Abstract

We have studied the reflection and transmission of traveling and evanescent plane waves, incident upon an ENZ material. The Fresnel reflection and transmission coefficients were obtained in the ENZ limit. For a p polarized incident wave, the transmission coefficient vanishes, except very close to normal incidence. The reflection coefficient is -1 for both traveling and evanescent waves. It is shown, however, that there is a finite electric field in the ENZ material, even though the transmission coefficient is zero. This field is either linearly polarized or circularly polarized. The magnetic field in the medium for p polarized illumination is zero, and therefore there can be no energy flow through the material. For s polarization, the magnetic field in the medium is circularly polarized, and energy can flow through the material, parallel to the interface.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Force on an electric dipole near an ENZ interface

Henk F. Arnoldus and Zhangjin Xu
J. Opt. Soc. Am. B 36(8) F18-F24 (2019)

Reflection and refraction of multipole radiation by an interface

Henk F. Arnoldus
J. Opt. Soc. Am. A 22(1) 190-198 (2005)

References

  • View by:
  • |
  • |
  • |

  1. M. W. McCall, A. Lakhtakia, and W. S. Weiglhofer, “The negative index of refraction demystified,” Eur. J. Phys. 23(3), 353–359 (2002).
    [Crossref]
  2. V. G. Vesalago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [Crossref]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref]
  4. X. Li and H. F. Arnoldus, “Fresnel coefficients for a layer of NIM,” Phys. Lett. A 377(34–36), 2235–2238 (2013).
    [Crossref]
  5. B. Edwards, A. Alù, M. E. Young, M. G. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
    [Crossref]
  6. H. Lobato-Morales, D. V. B. Murthy, A. Corona-Chávez, J. L. Olvera-Cervantes, and L. G. Guerrero-Ojeda, “Permittivity measurements at microwave frequencies using epsilon-near-zero (ENZ) tunnel structure,” IEEE Trans. Microw. Theory Tech. 59(7), 1863–1868 (2011).
    [Crossref]
  7. V. Torres, B. Orazbayev, V. Pacheco-Peña, J. Teniente, M. Beruete, M. Navarro-Cía, M. S. Ayza, and N. Engheta, “Experimental demonstration of a millimeter-wave metallic ENZ lens based on the energy squeezing principle,” IEEE Trans. Antennas Propag. 63(1), 231–239 (2015).
    [Crossref]
  8. M. Massaouti, A. A. Basharin, M. Kafesaki, M. F. Acosta, R. I. Merino, V. M. Orera, E. N. Economou, C. M. Soukoulis, and S. Tzortzakis, “Eutectic epsilon-near-zero metamaterial terahertz waveguides,” Opt. Lett. 38(7), 1140–1142 (2013).
    [Crossref]
  9. V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
    [Crossref]
  10. B. T. Schwartz and R. Piestun, “Total external reflection from metamaterials with ultralow refractive index,” J. Opt. Soc. Am. B 20(12), 2448–2453 (2003).
    [Crossref]
  11. E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
    [Crossref]
  12. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E 70(4), 046608 (2004).
    [Crossref]
  13. A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
    [Crossref]
  14. S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolini, “Electric field enhancement in ɛ -near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
    [Crossref]
  15. A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
    [Crossref]
  16. H. Iizuka and N. Engheta, “Antireflection structure for an effective refractive index near-zero medium in a two-dimensional photonic crystal,” Phys. Rev. B 90(11), 115412 (2014).
    [Crossref]
  17. M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
    [Crossref]
  18. M. Kamandi, C. Guclu, T. S. Luk, G. T. Wang, and F. Capolini, “Giant field enhancement in longitudinal epsilon-near-zero films,” Phys. Rev. B 95(16), 161105 (2017).
    [Crossref]
  19. M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ -near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
    [Crossref]
  20. M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ɛ -near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).
    [Crossref]
  21. A. Alù and N. Engheta, “Light squeezing through arbitrarily shaped plasmonic channels and sharp bends,” Phys. Rev. B 78(3), 035440 (2008).
    [Crossref]
  22. D. A. Powell, A. Alù, B. Edwards, A. Vakil, Y. S. Kivshar, and N. Engheta, “Nonlinear control of tunneling through an epsilon-near-zero channel,” Phys. Rev. B 79(24), 245135 (2009).
    [Crossref]
  23. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys. 105(4), 044905 (2009).
    [Crossref]
  24. A. Alù and N. Engheta, “Coaxial-to-waveguide matching with ɛ -near-zero ultranarrow channels and bends,” IEEE Trans. Antennas Propag. 58(2), 328–339 (2010).
    [Crossref]
  25. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
    [Crossref]
  26. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero-metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
    [Crossref]
  27. B. Wang and K.-M. Huang, “Shaping the radiation pattern with mu and epsilon-near-zero metamaterials,” Prog. Electromagn. Res. 106, 107–119 (2010).
    [Crossref]
  28. L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
    [Crossref]
  29. F. J. Rodríguez-Fortuño, A. Vakil, and N. Engheta, “Electric levitation using ɛ -near-zero metamaterials,” Phys. Rev. Lett. 112(3), 033902 (2014).
    [Crossref]
  30. S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165103 (2012).
    [Crossref]
  31. J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Yun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
    [Crossref]
  32. Z. Guo, F. Wu, C. Xue, H. Jiang, Y. Sun, Y. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
    [Crossref]
  33. H. F. Arnoldus and J. T. Foley, “Traveling and evanescent parts of the electromagnetic Green’s tensor,” J. Opt. Soc. Am. A 19(8), 1701–1711 (2002).
    [Crossref]
  34. H. F. Arnoldus, “Evanescent waves in the near- and the far field,” in Advances in Imaging and Electron Physics, vol. 132, P. W. Hawkes, ed. (Elsevier Academic Press, 2004), pp. 1–67.
  35. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Sec. 3.2.4 (Cambridge U. Press, 1995).
  36. H. F. Arnoldus and J. T. Foley, “Transmission of dipole radiation through interfaces and the phenomenon of anti-critical angles,” J. Opt. Soc. Am. A 21(6), 1109–1117 (2004).
    [Crossref]
  37. H. F. Arnoldus, M. J. Berg, and X. Li, “Transmission of electric dipole radiation through an interface,” Phys. Lett. A 378(9), 755–759 (2014).
    [Crossref]
  38. H. F. Arnoldus and M. J. Berg, “Energy transport in the near field of an electric dipole near a layer of material,” J. Mod. Opt. 62(3), 218–228 (2015).
    [Crossref]

2018 (1)

Z. Guo, F. Wu, C. Xue, H. Jiang, Y. Sun, Y. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
[Crossref]

2017 (2)

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

M. Kamandi, C. Guclu, T. S. Luk, G. T. Wang, and F. Capolini, “Giant field enhancement in longitudinal epsilon-near-zero films,” Phys. Rev. B 95(16), 161105 (2017).
[Crossref]

2016 (1)

M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
[Crossref]

2015 (3)

H. F. Arnoldus and M. J. Berg, “Energy transport in the near field of an electric dipole near a layer of material,” J. Mod. Opt. 62(3), 218–228 (2015).
[Crossref]

V. Torres, B. Orazbayev, V. Pacheco-Peña, J. Teniente, M. Beruete, M. Navarro-Cía, M. S. Ayza, and N. Engheta, “Experimental demonstration of a millimeter-wave metallic ENZ lens based on the energy squeezing principle,” IEEE Trans. Antennas Propag. 63(1), 231–239 (2015).
[Crossref]

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Yun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

2014 (3)

F. J. Rodríguez-Fortuño, A. Vakil, and N. Engheta, “Electric levitation using ɛ -near-zero metamaterials,” Phys. Rev. Lett. 112(3), 033902 (2014).
[Crossref]

H. F. Arnoldus, M. J. Berg, and X. Li, “Transmission of electric dipole radiation through an interface,” Phys. Lett. A 378(9), 755–759 (2014).
[Crossref]

H. Iizuka and N. Engheta, “Antireflection structure for an effective refractive index near-zero medium in a two-dimensional photonic crystal,” Phys. Rev. B 90(11), 115412 (2014).
[Crossref]

2013 (5)

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref]

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolini, “Electric field enhancement in ɛ -near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
[Crossref]

X. Li and H. F. Arnoldus, “Fresnel coefficients for a layer of NIM,” Phys. Lett. A 377(34–36), 2235–2238 (2013).
[Crossref]

M. Massaouti, A. A. Basharin, M. Kafesaki, M. F. Acosta, R. I. Merino, V. M. Orera, E. N. Economou, C. M. Soukoulis, and S. Tzortzakis, “Eutectic epsilon-near-zero metamaterial terahertz waveguides,” Opt. Lett. 38(7), 1140–1142 (2013).
[Crossref]

2012 (2)

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165103 (2012).
[Crossref]

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
[Crossref]

2011 (1)

H. Lobato-Morales, D. V. B. Murthy, A. Corona-Chávez, J. L. Olvera-Cervantes, and L. G. Guerrero-Ojeda, “Permittivity measurements at microwave frequencies using epsilon-near-zero (ENZ) tunnel structure,” IEEE Trans. Microw. Theory Tech. 59(7), 1863–1868 (2011).
[Crossref]

2010 (3)

B. Wang and K.-M. Huang, “Shaping the radiation pattern with mu and epsilon-near-zero metamaterials,” Prog. Electromagn. Res. 106, 107–119 (2010).
[Crossref]

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

A. Alù and N. Engheta, “Coaxial-to-waveguide matching with ɛ -near-zero ultranarrow channels and bends,” IEEE Trans. Antennas Propag. 58(2), 328–339 (2010).
[Crossref]

2009 (2)

D. A. Powell, A. Alù, B. Edwards, A. Vakil, Y. S. Kivshar, and N. Engheta, “Nonlinear control of tunneling through an epsilon-near-zero channel,” Phys. Rev. B 79(24), 245135 (2009).
[Crossref]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys. 105(4), 044905 (2009).
[Crossref]

2008 (2)

A. Alù and N. Engheta, “Light squeezing through arbitrarily shaped plasmonic channels and sharp bends,” Phys. Rev. B 78(3), 035440 (2008).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. G. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref]

2007 (2)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero-metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ɛ -near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).
[Crossref]

2006 (1)

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ -near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref]

2004 (2)

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E 70(4), 046608 (2004).
[Crossref]

H. F. Arnoldus and J. T. Foley, “Transmission of dipole radiation through interfaces and the phenomenon of anti-critical angles,” J. Opt. Soc. Am. A 21(6), 1109–1117 (2004).
[Crossref]

2003 (1)

2002 (3)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref]

H. F. Arnoldus and J. T. Foley, “Traveling and evanescent parts of the electromagnetic Green’s tensor,” J. Opt. Soc. Am. A 19(8), 1701–1711 (2002).
[Crossref]

M. W. McCall, A. Lakhtakia, and W. S. Weiglhofer, “The negative index of refraction demystified,” Eur. J. Phys. 23(3), 353–359 (2002).
[Crossref]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

1968 (1)

V. G. Vesalago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Acosta, M. F.

Alekseyev, L. V.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Alù, A.

A. Alù and N. Engheta, “Coaxial-to-waveguide matching with ɛ -near-zero ultranarrow channels and bends,” IEEE Trans. Antennas Propag. 58(2), 328–339 (2010).
[Crossref]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys. 105(4), 044905 (2009).
[Crossref]

D. A. Powell, A. Alù, B. Edwards, A. Vakil, Y. S. Kivshar, and N. Engheta, “Nonlinear control of tunneling through an epsilon-near-zero channel,” Phys. Rev. B 79(24), 245135 (2009).
[Crossref]

A. Alù and N. Engheta, “Light squeezing through arbitrarily shaped plasmonic channels and sharp bends,” Phys. Rev. B 78(3), 035440 (2008).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. G. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero-metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Arnoldus, H. F.

H. F. Arnoldus and M. J. Berg, “Energy transport in the near field of an electric dipole near a layer of material,” J. Mod. Opt. 62(3), 218–228 (2015).
[Crossref]

H. F. Arnoldus, M. J. Berg, and X. Li, “Transmission of electric dipole radiation through an interface,” Phys. Lett. A 378(9), 755–759 (2014).
[Crossref]

X. Li and H. F. Arnoldus, “Fresnel coefficients for a layer of NIM,” Phys. Lett. A 377(34–36), 2235–2238 (2013).
[Crossref]

H. F. Arnoldus and J. T. Foley, “Transmission of dipole radiation through interfaces and the phenomenon of anti-critical angles,” J. Opt. Soc. Am. A 21(6), 1109–1117 (2004).
[Crossref]

H. F. Arnoldus and J. T. Foley, “Traveling and evanescent parts of the electromagnetic Green’s tensor,” J. Opt. Soc. Am. A 19(8), 1701–1711 (2002).
[Crossref]

H. F. Arnoldus, “Evanescent waves in the near- and the far field,” in Advances in Imaging and Electron Physics, vol. 132, P. W. Hawkes, ed. (Elsevier Academic Press, 2004), pp. 1–67.

Ayza, M. S.

V. Torres, B. Orazbayev, V. Pacheco-Peña, J. Teniente, M. Beruete, M. Navarro-Cía, M. S. Ayza, and N. Engheta, “Experimental demonstration of a millimeter-wave metallic ENZ lens based on the energy squeezing principle,” IEEE Trans. Antennas Propag. 63(1), 231–239 (2015).
[Crossref]

Badsha, M. A.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Yun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Barnakov, Y. A.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Basharin, A. A.

Berg, M. J.

H. F. Arnoldus and M. J. Berg, “Energy transport in the near field of an electric dipole near a layer of material,” J. Mod. Opt. 62(3), 218–228 (2015).
[Crossref]

H. F. Arnoldus, M. J. Berg, and X. Li, “Transmission of electric dipole radiation through an interface,” Phys. Lett. A 378(9), 755–759 (2014).
[Crossref]

Beruete, M.

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

V. Torres, B. Orazbayev, V. Pacheco-Peña, J. Teniente, M. Beruete, M. Navarro-Cía, M. S. Ayza, and N. Engheta, “Experimental demonstration of a millimeter-wave metallic ENZ lens based on the energy squeezing principle,” IEEE Trans. Antennas Propag. 63(1), 231–239 (2015).
[Crossref]

Bilotti, F.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
[Crossref]

Caglayan, H.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref]

Campione, S.

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolini, “Electric field enhancement in ɛ -near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

Capolini, F.

M. Kamandi, C. Guclu, T. S. Luk, G. T. Wang, and F. Capolini, “Giant field enhancement in longitudinal epsilon-near-zero films,” Phys. Rev. B 95(16), 161105 (2017).
[Crossref]

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolini, “Electric field enhancement in ɛ -near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

Chen, H.

Z. Guo, F. Wu, C. Xue, H. Jiang, Y. Sun, Y. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
[Crossref]

Coenen, T.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref]

Corona-Chávez, A.

H. Lobato-Morales, D. V. B. Murthy, A. Corona-Chávez, J. L. Olvera-Cervantes, and L. G. Guerrero-Ojeda, “Permittivity measurements at microwave frequencies using epsilon-near-zero (ENZ) tunnel structure,” IEEE Trans. Microw. Theory Tech. 59(7), 1863–1868 (2011).
[Crossref]

de Ceglia, D.

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolini, “Electric field enhancement in ɛ -near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

Economou, E. N.

Edwards, B.

D. A. Powell, A. Alù, B. Edwards, A. Vakil, Y. S. Kivshar, and N. Engheta, “Nonlinear control of tunneling through an epsilon-near-zero channel,” Phys. Rev. B 79(24), 245135 (2009).
[Crossref]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys. 105(4), 044905 (2009).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. G. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref]

Engheta, N.

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

V. Torres, B. Orazbayev, V. Pacheco-Peña, J. Teniente, M. Beruete, M. Navarro-Cía, M. S. Ayza, and N. Engheta, “Experimental demonstration of a millimeter-wave metallic ENZ lens based on the energy squeezing principle,” IEEE Trans. Antennas Propag. 63(1), 231–239 (2015).
[Crossref]

F. J. Rodríguez-Fortuño, A. Vakil, and N. Engheta, “Electric levitation using ɛ -near-zero metamaterials,” Phys. Rev. Lett. 112(3), 033902 (2014).
[Crossref]

H. Iizuka and N. Engheta, “Antireflection structure for an effective refractive index near-zero medium in a two-dimensional photonic crystal,” Phys. Rev. B 90(11), 115412 (2014).
[Crossref]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref]

A. Alù and N. Engheta, “Coaxial-to-waveguide matching with ɛ -near-zero ultranarrow channels and bends,” IEEE Trans. Antennas Propag. 58(2), 328–339 (2010).
[Crossref]

D. A. Powell, A. Alù, B. Edwards, A. Vakil, Y. S. Kivshar, and N. Engheta, “Nonlinear control of tunneling through an epsilon-near-zero channel,” Phys. Rev. B 79(24), 245135 (2009).
[Crossref]

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys. 105(4), 044905 (2009).
[Crossref]

A. Alù and N. Engheta, “Light squeezing through arbitrarily shaped plasmonic channels and sharp bends,” Phys. Rev. B 78(3), 035440 (2008).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. G. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ɛ -near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero-metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ -near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref]

Enoch, S.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref]

Feng, S.

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165103 (2012).
[Crossref]

Foley, J. T.

Gentselev, A.

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

Guclu, C.

M. Kamandi, C. Guclu, T. S. Luk, G. T. Wang, and F. Capolini, “Giant field enhancement in longitudinal epsilon-near-zero films,” Phys. Rev. B 95(16), 161105 (2017).
[Crossref]

Guérin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref]

Guerrero-Ojeda, L. G.

H. Lobato-Morales, D. V. B. Murthy, A. Corona-Chávez, J. L. Olvera-Cervantes, and L. G. Guerrero-Ojeda, “Permittivity measurements at microwave frequencies using epsilon-near-zero (ENZ) tunnel structure,” IEEE Trans. Microw. Theory Tech. 59(7), 1863–1868 (2011).
[Crossref]

Guo, Z.

Z. Guo, F. Wu, C. Xue, H. Jiang, Y. Sun, Y. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
[Crossref]

Halterman, K.

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165103 (2012).
[Crossref]

Huang, K.-M.

B. Wang and K.-M. Huang, “Shaping the radiation pattern with mu and epsilon-near-zero metamaterials,” Prog. Electromagn. Res. 106, 107–119 (2010).
[Crossref]

Hwangbo, C. K.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Yun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Iizuka, H.

H. Iizuka and N. Engheta, “Antireflection structure for an effective refractive index near-zero medium in a two-dimensional photonic crystal,” Phys. Rev. B 90(11), 115412 (2014).
[Crossref]

Javani, M. H.

M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
[Crossref]

Jiang, H.

Z. Guo, F. Wu, C. Xue, H. Jiang, Y. Sun, Y. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
[Crossref]

Kafesaki, M.

Kamandi, M.

M. Kamandi, C. Guclu, T. S. Luk, G. T. Wang, and F. Capolini, “Giant field enhancement in longitudinal epsilon-near-zero films,” Phys. Rev. B 95(16), 161105 (2017).
[Crossref]

Kim, T. Y.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Yun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Kivshar, Y. S.

D. A. Powell, A. Alù, B. Edwards, A. Vakil, Y. S. Kivshar, and N. Engheta, “Nonlinear control of tunneling through an epsilon-near-zero channel,” Phys. Rev. B 79(24), 245135 (2009).
[Crossref]

Kuznetsov, S.

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

Lakhtakia, A.

M. W. McCall, A. Lakhtakia, and W. S. Weiglhofer, “The negative index of refraction demystified,” Eur. J. Phys. 23(3), 353–359 (2002).
[Crossref]

Li, H.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Li, X.

H. F. Arnoldus, M. J. Berg, and X. Li, “Transmission of electric dipole radiation through an interface,” Phys. Lett. A 378(9), 755–759 (2014).
[Crossref]

X. Li and H. F. Arnoldus, “Fresnel coefficients for a layer of NIM,” Phys. Lett. A 377(34–36), 2235–2238 (2013).
[Crossref]

Li, Y.

Z. Guo, F. Wu, C. Xue, H. Jiang, Y. Sun, Y. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
[Crossref]

Lobato-Morales, H.

H. Lobato-Morales, D. V. B. Murthy, A. Corona-Chávez, J. L. Olvera-Cervantes, and L. G. Guerrero-Ojeda, “Permittivity measurements at microwave frequencies using epsilon-near-zero (ENZ) tunnel structure,” IEEE Trans. Microw. Theory Tech. 59(7), 1863–1868 (2011).
[Crossref]

Luk, T. S.

M. Kamandi, C. Guclu, T. S. Luk, G. T. Wang, and F. Capolini, “Giant field enhancement in longitudinal epsilon-near-zero films,” Phys. Rev. B 95(16), 161105 (2017).
[Crossref]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Sec. 3.2.4 (Cambridge U. Press, 1995).

Massaouti, M.

Mavidis, C.

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
[Crossref]

McCall, M. W.

M. W. McCall, A. Lakhtakia, and W. S. Weiglhofer, “The negative index of refraction demystified,” Eur. J. Phys. 23(3), 353–359 (2002).
[Crossref]

Merino, R. I.

Monti, A.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
[Crossref]

Murthy, D. V. B.

H. Lobato-Morales, D. V. B. Murthy, A. Corona-Chávez, J. L. Olvera-Cervantes, and L. G. Guerrero-Ojeda, “Permittivity measurements at microwave frequencies using epsilon-near-zero (ENZ) tunnel structure,” IEEE Trans. Microw. Theory Tech. 59(7), 1863–1868 (2011).
[Crossref]

Narimanov, E. E.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Navarro-Cía, M.

V. Torres, B. Orazbayev, V. Pacheco-Peña, J. Teniente, M. Beruete, M. Navarro-Cía, M. S. Ayza, and N. Engheta, “Experimental demonstration of a millimeter-wave metallic ENZ lens based on the energy squeezing principle,” IEEE Trans. Antennas Propag. 63(1), 231–239 (2015).
[Crossref]

Noginov, M. A.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Olvera-Cervantes, J. L.

H. Lobato-Morales, D. V. B. Murthy, A. Corona-Chávez, J. L. Olvera-Cervantes, and L. G. Guerrero-Ojeda, “Permittivity measurements at microwave frequencies using epsilon-near-zero (ENZ) tunnel structure,” IEEE Trans. Microw. Theory Tech. 59(7), 1863–1868 (2011).
[Crossref]

Orazbayev, B.

V. Torres, B. Orazbayev, V. Pacheco-Peña, J. Teniente, M. Beruete, M. Navarro-Cía, M. S. Ayza, and N. Engheta, “Experimental demonstration of a millimeter-wave metallic ENZ lens based on the energy squeezing principle,” IEEE Trans. Antennas Propag. 63(1), 231–239 (2015).
[Crossref]

Orera, V. M.

Pacheco-Peña, V.

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

V. Torres, B. Orazbayev, V. Pacheco-Peña, J. Teniente, M. Beruete, M. Navarro-Cía, M. S. Ayza, and N. Engheta, “Experimental demonstration of a millimeter-wave metallic ENZ lens based on the energy squeezing principle,” IEEE Trans. Antennas Propag. 63(1), 231–239 (2015).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

Piestun, R.

Polman, A.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref]

Powell, D. A.

D. A. Powell, A. Alù, B. Edwards, A. Vakil, Y. S. Kivshar, and N. Engheta, “Nonlinear control of tunneling through an epsilon-near-zero channel,” Phys. Rev. B 79(24), 245135 (2009).
[Crossref]

Rodríguez-Fortuño, F. J.

F. J. Rodríguez-Fortuño, A. Vakil, and N. Engheta, “Electric levitation using ɛ -near-zero metamaterials,” Phys. Rev. Lett. 112(3), 033902 (2014).
[Crossref]

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref]

Salandrino, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero-metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Scalora, M.

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolini, “Electric field enhancement in ɛ -near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

Schwartz, B. T.

Silveirinha, M. G.

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys. 105(4), 044905 (2009).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. G. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero-metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ɛ -near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).
[Crossref]

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ -near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref]

Soukoulis, C. M.

Stockman, M. I.

M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
[Crossref]

Sun, Y.

Z. Guo, F. Wu, C. Xue, H. Jiang, Y. Sun, Y. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
[Crossref]

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref]

Teniente, J.

V. Torres, B. Orazbayev, V. Pacheco-Peña, J. Teniente, M. Beruete, M. Navarro-Cía, M. S. Ayza, and N. Engheta, “Experimental demonstration of a millimeter-wave metallic ENZ lens based on the energy squeezing principle,” IEEE Trans. Antennas Propag. 63(1), 231–239 (2015).
[Crossref]

Torres, V.

V. Torres, B. Orazbayev, V. Pacheco-Peña, J. Teniente, M. Beruete, M. Navarro-Cía, M. S. Ayza, and N. Engheta, “Experimental demonstration of a millimeter-wave metallic ENZ lens based on the energy squeezing principle,” IEEE Trans. Antennas Propag. 63(1), 231–239 (2015).
[Crossref]

Toscano, A.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
[Crossref]

Tumkur, T.

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Tzortzakis, S.

Vakil, A.

F. J. Rodríguez-Fortuño, A. Vakil, and N. Engheta, “Electric levitation using ɛ -near-zero metamaterials,” Phys. Rev. Lett. 112(3), 033902 (2014).
[Crossref]

D. A. Powell, A. Alù, B. Edwards, A. Vakil, Y. S. Kivshar, and N. Engheta, “Nonlinear control of tunneling through an epsilon-near-zero channel,” Phys. Rev. B 79(24), 245135 (2009).
[Crossref]

Vegni, L.

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
[Crossref]

Vesalago, V. G.

V. G. Vesalago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Vesseur, E. J. R.

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref]

Vincent, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref]

Vincenti, M. A.

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolini, “Electric field enhancement in ɛ -near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

Wang, B.

B. Wang and K.-M. Huang, “Shaping the radiation pattern with mu and epsilon-near-zero metamaterials,” Prog. Electromagn. Res. 106, 107–119 (2010).
[Crossref]

Wang, G. T.

M. Kamandi, C. Guclu, T. S. Luk, G. T. Wang, and F. Capolini, “Giant field enhancement in longitudinal epsilon-near-zero films,” Phys. Rev. B 95(16), 161105 (2017).
[Crossref]

Weiglhofer, W. S.

M. W. McCall, A. Lakhtakia, and W. S. Weiglhofer, “The negative index of refraction demystified,” Eur. J. Phys. 23(3), 353–359 (2002).
[Crossref]

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Sec. 3.2.4 (Cambridge U. Press, 1995).

Wu, F.

Z. Guo, F. Wu, C. Xue, H. Jiang, Y. Sun, Y. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
[Crossref]

Xue, C.

Z. Guo, F. Wu, C. Xue, H. Jiang, Y. Sun, Y. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
[Crossref]

Yoon, J.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Yun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Young, M. E.

B. Edwards, A. Alù, M. E. Young, M. G. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref]

Yun, Y. C.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Yun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Zhou, M.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Yun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Ziolkowski, R. W.

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E 70(4), 046608 (2004).
[Crossref]

Appl. Phys. Lett. (1)

L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97(13), 131107 (2010).
[Crossref]

Eur. J. Phys. (1)

M. W. McCall, A. Lakhtakia, and W. S. Weiglhofer, “The negative index of refraction demystified,” Eur. J. Phys. 23(3), 353–359 (2002).
[Crossref]

IEEE Trans. Antennas Propag. (2)

V. Torres, B. Orazbayev, V. Pacheco-Peña, J. Teniente, M. Beruete, M. Navarro-Cía, M. S. Ayza, and N. Engheta, “Experimental demonstration of a millimeter-wave metallic ENZ lens based on the energy squeezing principle,” IEEE Trans. Antennas Propag. 63(1), 231–239 (2015).
[Crossref]

A. Alù and N. Engheta, “Coaxial-to-waveguide matching with ɛ -near-zero ultranarrow channels and bends,” IEEE Trans. Antennas Propag. 58(2), 328–339 (2010).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

H. Lobato-Morales, D. V. B. Murthy, A. Corona-Chávez, J. L. Olvera-Cervantes, and L. G. Guerrero-Ojeda, “Permittivity measurements at microwave frequencies using epsilon-near-zero (ENZ) tunnel structure,” IEEE Trans. Microw. Theory Tech. 59(7), 1863–1868 (2011).
[Crossref]

J. Appl. Phys. (2)

B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys. 105(4), 044905 (2009).
[Crossref]

Z. Guo, F. Wu, C. Xue, H. Jiang, Y. Sun, Y. Li, and H. Chen, “Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect,” J. Appl. Phys. 124(10), 103104 (2018).
[Crossref]

J. Mod. Opt. (1)

H. F. Arnoldus and M. J. Berg, “Energy transport in the near field of an electric dipole near a layer of material,” J. Mod. Opt. 62(3), 218–228 (2015).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

A. Monti, F. Bilotti, A. Toscano, and L. Vegni, “Possible implementation of epsilon-near-zero metamaterials working at optical frequencies,” Opt. Commun. 285(16), 3412–3418 (2012).
[Crossref]

Opt. Lett. (1)

Phys. Lett. A (2)

X. Li and H. F. Arnoldus, “Fresnel coefficients for a layer of NIM,” Phys. Lett. A 377(34–36), 2235–2238 (2013).
[Crossref]

H. F. Arnoldus, M. J. Berg, and X. Li, “Transmission of electric dipole radiation through an interface,” Phys. Lett. A 378(9), 755–759 (2014).
[Crossref]

Phys. Rev. Appl. (1)

V. Pacheco-Peña, N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, “Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies,” Phys. Rev. Appl. 8(3), 034036 (2017).
[Crossref]

Phys. Rev. B (9)

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolini, “Electric field enhancement in ɛ -near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

A. A. Basharin, C. Mavidis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Epsilon near zero based phenomena in metamaterials,” Phys. Rev. B 87(15), 155130 (2013).
[Crossref]

H. Iizuka and N. Engheta, “Antireflection structure for an effective refractive index near-zero medium in a two-dimensional photonic crystal,” Phys. Rev. B 90(11), 115412 (2014).
[Crossref]

M. Kamandi, C. Guclu, T. S. Luk, G. T. Wang, and F. Capolini, “Giant field enhancement in longitudinal epsilon-near-zero films,” Phys. Rev. B 95(16), 161105 (2017).
[Crossref]

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86(16), 165103 (2012).
[Crossref]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ɛ -near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).
[Crossref]

A. Alù and N. Engheta, “Light squeezing through arbitrarily shaped plasmonic channels and sharp bends,” Phys. Rev. B 78(3), 035440 (2008).
[Crossref]

D. A. Powell, A. Alù, B. Edwards, A. Vakil, Y. S. Kivshar, and N. Engheta, “Nonlinear control of tunneling through an epsilon-near-zero channel,” Phys. Rev. B 79(24), 245135 (2009).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero-metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Phys. Rev. E (1)

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E 70(4), 046608 (2004).
[Crossref]

Phys. Rev. Lett. (7)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89(21), 213902 (2002).
[Crossref]

F. J. Rodríguez-Fortuño, A. Vakil, and N. Engheta, “Electric levitation using ɛ -near-zero metamaterials,” Phys. Rev. Lett. 112(3), 033902 (2014).
[Crossref]

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ -near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref]

E. J. R. Vesseur, T. Coenen, H. Caglayan, N. Engheta, and A. Polman, “Experimental verification of n = 0 structures for visible light,” Phys. Rev. Lett. 110(1), 013902 (2013).
[Crossref]

M. H. Javani and M. I. Stockman, “Real and imaginary properties of epsilon-near-zero materials,” Phys. Rev. Lett. 117(10), 107404 (2016).
[Crossref]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. G. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref]

Prog. Electromagn. Res. (1)

B. Wang and K.-M. Huang, “Shaping the radiation pattern with mu and epsilon-near-zero metamaterials,” Prog. Electromagn. Res. 106, 107–119 (2010).
[Crossref]

Sci. Rep. (1)

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Yun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5(1), 12788 (2015).
[Crossref]

Sov. Phys. Usp. (1)

V. G. Vesalago, “The electrodynamics of substances with simultaneously negative values of ɛ and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[Crossref]

Other (2)

H. F. Arnoldus, “Evanescent waves in the near- and the far field,” in Advances in Imaging and Electron Physics, vol. 132, P. W. Hawkes, ed. (Elsevier Academic Press, 2004), pp. 1–67.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Sec. 3.2.4 (Cambridge U. Press, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Illustration of a travelling or an evanescent plane wave reflecting off and transmitting into a dielectric. We take the positive z direction as up.
Fig. 2.
Fig. 2. The figure on the left shows the real and imaginary parts of the reflection coefficient for s waves. The dashed lines are for the small value of $\varepsilon = 0.015 \times (1 + i)$, and the solid lines are the ENZ limits, with the real part red and the imaginary part blue. The figure on the right shows the ENZ limit of the absolute value of ${R_s}$ (green curve), with the dashed line the result for the same small $\varepsilon $ as in the figure on the left.
Fig. 3.
Fig. 3. Shown are the real and imaginary parts of ${T_s}$, and the absolute value of ${T_s}$, for small $\varepsilon $ (dashed curves). The solid curves are the ENZ limits.
Fig. 4.
Fig. 4. Shown are the real and imaginary parts of ${R_p}$, and the absolute value of ${R_p}$, for small $\varepsilon $ (dashed curves). The solid curves are the ENZ limits.
Fig. 5.
Fig. 5. Shown are the real and imaginary parts of ${T_p}$, and the absolute value of ${T_p}$, for small $\varepsilon $ (dashed curves). The solid curves are the ENZ limits. For evanescent waves, the values of the real and imaginary parts of ${T_p}$ are close to their ENZ limit of zero, with the real part larger than the imaginary part. For traveling waves, the convergence to the ENZ limit is much slower. The dot represents ${T_p}{(0)^{ENZ}} = 2$. For $\alpha \ne 0$ we have ${T_p} = 0$, which is the green line in the figure on the right. In the figure on the left, the red and blue lines are on top of each other, making it look purple.
Fig. 6.
Fig. 6. Shown are the field lines of the magnetic field in the plane of incidence, for s polarization. Here, $2\pi $ correspond to an optical wavelength in free space. The fat line in the middle is the interface, and the ENZ medium is above it.

Equations (75)

Equations on this page are rendered with MathJax. Learn more.

n 2 = ε μ , Im n 0 .
g ( r ) = exp ( i n k o r ) / r ,
E ( r , t ) = Re [ E ( r ) exp ( i ω t ) ] ,
α = k | | / k o ,
v 1 = 1 α 2 .
k i = k | | + k o v 1 e z ,
k r = k | | k o v 1 e z .
k t = k | | + k o v 2 e z ,
v 2 = n 2 α 2 ,
k ^ | | = 1 α k o k | | .
e s = e z × k ^ | | ,
e p , = 1 k o k × e s , = i , r ,
e p , t = 1 n k o k t × e s .
e p , i = α e z v 1 k ^ | | ,
e p , r = α e z + v 1 k ^ | | ,
e p , t = 1 n ( α e z v 2 k ^ | | ) ,
e σ , e σ , = 1 , σ = s , p , = i , r , t .
e σ , k = 0 , σ = s , p , = i , r , t ,
E ( r ) 1 = E o exp ( i k | | r ) e s [ exp ( i v 1 z ¯ ) + R s exp ( i v 1 z ¯ ) ] ,
B ( r ) 1 = ( E o / c ) exp ( i k | | r ) [ e p , i exp ( i v 1 z ¯ ) + R s e p , r exp ( i v 1 z ¯ ) ] ,
E ( r ) 2 = E o exp ( i k | | r ) T s e s exp ( i v 2 z ¯ ) ,
B ( r ) 2 = n ( E o / c ) exp ( i k | | r ) T s e p , t exp ( i v 2 z ¯ ) ,
E ( r ) 1 = E o exp ( i k | | r ) [ e p , i exp ( i v 1 z ¯ ) + R p e p , r exp ( i v 1 z ¯ ) ] ,
B ( r ) 1 = ( E o / c ) exp ( i k | | r ) e s [ exp ( i v 1 z ¯ ) + R p exp ( i v 1 z ¯ ) ] ,
E ( r ) 2 = E o exp ( i k | | r ) T p e p , t exp ( i v 2 z ¯ ) ,
B ( r ) 2 = n ( E o / c ) exp ( i k | | r ) T p e s exp ( i v 2 z ¯ ) .
R s ( α ) = v 1 v 2 v 1 + v 2 ,
T s ( α ) = 2 v 1 v 1 + v 2 ,
R p ( α ) = ε v 1 v 2 ε v 1 + v 2 ,
T p ( α ) = 2 n v 1 ε v 1 + v 2 .
R s ( α ) E N Z = ( v 1 i α ) 2 ,
T s ( α ) E N Z = 2 v 1 ( v 1 i α ) ,
R p ( α ) E N Z = 1.
T p ( α ) E N Z = { 0 , α 0 2 , α = 0 .
| R s ( α ) E N Z | = 1 , 0 α < 1 ,
v 1 + i α = exp ( i θ i ) .
R s ( α ) E N Z = exp ( 2 i θ i ) ,
T s ( α ) E N Z = 2 v 1 exp ( i θ i ) .
η = e z i k ^ | | .
E ( r ) 2 = 2 E o v 1 ( v 1 i α ) exp ( i k | | r ) e s exp ( α z ¯ ) ,
B ( r ) 2 = 2 α ( E o / c ) v 1 ( v 1 i α ) exp ( i k | | r ) η exp ( α z ¯ ) ,
B 2 ( r , t ) = Re [ B 2 ( r ) exp ( i ω t ) ] .
2 α ( E o / c ) v 1 ( v 1 i α ) exp ( i k | | r ) exp ( α z ¯ ) = A exp ( i ϕ ) , A > 0 , ϕ real.
B 2 ( r , t ) = A Re { η exp [ i ( ω t ϕ ) ] } ,
B 2 ( r , t ) = A [ e z cos ( ω t ϕ ) k ^ | | sin ( ω t ϕ ) ] .
2 α ( E o / c ) v 1 ( v 1 i α ) = C exp ( i ψ ) , C > 0 , ψ real,
B 2 ( r , t ) = C exp ( α z ¯ ) Re { ( e z i e y ) exp [ i ( k | | y ω t + ψ ) ] } .
v p h = ω k | | = c α ,
λ ¯ = 2 π α .
E ( r ) 2 = 2 E o × { k ^ | | , 0 α << | n | i v 1 η exp ( i k | | r ) exp ( α z ¯ ) , α >> | n | ,
B ( r ) 2 = 0.
S ( r ) = 1 2 μ o Re [ E ( r ) × B ( r ) ] ,
S ( r ) = S o S ( r ) ,
S o = | E o | 2 2 μ o c .
S ( r ) 1 = 4 α k ^ | | cos 2 ( v 1 z ¯ + θ i ) ,
S ( r ) 2 = 4 α k ^ | | ( 1 α 2 ) exp ( 2 α z ¯ ) .
S ( r ) 1 = 4 α k ^ | | sin 2 ( v 1 z ¯ ) ,
S ( r ) 2 = 0.
u = α 2 1 ,
S ( r ) 1 = α k ^ | | [ exp ( u z ¯ ) + R s ( α ) E N Z exp ( u z ¯ ) ] 2 ,
S ( r ) 2 = α k ^ | | [ T s ( α ) E N Z ] 2 exp ( 2 α z ¯ ) .
R s ( α ) E N Z = ( u α ) 2 ,
T s ( α ) E N Z = 2 u ( u α ) ,
[ 1 + R s ( α ) E N Z ] 2 = [ T s ( α ) E N Z ] 2 ,
S ( r ) 1 = 4 α k ^ | | sinh 2 ( u z ¯ ) ,
S ( r ) 2 = 0.
k ^ | | = e s × e z ,
E ( r , t ) 1 = 2 E o e s cos ( z ¯ ) cos ( ω t ) ,
B ( r , t ) 1 = 2 E o c k ^ | | sin ( z ¯ ) sin ( ω t ) ,
E ( r , t ) 2 = 2 E o e s cos ( ω t ) ,
B ( r , t ) 2 = 0.
E ( r , t ) 1 = 2 E o k ^ | | cos ( z ¯ ) cos ( ω t ) ,
B ( r , t ) 1 = 2 E o c e s sin ( z ¯ ) sin ( ω t ) ,
E ( r , t ) 2 = 2 E o { k ^ | | cos ( ω t ) , 0 α << | n | η sin ( ω t ) , | n | << α ,
B ( r , t ) 2 = 0.

Metrics