method. It shows that the electro-refraction effect-based switch may not be viable because of the higher modal loss in the GST crystalline state. On the other hand, the larger modal loss difference between GST amorphous and crystalline states would be more suitable for an electro-absorption type switch design. The effect of silicon slab thickness, silicon core width, and GST layer thickness for both the waveguides are presented. As the presence of the GST layer modifies the mode field profiles, so the incurring coupling loss at the butt-coupled junctions between the input/output silicon waveguide and Si-GST waveguide are also calculated by using the least squares boundary residual method. These results show that the GST-clad silicon rib waveguide with a 500-nm-wide silicon core, 60-90 nm thick silicon slab, and 15-25 nm thick GST layer is the optimal self-sustained switch design. In this case, a very compact, 2-5 µm long device is expected to show an extinction ratio of more than 20 dB with the total insertion loss of only 0.36 dB.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design, optimization, and performance evaluation of GSST clad low-loss non-volatile switches

Junchao Song, Souvik Ghosh, Hanyu Zhang, Linjie Zhou, and B. M. A. Rahman
Appl. Opt. 58(31) 8687-8694 (2019)

Electro-optical phase-change 2 × 2 switching using three- and four-waveguide directional couplers

Haibo Liang, Richard Soref, Jianwei Mu, Xun Li, and Wei-Ping Huang
Appl. Opt. 54(19) 5897-5902 (2015)

All-optical switch and logic gates based on hybrid silicon-Ge2Sb2Te5 metasurfaces

Zhaojian Zhang, Junbo Yang, Wei Bai, Yunxin Han, Xin He, Jie Huang, Dingbo Chen, Siyu Xu, and Wanlin Xie
Appl. Opt. 58(27) 7392-7396 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
    [Crossref]
  2. A. Joushaghani, J. Jeong, S. Paradis, D. Alain, J. S. Aitchison, and J. K. Poon, “Wavelength-size hybrid Si-VO2 waveguide electroabsorption optical switches and photodetectors,” Opt. Express 23(3), 3657–3668 (2015).
    [Crossref]
  3. D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
    [Crossref]
  4. H. Liang, R. Soref, J. Mu, A. Majumdar, X. Li, and W. Huang, “Simulations of silicon-on-insulator channel-waveguide electro-optical 2 × 2 switches and 1 × 1 modulators using a Ge2Sb2Te5 self-holding layer,” J. Lightwave Technol. 33(9), 1805–1813 (2015).
    [Crossref]
  5. M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
    [Crossref]
  6. T. Moriyama, H. Kawashima, M. Kuwahara, X. Wang, H. Asakura, and H. Tsuda, “Small-sized Mach-Zehnder interferometer optical switch using thin film Ge2Sb2Te5 phase-change material,” Optical Fiber Communications Conference and Exhibition, San Francisco, USA, 2014, p. Tu3E.4.
  7. K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium–tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
    [Crossref]
  8. R. L. Cotton and J. Siegel, “Stimulated crystallization of melt-quenched Ge2Sb2Te5 films employing femtosecond laser double pulses,” J. Appl. Phys. 112(12), 123520 (2012).
    [Crossref]
  9. H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, and J. Song, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photon. J. 10(1), 1–10 (2018).
    [Crossref]
  10. B. M. A. Rahman and J. B. Davies, “Finite element solution of integrated optical waveguides,” J. Lightwave Technol. 2(5), 682–688 (1984).
    [Crossref]
  11. C. Themistos, B. M. A. Rahman, A. Hadjicharalambous, and K. T. V. Grattan, “Loss/gain characterization of optical waveguides,” J. Lightwave Technol. 13(8), 1760–1765 (1995).
    [Crossref]
  12. B. M. A. Rahman and J. B. Davies, “Analyses of optical waveguide discontinuities,” J. Lightwave Technol. 6(1), 52–57 (1988).
    [Crossref]
  13. Private communications, H. Zhang and L. Zhou, State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

2018 (1)

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, and J. Song, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photon. J. 10(1), 1–10 (2018).
[Crossref]

2017 (2)

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium–tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

2016 (1)

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

2015 (2)

2012 (2)

1995 (1)

C. Themistos, B. M. A. Rahman, A. Hadjicharalambous, and K. T. V. Grattan, “Loss/gain characterization of optical waveguides,” J. Lightwave Technol. 13(8), 1760–1765 (1995).
[Crossref]

1988 (1)

B. M. A. Rahman and J. B. Davies, “Analyses of optical waveguide discontinuities,” J. Lightwave Technol. 6(1), 52–57 (1988).
[Crossref]

1984 (1)

B. M. A. Rahman and J. B. Davies, “Finite element solution of integrated optical waveguides,” J. Lightwave Technol. 2(5), 682–688 (1984).
[Crossref]

Aitchison, J. S.

Alain, D.

Asakura, H.

T. Moriyama, H. Kawashima, M. Kuwahara, X. Wang, H. Asakura, and H. Tsuda, “Small-sized Mach-Zehnder interferometer optical switch using thin film Ge2Sb2Te5 phase-change material,” Optical Fiber Communications Conference and Exhibition, San Francisco, USA, 2014, p. Tu3E.4.

Bhaskaran, H.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

Cotton, R. L.

R. L. Cotton and J. Siegel, “Stimulated crystallization of melt-quenched Ge2Sb2Te5 films employing femtosecond laser double pulses,” J. Appl. Phys. 112(12), 123520 (2012).
[Crossref]

Davies, J. B.

B. M. A. Rahman and J. B. Davies, “Analyses of optical waveguide discontinuities,” J. Lightwave Technol. 6(1), 52–57 (1988).
[Crossref]

B. M. A. Rahman and J. B. Davies, “Finite element solution of integrated optical waveguides,” J. Lightwave Technol. 2(5), 682–688 (1984).
[Crossref]

Grattan, K. T. V.

C. Themistos, B. M. A. Rahman, A. Hadjicharalambous, and K. T. V. Grattan, “Loss/gain characterization of optical waveguides,” J. Lightwave Technol. 13(8), 1760–1765 (1995).
[Crossref]

Hadjicharalambous, A.

C. Themistos, B. M. A. Rahman, A. Hadjicharalambous, and K. T. V. Grattan, “Loss/gain characterization of optical waveguides,” J. Lightwave Technol. 13(8), 1760–1765 (1995).
[Crossref]

Huang, W.

Ikuma, Y.

Jeong, J.

Joushaghani, A.

Kato, K.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium–tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

Kawashima, H.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium–tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref]

T. Moriyama, H. Kawashima, M. Kuwahara, X. Wang, H. Asakura, and H. Tsuda, “Small-sized Mach-Zehnder interferometer optical switch using thin film Ge2Sb2Te5 phase-change material,” Optical Fiber Communications Conference and Exhibition, San Francisco, USA, 2014, p. Tu3E.4.

Kintaka, K.

Kuwahara, M.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium–tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref]

T. Moriyama, H. Kawashima, M. Kuwahara, X. Wang, H. Asakura, and H. Tsuda, “Small-sized Mach-Zehnder interferometer optical switch using thin film Ge2Sb2Te5 phase-change material,” Optical Fiber Communications Conference and Exhibition, San Francisco, USA, 2014, p. Tu3E.4.

Li, X.

Liang, H.

Lu, L.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, and J. Song, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photon. J. 10(1), 1–10 (2018).
[Crossref]

Majumdar, A.

Moriyama, T.

T. Moriyama, H. Kawashima, M. Kuwahara, X. Wang, H. Asakura, and H. Tsuda, “Small-sized Mach-Zehnder interferometer optical switch using thin film Ge2Sb2Te5 phase-change material,” Optical Fiber Communications Conference and Exhibition, San Francisco, USA, 2014, p. Tu3E.4.

Mu, J.

Paradis, S.

Pernice, W. H. P.

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

Poon, J. K.

Rahman, B. M. A.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, and J. Song, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photon. J. 10(1), 1–10 (2018).
[Crossref]

C. Themistos, B. M. A. Rahman, A. Hadjicharalambous, and K. T. V. Grattan, “Loss/gain characterization of optical waveguides,” J. Lightwave Technol. 13(8), 1760–1765 (1995).
[Crossref]

B. M. A. Rahman and J. B. Davies, “Analyses of optical waveguide discontinuities,” J. Lightwave Technol. 6(1), 52–57 (1988).
[Crossref]

B. M. A. Rahman and J. B. Davies, “Finite element solution of integrated optical waveguides,” J. Lightwave Technol. 2(5), 682–688 (1984).
[Crossref]

Ríos, C.

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

Shoji, Y.

Siegel, J.

R. L. Cotton and J. Siegel, “Stimulated crystallization of melt-quenched Ge2Sb2Te5 films employing femtosecond laser double pulses,” J. Appl. Phys. 112(12), 123520 (2012).
[Crossref]

Song, J.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, and J. Song, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photon. J. 10(1), 1–10 (2018).
[Crossref]

Soref, R.

Stegmaier, M.

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

Tanaka, D.

Taubner, T.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Themistos, C.

C. Themistos, B. M. A. Rahman, A. Hadjicharalambous, and K. T. V. Grattan, “Loss/gain characterization of optical waveguides,” J. Lightwave Technol. 13(8), 1760–1765 (1995).
[Crossref]

Toyosaki, T.

Tsuda, H.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium–tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref]

T. Moriyama, H. Kawashima, M. Kuwahara, X. Wang, H. Asakura, and H. Tsuda, “Small-sized Mach-Zehnder interferometer optical switch using thin film Ge2Sb2Te5 phase-change material,” Optical Fiber Communications Conference and Exhibition, San Francisco, USA, 2014, p. Tu3E.4.

Tsuruoka, T.

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium–tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

Wang, X.

D. Tanaka, Y. Shoji, M. Kuwahara, X. Wang, K. Kintaka, H. Kawashima, T. Toyosaki, Y. Ikuma, and H. Tsuda, “Ultra-small, self-holding, optical gate switch using Ge2Sb2Te5 with a multi-mode Si waveguide,” Opt. Express 20(9), 10283–10294 (2012).
[Crossref]

T. Moriyama, H. Kawashima, M. Kuwahara, X. Wang, H. Asakura, and H. Tsuda, “Small-sized Mach-Zehnder interferometer optical switch using thin film Ge2Sb2Te5 phase-change material,” Optical Fiber Communications Conference and Exhibition, San Francisco, USA, 2014, p. Tu3E.4.

Wu, X.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, and J. Song, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photon. J. 10(1), 1–10 (2018).
[Crossref]

Wuttig, M.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Xu, Y.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, and J. Song, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photon. J. 10(1), 1–10 (2018).
[Crossref]

Zhang, H.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, and J. Song, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photon. J. 10(1), 1–10 (2018).
[Crossref]

Private communications, H. Zhang and L. Zhou, State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Zhou, L.

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, and J. Song, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photon. J. 10(1), 1–10 (2018).
[Crossref]

Private communications, H. Zhang and L. Zhou, State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

ACS Photonics (1)

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photonics 3(5), 828–835 (2016).
[Crossref]

Appl. Phys. Express (1)

K. Kato, M. Kuwahara, H. Kawashima, T. Tsuruoka, and H. Tsuda, “Current-driven phase-change optical gate switch using indium–tin-oxide heater,” Appl. Phys. Express 10(7), 072201 (2017).
[Crossref]

IEEE Photon. J. (1)

H. Zhang, L. Zhou, B. M. A. Rahman, X. Wu, L. Lu, Y. Xu, and J. Song, “Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation,” IEEE Photon. J. 10(1), 1–10 (2018).
[Crossref]

J. Appl. Phys. (1)

R. L. Cotton and J. Siegel, “Stimulated crystallization of melt-quenched Ge2Sb2Te5 films employing femtosecond laser double pulses,” J. Appl. Phys. 112(12), 123520 (2012).
[Crossref]

J. Lightwave Technol. (4)

H. Liang, R. Soref, J. Mu, A. Majumdar, X. Li, and W. Huang, “Simulations of silicon-on-insulator channel-waveguide electro-optical 2 × 2 switches and 1 × 1 modulators using a Ge2Sb2Te5 self-holding layer,” J. Lightwave Technol. 33(9), 1805–1813 (2015).
[Crossref]

B. M. A. Rahman and J. B. Davies, “Finite element solution of integrated optical waveguides,” J. Lightwave Technol. 2(5), 682–688 (1984).
[Crossref]

C. Themistos, B. M. A. Rahman, A. Hadjicharalambous, and K. T. V. Grattan, “Loss/gain characterization of optical waveguides,” J. Lightwave Technol. 13(8), 1760–1765 (1995).
[Crossref]

B. M. A. Rahman and J. B. Davies, “Analyses of optical waveguide discontinuities,” J. Lightwave Technol. 6(1), 52–57 (1988).
[Crossref]

Nat. Photonics (1)

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

Opt. Express (2)

Other (2)

T. Moriyama, H. Kawashima, M. Kuwahara, X. Wang, H. Asakura, and H. Tsuda, “Small-sized Mach-Zehnder interferometer optical switch using thin film Ge2Sb2Te5 phase-change material,” Optical Fiber Communications Conference and Exhibition, San Francisco, USA, 2014, p. Tu3E.4.

Private communications, H. Zhang and L. Zhou, State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1. (a) Schematic of the optical switch (WG1 based), (b) Cross-sectional view of the coupled section WG1.
Fig. 2.
Fig. 2. (a) Hy field profile, (b) Hy variation along the vertical direction, for input silicon rib waveguide with W = 500 nm, H = 220 nm, and S = 90 nm.
Fig. 3.
Fig. 3. (a) Hy field profiles, (b) Hy variation along the vertical direction, for WG1 in amorphous state with W = 500 nm, H = 220 nm, S = 90 nm, T = 20 nm.
Fig. 4.
Fig. 4. (a) Hy field profiles, (b) Hy variation along the vertical direction, for WG1 in crystalline state with W = 500 nm, H = 220 nm, S = 90 nm, T = 20 nm.
Fig. 5.
Fig. 5. Variations of the real part of effective indices of WG1 in amorphous and crystalline states with the slab height, S, for two different widths.
Fig. 6.
Fig. 6. Variations of the real part of effective indices for amorphous and crystalline states with the GST thickness, T, for WG1 and WG2.
Fig. 7.
Fig. 7. Variations of the ER and Lπ of WG1 between the amorphous and crystalline states with Si slab height, S.
Fig. 8.
Fig. 8. Variations of the ER and Lπ between amorphous and crystalline states with GST thickness T for WG1 and WG2.
Fig. 9.
Fig. 9. Variations of mode loss of WG1 in amorphous and crystalline states with S of two different values of W.
Fig. 10.
Fig. 10. Total modal loss of WG1 in amorphous and crystalline states with varying S for two different widths.
Fig. 11.
Fig. 11. Lb and total modal loss of WG1 in amorphous state with varying S for two different W.
Fig. 12.
Fig. 12. Lb and total modal loss in amorphous state with varying T for WG1 and WG2.
Fig. 13.
Fig. 13. Variation of the total junction loss of WG1 in amorphous and crystalline states with the slab thickness, S.
Fig. 14.
Fig. 14. Variation of the total junction loss of WG1 and WG2 in amorphous and crystalline states with the GST thicknesses, T.
Fig. 15.
Fig. 15. Variations of total insertion loss of WG1 in amorphous state with slab thickness S.
Fig. 16.
Fig. 16. Variations of the total insertion loss for WG1 and WG2 in amorphous state with the GST thickness, T.

Tables (1)

Tables Icon

Table 1. Modal solution characteristics

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ω 2 = [ ( × H ) ε 1 ( × H ) d x d y + ρ ( × H ) ( × H ) ] d x d y H μ H d x d y
α = 4.343 × ( 4 π k e λ )
Δ φ = Δ β L = ( 2 π λ ) Δ n e L = ( 2 π λ ) ( n e 2 n e 1 ) L = ( 2 π λ ) E R L
L π = π Δ β = λ 2 Δ n e = λ 2 ( n e 2 n e 1 ) = λ 2 E R
L b ( μ m ) = 20 ( Δ α ) = 20 ( α 2 α 1 )

Metrics