Abstract

Sunlight is being utilized to reduce energy crisis and it is a popular and reliable source of energy because of its pollution free nature. It is abundantly available on the Earth but difficult to achieve maximum efficiency during daytime without tracking. We have designed and developed a non-tracking solar concentrator system based on a combination of large Fresnel lens and segmented mirrors. Six segmented mirrors are mounted at different angles so that the concentrated light due to the Fresnel lens is redirected into a particular area throughout the day to achieve maximum concentration without tracking the sun. The entire system is mounted in a single mechanical mount with no moving parts. The concentrated sunlight was utilized for multipurpose solar applications. We have demonstrated simultaneous solar water heating and electricity generation by means of a thermoelectric generator (TEG) module using the developed system. The maximum temperature of water recorded at the outlet from the water heating system is 88°C and efficiency at this temperature is 0.47. The preliminary results of power generated from one TEG module is 40 mW. Experimental results of water heating throughout the day and electricity generation using TEG is reported. This type of system is unique, robust, and low cost for sunlight harvesting.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modified optical fiber daylighting system with sunlight transportation in free space

Ngoc-Hai Vu, Thanh-Tuan Pham, and Seoyong Shin
Opt. Express 24(26) A1528-A1545 (2016)

Concentrated and piped sunlight for indoor illumination

L. M. Fraas, W. R. Pyle, and P. R. Ryason
Appl. Opt. 22(4) 578-582 (1983)

References

  • View by:
  • |
  • |
  • |

  1. T.-L. Chen, “Air Pollution Caused by Coal-fired Power Plant in Middle Taiwan,” Int. J. Energy Power Eng. 6(6), 121 (2017).
    [Crossref]
  2. S. R. Wenham, M. A. Green, M. E. Watt, R. Corkish, and A. Sproul, Applied Photovoltaics (Routledge, 2013).
  3. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovoltaics 21(5), 827–837 (2013).
    [Crossref]
  4. I. Ullah and S. Shin, “Highly concentrated optical fiber-based daylighting systems for multi-floor office buildings,” Energy Build. 72, 246–261 (2014).
    [Crossref]
  5. I. Ullah and S.-Y. Shin, “Development of optical fiber-based daylighting system with uniform illumination,” J. Opt. Soc. Korea 16(3), 247–255 (2012).
    [Crossref]
  6. N.-H. Vu, T.-T. Pham, and S. Shin, “Modified optical fiber daylighting system with sunlight transportation in free space,” Opt. Express 24(26), A1528–A1545 (2016).
    [Crossref]
  7. N. H. Vu and S. Shin, “Optical fiber daylighting system combined with LED lighting and CPV based on stepped thickness waveguide for indoor lighting,” J. Opt. Soc. Korea 20(4), 488–499 (2016).
    [Crossref]
  8. P. M. Kapurkar and A. K. Kurchania, “Performance evaluation of fresnel lens concentrated solar water heater cum distillation unit,” Int. J. Agric. Eng. 6, 71–74 (2013).
  9. D. Sakharam, P. N. Ramesh, P. B. Tukaram, and P. S. Ramesh, “Design and Optimization of Solar Water Heating System By Using Fresnel Lens With 2-Axis Tracking Design and Optimization of Solar Water Heating System By Using Fresnel Lens With 2-Axis Tracking,” Int. J. Automot. Mech. Eng. 4, 113–118 (2015).
  10. T. C. Cheng, W. C. Hung, and T. H. Fang, “Two-axis solar heat collection tracker system for solar thermal applications,” Int. J. Photoenergy 2013, 1–7 (2013).
    [Crossref]
  11. A. Rajkrishna, “Solar Geyser Using Spot Fresnel Lens,” J. Fundam. Renewable Energy Appl. 6(2), 1–8 (2016).
    [Crossref]
  12. S. Abdallah and S. Nijmeh, “Two axes sun tracking system with PLC control,” Energy Convers. Manag. 45(11–12), 1931–1939 (2004).
    [Crossref]
  13. A. Al-Mohamad, “Efficiency improvements of photo-voltaic panels using a Sun-tracking system,” Appl. Energy 79(3), 345–354 (2004).
    [Crossref]
  14. R. C. Neville, “Solar energy collector orientation and tracking mode,” Sol. Energy 20(1), 7–11 (1978).
    [Crossref]
  15. A.-J. N. Khalifa and S. S. Al-Mutawalli, “Effect of two-axis sun tracking on the performance of compound parabolic concentrators,” Energy Convers. Manag. 39(10), 1073–1079 (1998).
    [Crossref]
  16. P. J. Hession and W. J. Bonwick, “Experience with a sun tracker system,” Sol. Energy 32(1), 3–11 (1984).
    [Crossref]
  17. M. J. Clifford and D. Eastwood, “Design of a novel solar tracker,” Sol. Energy 77(3), 269–280 (2004).
    [Crossref]
  18. V. Poulek, “Testing the new solar tracker with shape memory alloy actors,” in Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference-1994, 1994 IEEE First World Conference On (IEEE, 1994), Vol. 1, pp. 1131–1133.
  19. S.-S. N. Rumala, “A shadow method for automatic tracking,” Sol. Energy 37(3), 245–247 (1986).
    [Crossref]
  20. W. A. Lynch and Z. M. Salameh, “Simple electo-optically controlled dual axis sun tracker,” Sol. Energy 45(2), 65–69 (1990).
    [Crossref]
  21. V. Poulek and M. Libra, “New solar tracker,” Sol. Energy Mater. Sol. Cells 51(2), 113–120 (1998).
    [Crossref]
  22. C. Zheng, Q. Li, G. Rosengarten, E. Hawkes, and R. A. Taylor, “Compact, semi-passive beam steering prism array for solar concentrators,” Appl. Opt. 56(14), 4158–4167 (2017).
    [Crossref]
  23. C. Michel, J. Loicq, T. Thibert, and S. Habraken, “Optical study of diffraction grating/Fresnel lens combinations applied to a spectral-splitting solar concentrator for space applications,” Appl. Opt. 54(22), 6666–6673 (2015).
    [Crossref]
  24. D. S. Mehta, M. Gupta, S. K. Dubey, N. C. Nautiyal, A. K. Dubey, V. Kumar, and M. Kularia, “Non-Mechanical Tracking Solar Concentrator,” Indian Patent Filed Appl no 201811005585 (2018).
  25. S. LeBlanc, “Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications,” Sustainable Mater. Technol. 1–2, 26–35 (2014).
    [Crossref]
  26. D. Champier, “Thermoelectric generators: A review of applications,” Energy Convers. Manag. 140, 167–181 (2017).
    [Crossref]
  27. National Renewable Energy Laboratory, Renewable Resource Data Center, “Reference Solar Spectral Irradiance: ASTM G-173,” http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html
  28. J. Moan, “Visible light and UV radiation,” Radiat. Home, Outdoors Work. Oslo Scand. Publ. 69–85 (2001).
  29. J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes: Fourth Edition (John Wiley & Sons, Inc., 2013).
  30. R. Winston, J. C. Miñano, and P. G. Benitez, Nonimaging Optics (Elsevier, 2005).

2017 (3)

T.-L. Chen, “Air Pollution Caused by Coal-fired Power Plant in Middle Taiwan,” Int. J. Energy Power Eng. 6(6), 121 (2017).
[Crossref]

C. Zheng, Q. Li, G. Rosengarten, E. Hawkes, and R. A. Taylor, “Compact, semi-passive beam steering prism array for solar concentrators,” Appl. Opt. 56(14), 4158–4167 (2017).
[Crossref]

D. Champier, “Thermoelectric generators: A review of applications,” Energy Convers. Manag. 140, 167–181 (2017).
[Crossref]

2016 (3)

2015 (2)

D. Sakharam, P. N. Ramesh, P. B. Tukaram, and P. S. Ramesh, “Design and Optimization of Solar Water Heating System By Using Fresnel Lens With 2-Axis Tracking Design and Optimization of Solar Water Heating System By Using Fresnel Lens With 2-Axis Tracking,” Int. J. Automot. Mech. Eng. 4, 113–118 (2015).

C. Michel, J. Loicq, T. Thibert, and S. Habraken, “Optical study of diffraction grating/Fresnel lens combinations applied to a spectral-splitting solar concentrator for space applications,” Appl. Opt. 54(22), 6666–6673 (2015).
[Crossref]

2014 (2)

S. LeBlanc, “Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications,” Sustainable Mater. Technol. 1–2, 26–35 (2014).
[Crossref]

I. Ullah and S. Shin, “Highly concentrated optical fiber-based daylighting systems for multi-floor office buildings,” Energy Build. 72, 246–261 (2014).
[Crossref]

2013 (3)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovoltaics 21(5), 827–837 (2013).
[Crossref]

T. C. Cheng, W. C. Hung, and T. H. Fang, “Two-axis solar heat collection tracker system for solar thermal applications,” Int. J. Photoenergy 2013, 1–7 (2013).
[Crossref]

P. M. Kapurkar and A. K. Kurchania, “Performance evaluation of fresnel lens concentrated solar water heater cum distillation unit,” Int. J. Agric. Eng. 6, 71–74 (2013).

2012 (1)

2004 (3)

S. Abdallah and S. Nijmeh, “Two axes sun tracking system with PLC control,” Energy Convers. Manag. 45(11–12), 1931–1939 (2004).
[Crossref]

A. Al-Mohamad, “Efficiency improvements of photo-voltaic panels using a Sun-tracking system,” Appl. Energy 79(3), 345–354 (2004).
[Crossref]

M. J. Clifford and D. Eastwood, “Design of a novel solar tracker,” Sol. Energy 77(3), 269–280 (2004).
[Crossref]

1998 (2)

A.-J. N. Khalifa and S. S. Al-Mutawalli, “Effect of two-axis sun tracking on the performance of compound parabolic concentrators,” Energy Convers. Manag. 39(10), 1073–1079 (1998).
[Crossref]

V. Poulek and M. Libra, “New solar tracker,” Sol. Energy Mater. Sol. Cells 51(2), 113–120 (1998).
[Crossref]

1990 (1)

W. A. Lynch and Z. M. Salameh, “Simple electo-optically controlled dual axis sun tracker,” Sol. Energy 45(2), 65–69 (1990).
[Crossref]

1986 (1)

S.-S. N. Rumala, “A shadow method for automatic tracking,” Sol. Energy 37(3), 245–247 (1986).
[Crossref]

1984 (1)

P. J. Hession and W. J. Bonwick, “Experience with a sun tracker system,” Sol. Energy 32(1), 3–11 (1984).
[Crossref]

1978 (1)

R. C. Neville, “Solar energy collector orientation and tracking mode,” Sol. Energy 20(1), 7–11 (1978).
[Crossref]

Abdallah, S.

S. Abdallah and S. Nijmeh, “Two axes sun tracking system with PLC control,” Energy Convers. Manag. 45(11–12), 1931–1939 (2004).
[Crossref]

Al-Mohamad, A.

A. Al-Mohamad, “Efficiency improvements of photo-voltaic panels using a Sun-tracking system,” Appl. Energy 79(3), 345–354 (2004).
[Crossref]

Al-Mutawalli, S. S.

A.-J. N. Khalifa and S. S. Al-Mutawalli, “Effect of two-axis sun tracking on the performance of compound parabolic concentrators,” Energy Convers. Manag. 39(10), 1073–1079 (1998).
[Crossref]

Beckman, W. A.

J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes: Fourth Edition (John Wiley & Sons, Inc., 2013).

Benitez, P. G.

R. Winston, J. C. Miñano, and P. G. Benitez, Nonimaging Optics (Elsevier, 2005).

Bonwick, W. J.

P. J. Hession and W. J. Bonwick, “Experience with a sun tracker system,” Sol. Energy 32(1), 3–11 (1984).
[Crossref]

Champier, D.

D. Champier, “Thermoelectric generators: A review of applications,” Energy Convers. Manag. 140, 167–181 (2017).
[Crossref]

Chen, T.-L.

T.-L. Chen, “Air Pollution Caused by Coal-fired Power Plant in Middle Taiwan,” Int. J. Energy Power Eng. 6(6), 121 (2017).
[Crossref]

Cheng, T. C.

T. C. Cheng, W. C. Hung, and T. H. Fang, “Two-axis solar heat collection tracker system for solar thermal applications,” Int. J. Photoenergy 2013, 1–7 (2013).
[Crossref]

Clifford, M. J.

M. J. Clifford and D. Eastwood, “Design of a novel solar tracker,” Sol. Energy 77(3), 269–280 (2004).
[Crossref]

Corkish, R.

S. R. Wenham, M. A. Green, M. E. Watt, R. Corkish, and A. Sproul, Applied Photovoltaics (Routledge, 2013).

Dubey, A. K.

D. S. Mehta, M. Gupta, S. K. Dubey, N. C. Nautiyal, A. K. Dubey, V. Kumar, and M. Kularia, “Non-Mechanical Tracking Solar Concentrator,” Indian Patent Filed Appl no 201811005585 (2018).

Dubey, S. K.

D. S. Mehta, M. Gupta, S. K. Dubey, N. C. Nautiyal, A. K. Dubey, V. Kumar, and M. Kularia, “Non-Mechanical Tracking Solar Concentrator,” Indian Patent Filed Appl no 201811005585 (2018).

Duffie, J. A.

J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes: Fourth Edition (John Wiley & Sons, Inc., 2013).

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovoltaics 21(5), 827–837 (2013).
[Crossref]

Eastwood, D.

M. J. Clifford and D. Eastwood, “Design of a novel solar tracker,” Sol. Energy 77(3), 269–280 (2004).
[Crossref]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovoltaics 21(5), 827–837 (2013).
[Crossref]

Fang, T. H.

T. C. Cheng, W. C. Hung, and T. H. Fang, “Two-axis solar heat collection tracker system for solar thermal applications,” Int. J. Photoenergy 2013, 1–7 (2013).
[Crossref]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovoltaics 21(5), 827–837 (2013).
[Crossref]

S. R. Wenham, M. A. Green, M. E. Watt, R. Corkish, and A. Sproul, Applied Photovoltaics (Routledge, 2013).

Gupta, M.

D. S. Mehta, M. Gupta, S. K. Dubey, N. C. Nautiyal, A. K. Dubey, V. Kumar, and M. Kularia, “Non-Mechanical Tracking Solar Concentrator,” Indian Patent Filed Appl no 201811005585 (2018).

Habraken, S.

Hawkes, E.

Hession, P. J.

P. J. Hession and W. J. Bonwick, “Experience with a sun tracker system,” Sol. Energy 32(1), 3–11 (1984).
[Crossref]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovoltaics 21(5), 827–837 (2013).
[Crossref]

Hung, W. C.

T. C. Cheng, W. C. Hung, and T. H. Fang, “Two-axis solar heat collection tracker system for solar thermal applications,” Int. J. Photoenergy 2013, 1–7 (2013).
[Crossref]

Kapurkar, P. M.

P. M. Kapurkar and A. K. Kurchania, “Performance evaluation of fresnel lens concentrated solar water heater cum distillation unit,” Int. J. Agric. Eng. 6, 71–74 (2013).

Khalifa, A.-J. N.

A.-J. N. Khalifa and S. S. Al-Mutawalli, “Effect of two-axis sun tracking on the performance of compound parabolic concentrators,” Energy Convers. Manag. 39(10), 1073–1079 (1998).
[Crossref]

Kularia, M.

D. S. Mehta, M. Gupta, S. K. Dubey, N. C. Nautiyal, A. K. Dubey, V. Kumar, and M. Kularia, “Non-Mechanical Tracking Solar Concentrator,” Indian Patent Filed Appl no 201811005585 (2018).

Kumar, V.

D. S. Mehta, M. Gupta, S. K. Dubey, N. C. Nautiyal, A. K. Dubey, V. Kumar, and M. Kularia, “Non-Mechanical Tracking Solar Concentrator,” Indian Patent Filed Appl no 201811005585 (2018).

Kurchania, A. K.

P. M. Kapurkar and A. K. Kurchania, “Performance evaluation of fresnel lens concentrated solar water heater cum distillation unit,” Int. J. Agric. Eng. 6, 71–74 (2013).

LeBlanc, S.

S. LeBlanc, “Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications,” Sustainable Mater. Technol. 1–2, 26–35 (2014).
[Crossref]

Li, Q.

Libra, M.

V. Poulek and M. Libra, “New solar tracker,” Sol. Energy Mater. Sol. Cells 51(2), 113–120 (1998).
[Crossref]

Loicq, J.

Lynch, W. A.

W. A. Lynch and Z. M. Salameh, “Simple electo-optically controlled dual axis sun tracker,” Sol. Energy 45(2), 65–69 (1990).
[Crossref]

Mehta, D. S.

D. S. Mehta, M. Gupta, S. K. Dubey, N. C. Nautiyal, A. K. Dubey, V. Kumar, and M. Kularia, “Non-Mechanical Tracking Solar Concentrator,” Indian Patent Filed Appl no 201811005585 (2018).

Michel, C.

Miñano, J. C.

R. Winston, J. C. Miñano, and P. G. Benitez, Nonimaging Optics (Elsevier, 2005).

Moan, J.

J. Moan, “Visible light and UV radiation,” Radiat. Home, Outdoors Work. Oslo Scand. Publ. 69–85 (2001).

Nautiyal, N. C.

D. S. Mehta, M. Gupta, S. K. Dubey, N. C. Nautiyal, A. K. Dubey, V. Kumar, and M. Kularia, “Non-Mechanical Tracking Solar Concentrator,” Indian Patent Filed Appl no 201811005585 (2018).

Neville, R. C.

R. C. Neville, “Solar energy collector orientation and tracking mode,” Sol. Energy 20(1), 7–11 (1978).
[Crossref]

Nijmeh, S.

S. Abdallah and S. Nijmeh, “Two axes sun tracking system with PLC control,” Energy Convers. Manag. 45(11–12), 1931–1939 (2004).
[Crossref]

Pham, T.-T.

Poulek, V.

V. Poulek and M. Libra, “New solar tracker,” Sol. Energy Mater. Sol. Cells 51(2), 113–120 (1998).
[Crossref]

V. Poulek, “Testing the new solar tracker with shape memory alloy actors,” in Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference-1994, 1994 IEEE First World Conference On (IEEE, 1994), Vol. 1, pp. 1131–1133.

Rajkrishna, A.

A. Rajkrishna, “Solar Geyser Using Spot Fresnel Lens,” J. Fundam. Renewable Energy Appl. 6(2), 1–8 (2016).
[Crossref]

Ramesh, P. N.

D. Sakharam, P. N. Ramesh, P. B. Tukaram, and P. S. Ramesh, “Design and Optimization of Solar Water Heating System By Using Fresnel Lens With 2-Axis Tracking Design and Optimization of Solar Water Heating System By Using Fresnel Lens With 2-Axis Tracking,” Int. J. Automot. Mech. Eng. 4, 113–118 (2015).

Ramesh, P. S.

D. Sakharam, P. N. Ramesh, P. B. Tukaram, and P. S. Ramesh, “Design and Optimization of Solar Water Heating System By Using Fresnel Lens With 2-Axis Tracking Design and Optimization of Solar Water Heating System By Using Fresnel Lens With 2-Axis Tracking,” Int. J. Automot. Mech. Eng. 4, 113–118 (2015).

Rosengarten, G.

Rumala, S.-S. N.

S.-S. N. Rumala, “A shadow method for automatic tracking,” Sol. Energy 37(3), 245–247 (1986).
[Crossref]

Sakharam, D.

D. Sakharam, P. N. Ramesh, P. B. Tukaram, and P. S. Ramesh, “Design and Optimization of Solar Water Heating System By Using Fresnel Lens With 2-Axis Tracking Design and Optimization of Solar Water Heating System By Using Fresnel Lens With 2-Axis Tracking,” Int. J. Automot. Mech. Eng. 4, 113–118 (2015).

Salameh, Z. M.

W. A. Lynch and Z. M. Salameh, “Simple electo-optically controlled dual axis sun tracker,” Sol. Energy 45(2), 65–69 (1990).
[Crossref]

Shin, S.

Shin, S.-Y.

Sproul, A.

S. R. Wenham, M. A. Green, M. E. Watt, R. Corkish, and A. Sproul, Applied Photovoltaics (Routledge, 2013).

Taylor, R. A.

Thibert, T.

Tukaram, P. B.

D. Sakharam, P. N. Ramesh, P. B. Tukaram, and P. S. Ramesh, “Design and Optimization of Solar Water Heating System By Using Fresnel Lens With 2-Axis Tracking Design and Optimization of Solar Water Heating System By Using Fresnel Lens With 2-Axis Tracking,” Int. J. Automot. Mech. Eng. 4, 113–118 (2015).

Ullah, I.

I. Ullah and S. Shin, “Highly concentrated optical fiber-based daylighting systems for multi-floor office buildings,” Energy Build. 72, 246–261 (2014).
[Crossref]

I. Ullah and S.-Y. Shin, “Development of optical fiber-based daylighting system with uniform illumination,” J. Opt. Soc. Korea 16(3), 247–255 (2012).
[Crossref]

Vu, N. H.

Vu, N.-H.

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovoltaics 21(5), 827–837 (2013).
[Crossref]

Watt, M. E.

S. R. Wenham, M. A. Green, M. E. Watt, R. Corkish, and A. Sproul, Applied Photovoltaics (Routledge, 2013).

Wenham, S. R.

S. R. Wenham, M. A. Green, M. E. Watt, R. Corkish, and A. Sproul, Applied Photovoltaics (Routledge, 2013).

Winston, R.

R. Winston, J. C. Miñano, and P. G. Benitez, Nonimaging Optics (Elsevier, 2005).

Zheng, C.

Appl. Energy (1)

A. Al-Mohamad, “Efficiency improvements of photo-voltaic panels using a Sun-tracking system,” Appl. Energy 79(3), 345–354 (2004).
[Crossref]

Appl. Opt. (2)

Energy Build. (1)

I. Ullah and S. Shin, “Highly concentrated optical fiber-based daylighting systems for multi-floor office buildings,” Energy Build. 72, 246–261 (2014).
[Crossref]

Energy Convers. Manag. (3)

A.-J. N. Khalifa and S. S. Al-Mutawalli, “Effect of two-axis sun tracking on the performance of compound parabolic concentrators,” Energy Convers. Manag. 39(10), 1073–1079 (1998).
[Crossref]

D. Champier, “Thermoelectric generators: A review of applications,” Energy Convers. Manag. 140, 167–181 (2017).
[Crossref]

S. Abdallah and S. Nijmeh, “Two axes sun tracking system with PLC control,” Energy Convers. Manag. 45(11–12), 1931–1939 (2004).
[Crossref]

Int. J. Agric. Eng. (1)

P. M. Kapurkar and A. K. Kurchania, “Performance evaluation of fresnel lens concentrated solar water heater cum distillation unit,” Int. J. Agric. Eng. 6, 71–74 (2013).

Int. J. Automot. Mech. Eng. (1)

D. Sakharam, P. N. Ramesh, P. B. Tukaram, and P. S. Ramesh, “Design and Optimization of Solar Water Heating System By Using Fresnel Lens With 2-Axis Tracking Design and Optimization of Solar Water Heating System By Using Fresnel Lens With 2-Axis Tracking,” Int. J. Automot. Mech. Eng. 4, 113–118 (2015).

Int. J. Energy Power Eng. (1)

T.-L. Chen, “Air Pollution Caused by Coal-fired Power Plant in Middle Taiwan,” Int. J. Energy Power Eng. 6(6), 121 (2017).
[Crossref]

Int. J. Photoenergy (1)

T. C. Cheng, W. C. Hung, and T. H. Fang, “Two-axis solar heat collection tracker system for solar thermal applications,” Int. J. Photoenergy 2013, 1–7 (2013).
[Crossref]

J. Fundam. Renewable Energy Appl. (1)

A. Rajkrishna, “Solar Geyser Using Spot Fresnel Lens,” J. Fundam. Renewable Energy Appl. 6(2), 1–8 (2016).
[Crossref]

J. Opt. Soc. Korea (2)

Opt. Express (1)

Prog. Photovoltaics (1)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovoltaics 21(5), 827–837 (2013).
[Crossref]

Sol. Energy (5)

R. C. Neville, “Solar energy collector orientation and tracking mode,” Sol. Energy 20(1), 7–11 (1978).
[Crossref]

P. J. Hession and W. J. Bonwick, “Experience with a sun tracker system,” Sol. Energy 32(1), 3–11 (1984).
[Crossref]

M. J. Clifford and D. Eastwood, “Design of a novel solar tracker,” Sol. Energy 77(3), 269–280 (2004).
[Crossref]

S.-S. N. Rumala, “A shadow method for automatic tracking,” Sol. Energy 37(3), 245–247 (1986).
[Crossref]

W. A. Lynch and Z. M. Salameh, “Simple electo-optically controlled dual axis sun tracker,” Sol. Energy 45(2), 65–69 (1990).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

V. Poulek and M. Libra, “New solar tracker,” Sol. Energy Mater. Sol. Cells 51(2), 113–120 (1998).
[Crossref]

Sustainable Mater. Technol. (1)

S. LeBlanc, “Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications,” Sustainable Mater. Technol. 1–2, 26–35 (2014).
[Crossref]

Other (7)

D. S. Mehta, M. Gupta, S. K. Dubey, N. C. Nautiyal, A. K. Dubey, V. Kumar, and M. Kularia, “Non-Mechanical Tracking Solar Concentrator,” Indian Patent Filed Appl no 201811005585 (2018).

National Renewable Energy Laboratory, Renewable Resource Data Center, “Reference Solar Spectral Irradiance: ASTM G-173,” http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html

J. Moan, “Visible light and UV radiation,” Radiat. Home, Outdoors Work. Oslo Scand. Publ. 69–85 (2001).

J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes: Fourth Edition (John Wiley & Sons, Inc., 2013).

R. Winston, J. C. Miñano, and P. G. Benitez, Nonimaging Optics (Elsevier, 2005).

V. Poulek, “Testing the new solar tracker with shape memory alloy actors,” in Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference-1994, 1994 IEEE First World Conference On (IEEE, 1994), Vol. 1, pp. 1131–1133.

S. R. Wenham, M. A. Green, M. E. Watt, R. Corkish, and A. Sproul, Applied Photovoltaics (Routledge, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of Ray Tracing in Zemax for sunlight rays at different angles with fixed Fresnel lens (a) Morning hours (b) at Noon (c) Evening hours
Fig. 2.
Fig. 2. Schematic diagram of non-tracking solar concentrator
Fig. 3.
Fig. 3. Ray diagram of Non Imaging Fresnel lens
Fig. 4.
Fig. 4. Spectrum of Sunlight during daytime in Delhi (India) on 14-10-2018
Fig. 5.
Fig. 5. Schematic Diagram of Experimental Setup
Fig. 6.
Fig. 6. Temperature Variation of water inlet and outlet with respect to Solar Irradiations and time
Fig. 7.
Fig. 7. Efficiency Variation with respect to heat gain

Tables (2)

Tables Icon

Table 1. Details of data used for segmented mirror arrangement in Zemax software

Tables Icon

Table 2. Data collection for water heating

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E f f e c t i v e f o c a l L e n g t h = r n 1
Q = m × C p × ( T 2 T 1 )
η T h = Q A p I b Δ t
C . R g e o = a p e r t u r e a r e a o f t h e c o l l e c t o r s u r f a c e a r e a o f t h e r e c e i v e r

Metrics