Abstract

Designing high-performance electro-optic polymer modulators requires insight into device-specific waveguide losses. Losses for rib waveguiding structures fabricated using SE0100C core and NOA73 cladding layers are reported. The waveguide loss was measured at 4.2 dB/cm, which is high compared to losses for different electro-optic rib waveguides reported at 1.2-2.9 dB/cm. The refractive index of unpoled SEO100C was measured at 1.655, expanding on the manufacturer’s reported optical constants of 1.65 (TE) and 1.7 (TM) for poled SEO100C. Utilizing the reported specific structure loss in device design for minimal loss will facilitate high performance electro-optic polymer modulator applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Integration of electro-optic polymer modulators with low-loss fluorinated polymer waveguides

Seh-Won Ahn, William H. Steier, Yin-Hao Kuo, Min-Cheol Oh, Hyung-Jong Lee, Cheng Zhang, and Harold R. Fetterman
Opt. Lett. 27(23) 2109-2111 (2002)

Enhanced conductivity of sol-gel silica cladding for efficient poling in electro-optic polymer/TiO2 vertical slot waveguide modulators

Yasufumi Enami, Youssef Jouane, Jingdong Luo, and Alex K-Y. Jen
Opt. Express 22(24) 30191-30199 (2014)

High Δn strip-loaded electro-optic polymer waveguide modulator with low insertion loss

Christopher T. DeRose, R. Himmelhuber, D. Mathine, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian
Opt. Express 17(5) 3316-3321 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. P. Pogossian, L. Vescan, and A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,” J. Lightwave Technol. 16(10), 1851–1853 (1998).
    [Crossref]
  2. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
    [Crossref]
  3. J.-M. Liu, Photonic Devices (Cambridge University Press, 2005).
  4. Lumera Corporation, “Applications of Electro-optic Polymers and Devices: Breaking the High Frequency, Broad Bandwidth Barrier,” (February 2008).
  5. Y. Enami, A. Seki, S. Masuda, T. Joichi, J. Luo, and A. K. Y. Jen, “Bandwidth Optimization for Mach–Zehnder Polymer/Sol–Gel Modulators,” J. Lightwave Technol. 36(18), 4181–4189 (2018).
    [Crossref]
  6. S. B. Abraham and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr., Sect. B: Struct. Sci. 42(1), 61–68 (1986).
    [Crossref]
  7. “Lattice Parameter of Silicon” (NIST, 2018), retrieved 2019, https://physics.nist.gov/cgi-bin/cuu/Value?asil .
  8. R. Himmelhuber, O. D. Herrera, R. Voorakaranam, L. Li, A. M. Jones, R. A. Norwood, J. Luo, A. K. Y. Jen, and N. Peyghambarian, “A Silicon-Polymer Hybrid Modulator—Design, Simulation and Proof of Principle,” J. Lightwave Technol. 31(24), 4067–4072 (2013).
    [Crossref]
  9. Y. Jouane, Y. C. Chang, D. Zhang, J. Luo, A. K. Jen, and Y. Enami, “Unprecedented highest electro-optic coefficient of 226 pm/V for electro-optic polymer/TiO(2) multilayer slot waveguide modulators,” Opt. Express 22(22), 27725–27732 (2014).
    [Crossref]
  10. O. Min-Cheol, Z. Hua, Z. Cheng, H. Erlig, C. Yian, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
    [Crossref]
  11. Soluxra LLC, “Processing Description of SEO100C,” (unpublished.).
  12. M. F. Volk, S. Suntsov, C. E. Ruter, and D. Kip, “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing,” Opt. Express 24(2), 1386–1391 (2016).
    [Crossref]
  13. X.-L. Zhao, Y.-B. Yue, T. Liu, J. Sun, X.-B. Wang, X.-Q. Sun, C.-M. Chen, and D.-M. Zhang, “Optimized design and fabrication of nanosecond response electro–optic switch based on ultraviolet-curable polymers,” Chin. Phys. B 24(4), 044101 (2015).
    [Crossref]
  14. A. Hosseinzadeh, “Linear Ring Resonator Modulator for Microwave Photonic Links,” PhD (Michigan Technological University, Ann Arbor, 2018).
  15. S. M. Lindecrantz and O. G. Hellesø, “Estimation of Propagation Losses for Narrow Strip and Rib Waveguides,” IEEE Photonics Technol. Lett. 26(18), 1836–1839 (2014).
    [Crossref]
  16. A. R. Tynes, A. D. Pearson, and D. L. Bisbee, “Loss Mechanisms and Measurements in Clad Glass Fibers and Bulk Glass,” J. Opt. Soc. Am. 61(2), 143–153 (1971).
    [Crossref]
  17. E. A. J. Marcatili and S. E. Miller, “Improved relations describing directional control in electromagnetic wave guidance,” The Bell Syst. Tech. J. 48(7), 2161–2188 (1969).
    [Crossref]
  18. K. L. Kruse, “Multi-mode and single mode polymer waveguides and structures for short-haul optical interconnects,” (Michigan Technological University, 2015).
  19. J. A. Woolam Co., Guide to Using WVASE32 Spectroscopic Ellipsometry Data Acquisition and Analysis Software (J. A. Woolam Co., Inc., Lincoln, NE, 2008), p. 8.
  20. M. J. Briseno, “Electro-Optic Contact Poling of Polymer Waveguide Devices and Thin Films,” M.S. (Michigan Technological University, Ann Arbor, 2017).
  21. M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).
  22. Y. Enami, G. Meredith, N. Peyghambarian, and A. K. Y. Jen, “Hybrid electro-optic polymer/sol–gel waveguide modulator fabricated by all-wet etching process,” Appl. Phys. Lett. 83(23), 4692–4694 (2003).
    [Crossref]

2018 (1)

2016 (1)

2015 (1)

X.-L. Zhao, Y.-B. Yue, T. Liu, J. Sun, X.-B. Wang, X.-Q. Sun, C.-M. Chen, and D.-M. Zhang, “Optimized design and fabrication of nanosecond response electro–optic switch based on ultraviolet-curable polymers,” Chin. Phys. B 24(4), 044101 (2015).
[Crossref]

2014 (2)

2013 (1)

2003 (1)

Y. Enami, G. Meredith, N. Peyghambarian, and A. K. Y. Jen, “Hybrid electro-optic polymer/sol–gel waveguide modulator fabricated by all-wet etching process,” Appl. Phys. Lett. 83(23), 4692–4694 (2003).
[Crossref]

2001 (1)

O. Min-Cheol, Z. Hua, Z. Cheng, H. Erlig, C. Yian, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[Crossref]

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

1998 (1)

1986 (1)

S. B. Abraham and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr., Sect. B: Struct. Sci. 42(1), 61–68 (1986).
[Crossref]

1971 (1)

1969 (1)

E. A. J. Marcatili and S. E. Miller, “Improved relations describing directional control in electromagnetic wave guidance,” The Bell Syst. Tech. J. 48(7), 2161–2188 (1969).
[Crossref]

Abraham, S. B.

S. B. Abraham and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr., Sect. B: Struct. Sci. 42(1), 61–68 (1986).
[Crossref]

Akelaitis, A.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Amend, J.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Bale, D.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Bhatambrekar, N.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Bhattacharjee, S.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Bisbee, D. L.

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Briseno, M. J.

M. J. Briseno, “Electro-Optic Contact Poling of Polymer Waveguide Devices and Thin Films,” M.S. (Michigan Technological University, Ann Arbor, 2017).

Buker, N.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Chang, D.

O. Min-Cheol, Z. Hua, Z. Cheng, H. Erlig, C. Yian, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[Crossref]

Chang, Y. C.

Chen, A.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Chen, C.-M.

X.-L. Zhao, Y.-B. Yue, T. Liu, J. Sun, X.-B. Wang, X.-Q. Sun, C.-M. Chen, and D.-M. Zhang, “Optimized design and fabrication of nanosecond response electro–optic switch based on ultraviolet-curable polymers,” Chin. Phys. B 24(4), 044101 (2015).
[Crossref]

Cheng, Z.

O. Min-Cheol, Z. Hua, Z. Cheng, H. Erlig, C. Yian, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[Crossref]

Dalton, L.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Dalton, L. R.

O. Min-Cheol, Z. Hua, Z. Cheng, H. Erlig, C. Yian, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[Crossref]

Eich, M.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Eichinger, B.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Enami, Y.

Erlig, H.

O. Min-Cheol, Z. Hua, Z. Cheng, H. Erlig, C. Yian, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[Crossref]

Fetterman, H. R.

O. Min-Cheol, Z. Hua, Z. Cheng, H. Erlig, C. Yian, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[Crossref]

Firestone, K.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Haller, M.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Hammond, S.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Hellesø, O. G.

S. M. Lindecrantz and O. G. Hellesø, “Estimation of Propagation Losses for Narrow Strip and Rib Waveguides,” IEEE Photonics Technol. Lett. 26(18), 1836–1839 (2014).
[Crossref]

Herrera, O. D.

Himmelhuber, R.

Hosseinzadeh, A.

A. Hosseinzadeh, “Linear Ring Resonator Modulator for Microwave Photonic Links,” PhD (Michigan Technological University, Ann Arbor, 2018).

Hua, Z.

O. Min-Cheol, Z. Hua, Z. Cheng, H. Erlig, C. Yian, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[Crossref]

Jang, S.-H.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Jen, A.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Jen, A. K.

Jen, A. K. Y.

Joichi, T.

Jones, A. M.

Jouane, Y.

Kip, D.

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Kruse, K. L.

K. L. Kruse, “Multi-mode and single mode polymer waveguides and structures for short-haul optical interconnects,” (Michigan Technological University, 2015).

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Li, L.

Liao, Y.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Lindecrantz, S. M.

S. M. Lindecrantz and O. G. Hellesø, “Estimation of Propagation Losses for Narrow Strip and Rib Waveguides,” IEEE Photonics Technol. Lett. 26(18), 1836–1839 (2014).
[Crossref]

Lingwood, M.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Liu, J.-M.

J.-M. Liu, Photonic Devices (Cambridge University Press, 2005).

Liu, S.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Liu, T.

X.-L. Zhao, Y.-B. Yue, T. Liu, J. Sun, X.-B. Wang, X.-Q. Sun, C.-M. Chen, and D.-M. Zhang, “Optimized design and fabrication of nanosecond response electro–optic switch based on ultraviolet-curable polymers,” Chin. Phys. B 24(4), 044101 (2015).
[Crossref]

Luo, J.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Marcatili, E. A. J.

E. A. J. Marcatili and S. E. Miller, “Improved relations describing directional control in electromagnetic wave guidance,” The Bell Syst. Tech. J. 48(7), 2161–2188 (1969).
[Crossref]

Marsh, P.

S. B. Abraham and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr., Sect. B: Struct. Sci. 42(1), 61–68 (1986).
[Crossref]

Masuda, S.

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Meredith, G.

Y. Enami, G. Meredith, N. Peyghambarian, and A. K. Y. Jen, “Hybrid electro-optic polymer/sol–gel waveguide modulator fabricated by all-wet etching process,” Appl. Phys. Lett. 83(23), 4692–4694 (2003).
[Crossref]

Miller, S. E.

E. A. J. Marcatili and S. E. Miller, “Improved relations describing directional control in electromagnetic wave guidance,” The Bell Syst. Tech. J. 48(7), 2161–2188 (1969).
[Crossref]

Min-Cheol, O.

O. Min-Cheol, Z. Hua, Z. Cheng, H. Erlig, C. Yian, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[Crossref]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Norwood, R. A.

Pearson, A. D.

Peyghambarian, N.

R. Himmelhuber, O. D. Herrera, R. Voorakaranam, L. Li, A. M. Jones, R. A. Norwood, J. Luo, A. K. Y. Jen, and N. Peyghambarian, “A Silicon-Polymer Hybrid Modulator—Design, Simulation and Proof of Principle,” J. Lightwave Technol. 31(24), 4067–4072 (2013).
[Crossref]

Y. Enami, G. Meredith, N. Peyghambarian, and A. K. Y. Jen, “Hybrid electro-optic polymer/sol–gel waveguide modulator fabricated by all-wet etching process,” Appl. Phys. Lett. 83(23), 4692–4694 (2003).
[Crossref]

Pogossian, S. P.

Ried, P.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Robinson, B.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Rommel, H.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Ruter, C. E.

Seki, A.

Sinness, J.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Snoeberger, R.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Steier, W.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Steier, W. H.

O. Min-Cheol, Z. Hua, Z. Cheng, H. Erlig, C. Yian, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[Crossref]

Sullivan, P.

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

Sun, J.

X.-L. Zhao, Y.-B. Yue, T. Liu, J. Sun, X.-B. Wang, X.-Q. Sun, C.-M. Chen, and D.-M. Zhang, “Optimized design and fabrication of nanosecond response electro–optic switch based on ultraviolet-curable polymers,” Chin. Phys. B 24(4), 044101 (2015).
[Crossref]

Sun, X.-Q.

X.-L. Zhao, Y.-B. Yue, T. Liu, J. Sun, X.-B. Wang, X.-Q. Sun, C.-M. Chen, and D.-M. Zhang, “Optimized design and fabrication of nanosecond response electro–optic switch based on ultraviolet-curable polymers,” Chin. Phys. B 24(4), 044101 (2015).
[Crossref]

Suntsov, S.

Szep, A.

O. Min-Cheol, Z. Hua, Z. Cheng, H. Erlig, C. Yian, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[Crossref]

Tsap, B.

O. Min-Cheol, Z. Hua, Z. Cheng, H. Erlig, C. Yian, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[Crossref]

Tynes, A. R.

Vescan, L.

Volk, M. F.

Vonsovici, A.

Voorakaranam, R.

Wang, X.-B.

X.-L. Zhao, Y.-B. Yue, T. Liu, J. Sun, X.-B. Wang, X.-Q. Sun, C.-M. Chen, and D.-M. Zhang, “Optimized design and fabrication of nanosecond response electro–optic switch based on ultraviolet-curable polymers,” Chin. Phys. B 24(4), 044101 (2015).
[Crossref]

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Yian, C.

O. Min-Cheol, Z. Hua, Z. Cheng, H. Erlig, C. Yian, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[Crossref]

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Yue, Y.-B.

X.-L. Zhao, Y.-B. Yue, T. Liu, J. Sun, X.-B. Wang, X.-Q. Sun, C.-M. Chen, and D.-M. Zhang, “Optimized design and fabrication of nanosecond response electro–optic switch based on ultraviolet-curable polymers,” Chin. Phys. B 24(4), 044101 (2015).
[Crossref]

Zhang, D.

Zhang, D.-M.

X.-L. Zhao, Y.-B. Yue, T. Liu, J. Sun, X.-B. Wang, X.-Q. Sun, C.-M. Chen, and D.-M. Zhang, “Optimized design and fabrication of nanosecond response electro–optic switch based on ultraviolet-curable polymers,” Chin. Phys. B 24(4), 044101 (2015).
[Crossref]

Zhao, X.-L.

X.-L. Zhao, Y.-B. Yue, T. Liu, J. Sun, X.-B. Wang, X.-Q. Sun, C.-M. Chen, and D.-M. Zhang, “Optimized design and fabrication of nanosecond response electro–optic switch based on ultraviolet-curable polymers,” Chin. Phys. B 24(4), 044101 (2015).
[Crossref]

Acta Crystallogr., Sect. B: Struct. Sci. (1)

S. B. Abraham and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr., Sect. B: Struct. Sci. 42(1), 61–68 (1986).
[Crossref]

Appl. Phys. Lett. (1)

Y. Enami, G. Meredith, N. Peyghambarian, and A. K. Y. Jen, “Hybrid electro-optic polymer/sol–gel waveguide modulator fabricated by all-wet etching process,” Appl. Phys. Lett. 83(23), 4692–4694 (2003).
[Crossref]

Chin. Phys. B (1)

X.-L. Zhao, Y.-B. Yue, T. Liu, J. Sun, X.-B. Wang, X.-Q. Sun, C.-M. Chen, and D.-M. Zhang, “Optimized design and fabrication of nanosecond response electro–optic switch based on ultraviolet-curable polymers,” Chin. Phys. B 24(4), 044101 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

O. Min-Cheol, Z. Hua, Z. Cheng, H. Erlig, C. Yian, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[Crossref]

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. M. Lindecrantz and O. G. Hellesø, “Estimation of Propagation Losses for Narrow Strip and Rib Waveguides,” IEEE Photonics Technol. Lett. 26(18), 1836–1839 (2014).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. (1)

Opt. Express (2)

The Bell Syst. Tech. J. (1)

E. A. J. Marcatili and S. E. Miller, “Improved relations describing directional control in electromagnetic wave guidance,” The Bell Syst. Tech. J. 48(7), 2161–2188 (1969).
[Crossref]

Other (9)

K. L. Kruse, “Multi-mode and single mode polymer waveguides and structures for short-haul optical interconnects,” (Michigan Technological University, 2015).

J. A. Woolam Co., Guide to Using WVASE32 Spectroscopic Ellipsometry Data Acquisition and Analysis Software (J. A. Woolam Co., Inc., Lincoln, NE, 2008), p. 8.

M. J. Briseno, “Electro-Optic Contact Poling of Polymer Waveguide Devices and Thin Films,” M.S. (Michigan Technological University, Ann Arbor, 2017).

M. Eich, L. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” in Linear and Nonlinear Optics of Organic Materials V, (2005).

J.-M. Liu, Photonic Devices (Cambridge University Press, 2005).

Lumera Corporation, “Applications of Electro-optic Polymers and Devices: Breaking the High Frequency, Broad Bandwidth Barrier,” (February 2008).

“Lattice Parameter of Silicon” (NIST, 2018), retrieved 2019, https://physics.nist.gov/cgi-bin/cuu/Value?asil .

Soluxra LLC, “Processing Description of SEO100C,” (unpublished.).

A. Hosseinzadeh, “Linear Ring Resonator Modulator for Microwave Photonic Links,” PhD (Michigan Technological University, Ann Arbor, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Vertical Cross section of rib waveguide. Width (W) is 6 um, core height (H) is 2.7 um, and etched core height (h) is 2.033 um.
Fig. 2.
Fig. 2. Vertical cross-section of a rib waveguide structure fabricated with a polycarbonate core layer. Polycarbonate is the host polymer for the nonlinear chromophores of SEO100C and behaves similarly to SEO100C during fabrication. Polycarbonate cross-sections are much easier to image than SEO100C cross sections, due to their superior contrast with the cladding layers.
Fig. 3.
Fig. 3. Simulated electrode loss for various cladding thicknesses between the core and the electrodes.
Fig. 4.
Fig. 4. Experimental coupling setup. Input fiber is on the right, output fiber is on the left. Fibers were mounted on 3-axis micrometer stages.
Fig. 5.
Fig. 5. Experimental results from the cutback method. Insertion loss of eight waveguides were measured at each waveguide length. Measurements were made at 1550 nm.
Fig. 6.
Fig. 6. Dispersion curve for SEO100C as measured by ellipsometry. The refractive index at 1550 nm is highlighted with a value of 1.655.

Tables (2)

Tables Icon

Table 1. Rib Waveguide Loss for various EO Materials

Tables Icon

Table 2. Sellmeier Coefficients for SEO100C

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I n s e r t i o n L o s s d B = S c a t t e r i n g L o s s d B + A b s o r p t i o n L o s s d B + R o u g h n e s s L o s s d B + C o u p l i n g L o s s d B + E l e c t r o d e L o s s d B
W a v e g u i d e L o s s d B = S c a t t e r i n g L o s s d B + A b s o r p t i o n L o s s d B + R o u g h n e s s L o s s d B
n ( λ ) = 1 + B 1 λ 2 λ 2 C 1 + B 2 λ 2 λ 2 C 2 + B 3 λ 2 λ 2 C 3

Metrics