Abstract

Collecting quantum emitter fluorescence with high efficiency and high spatial resolution is a crucial topic in quantum and nanophotonic fields. In the general cases of far-field objective lens collection, though the collection efficiency can be very high, the spatial resolution is diffraction limited. Or one can use near-field probe, such as metal-coated dielectric tips, to break this diffraction limit, while the collection efficiency is very low. In this work, a new method is proposed to collect the fluorescence of quantum dots (QDs) with a fiber-integrated silver nanowire (AgNW) waveguide. Fluorescence lifetime measurement is performed to investigate the coupling between QDs and different plasmonic modes. Compared with previous near-field collection methods, the AgNW-fiber probe can realize much higher collection efficiency with similar spatial resolution. This fiber-integrated plasmonic probe may be useful in the area of fluorescence imaging and is also promising for quantum information devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantum plasmonics: new opportunity in fundamental and applied photonics

Da Xu, Xiao Xiong, Lin Wu, Xi-Feng Ren, Ching Eng Png, Guang-Can Guo, Qihuang Gong, and Yun-Feng Xiao
Adv. Opt. Photon. 10(4) 703-756 (2018)

Independently analyzing different surface plasmon polariton modes on silver nanowire

Aiping Liu, Chang-Ling Zou, Xifeng Ren, Xiao Xiong, Yong-Jing Cai, Haitao Liu, Fang-Wen Sun, Guang-Can Guo, and Guo-Ping Guo
Opt. Express 22(19) 23372-23378 (2014)

Control of the two-photon fluorescence of quantum dots coupled to silver nanowires

Weijie Mai, Xiaokang Song, Ping Jiang, Wenzhong Wang, Li Yu, and Jiasen Zhang
Opt. Express 24(24) 27870-27881 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Kastner, “Artificial atoms,” Phys. Today 46(1), 24–31 (1993).
    [Crossref]
  2. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
    [Crossref]
  3. M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
    [Crossref]
  4. X. Chen, C. Zou, Z. Gong, C. Dong, G. Guo, and F. Sun, “Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond,” Light: Sci. Appl. 4(1), e230 (2015).
    [Crossref]
  5. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006). pp 224–278.
  6. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
    [Crossref]
  7. M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
    [Crossref]
  8. R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Phys. Rev. Lett. 109(6), 063602 (2012).
    [Crossref]
  9. S. Chonan, S. Kato, and T. Aoki, “Efficient single-mode photon-coupling device utilizing a nanofiber tip,” Sci. Rep. 4(1), 4785 (2014).
    [Crossref]
  10. T. Schröder, W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Lett. 11(1), 198–202 (2011).
    [Crossref]
  11. M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
    [Crossref]
  12. A. Huck and U. L. Anderson, “Coupling single emitters to quantum plasmonic circuits,” Nanophotonics 5(3), 483–495 (2016).
    [Crossref]
  13. A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
    [Crossref]
  14. A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106(9), 096801 (2011).
    [Crossref]
  15. E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
    [Crossref]
  16. Q. Li, H. Wei, and H. Xu, “Quantum yield of single surface plasmons generated by a quantum dot coupled with a silver nanowire,” Nano Lett. 15(12), 8181–8187 (2015).
    [Crossref]
  17. X. Wu, P. Jiang, G. Razinskas, Y. Huo, H. Zhang, M. Kamp, A. Rastelli, O. G. Schmidt, B. Hecht, K. Lindfors, and M. Lippitz, “On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot,” Nano Lett. 17(7), 4291–4296 (2017).
    [Crossref]
  18. T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17(4), 2634–2639 (2017).
    [Crossref]
  19. Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13(12), 1137–1142 (2018).
    [Crossref]
  20. R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
    [Crossref]
  21. M. Hensen, T. Heilpern, S. K. Gray, and W. Pfeiffer, “Strong Coupling and Entanglement of Quantum Emitters Embedded in a Nanoantenna-Enhanced Plasmonic Cavity,” ACS Photon. 5(1), 240–248 (2018).
    [Crossref]
  22. Q. Li, H. Wei, and H. Xu, “Resolving single plasmons generated by multiquantum-emitters on a silver nanowire,” Nano Lett. 14(6), 3358–3363 (2014).
    [Crossref]
  23. E. Altewischer, M. Van Exter, and J. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
    [Crossref]
  24. G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, S. K. Ozdemir, M. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12(5), 2504–2508 (2012).
    [Crossref]
  25. M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15(4), 2380–2384 (2015).
    [Crossref]
  26. M. S. Tame, K. McEnery, S. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
    [Crossref]
  27. D. Xu, X. Xiong, L. Wu, X. F. Ren, C. E. Png, G. C. Guo, Q. Gong, and Y. F. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photon. 10(4), 703–756 (2018).
    [Crossref]
  28. L.-L. Wang, C.-L. Zou, X.-F. Ren, A.-P. Liu, L. Lv, Y.-J. Cai, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Exciton-plasmon-photon conversion in silver nanowire: Polarization dependence,” Appl. Phys. Lett. 99(6), 061103 (2011).
    [Crossref]
  29. S. K. H. Andersen, S. Bogdanov, O. Makarova, Y. Xuan, M. Y. Shalaginov, A. Boltasseva, S. I. Bozhevolnyi, and V. M. Shalaev, “Hybrid Plasmonic Bullseye Antennas for Efficient Photon Collection,” ACS Photon. 5(3), 692–698 (2018).
    [Crossref]
  30. G. Zhu and Q. Liao, “Highly efficient collection for photon emission enhanced by the hybrid photonic-plasmonic cavity,” Opt. Express 26(24), 31391–31401 (2018).
    [Crossref]
  31. H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, and Q. Gong, “Efficient Single Photon Emission and Collection Based on Excitation of Gap Surface Plasmons,” Phys. Rev. Lett. 114(19), 193002 (2015).
    [Crossref]
  32. H. Hao, J. Ren, X. Duan, G. Lu, I. C. Khoo, Q. Gong, and Y. Gu, “High-contrast switching and high-efficiency extracting for spontaneous emission based on tunable gap surface plasmon,” Sci. Rep. 8(1), 11244 (2018).
    [Crossref]
  33. D. E. Chang, A. S. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).
    [Crossref]
  34. J. Torres, P. Ferrand, G. C. Francs, and J. Wenger, “Coupling Emitters and Silver Nanowires to Achieve Long-Range Plasmon-Mediated Fluorescence Energy Transfer,” ACS Nano 10(4), 3968–3976 (2016).
    [Crossref]
  35. H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(1), 387 (2011).
    [Crossref]
  36. X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
    [Crossref]
  37. X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7(6), 855–881 (2013).
    [Crossref]
  38. Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, “High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots,” Appl. Phys. Lett. 87(7), 071905 (2005).
    [Crossref]
  39. C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95(22), 221109 (2009).
    [Crossref]
  40. X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
    [Crossref]
  41. N. Verhart, G. Lepert, A. Billing, J. Hwang, and E. Hinds, “Single dipole evanescently coupled to a multimode waveguide,” Opt. Express 22(16), 19633–19640 (2014).
    [Crossref]
  42. A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning single quantum wmitter fluorescence lifetime imaging: quantitative analysis of the local density of photonic states,” Nano Lett. 14(5), 2623–2627 (2014).
    [Crossref]
  43. E. M. Purcell, Confined Electrons and Photons (Springer, 1995) p. 839.
  44. C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
    [Crossref]
  45. A. Liu, C.-L. Zou, X. Ren, X. Xiong, Y.-J. Cai, H. Liu, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Independently analyzing different surface plasmon polariton modes on silver nanowire,” Opt. Express 22(19), 23372–23378 (2014).
    [Crossref]
  46. P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
    [Crossref]
  47. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
    [Crossref]
  48. R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2012).
    [Crossref]
  49. G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
    [Crossref]

2018 (6)

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13(12), 1137–1142 (2018).
[Crossref]

M. Hensen, T. Heilpern, S. K. Gray, and W. Pfeiffer, “Strong Coupling and Entanglement of Quantum Emitters Embedded in a Nanoantenna-Enhanced Plasmonic Cavity,” ACS Photon. 5(1), 240–248 (2018).
[Crossref]

H. Hao, J. Ren, X. Duan, G. Lu, I. C. Khoo, Q. Gong, and Y. Gu, “High-contrast switching and high-efficiency extracting for spontaneous emission based on tunable gap surface plasmon,” Sci. Rep. 8(1), 11244 (2018).
[Crossref]

S. K. H. Andersen, S. Bogdanov, O. Makarova, Y. Xuan, M. Y. Shalaginov, A. Boltasseva, S. I. Bozhevolnyi, and V. M. Shalaev, “Hybrid Plasmonic Bullseye Antennas for Efficient Photon Collection,” ACS Photon. 5(3), 692–698 (2018).
[Crossref]

D. Xu, X. Xiong, L. Wu, X. F. Ren, C. E. Png, G. C. Guo, Q. Gong, and Y. F. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photon. 10(4), 703–756 (2018).
[Crossref]

G. Zhu and Q. Liao, “Highly efficient collection for photon emission enhanced by the hybrid photonic-plasmonic cavity,” Opt. Express 26(24), 31391–31401 (2018).
[Crossref]

2017 (2)

X. Wu, P. Jiang, G. Razinskas, Y. Huo, H. Zhang, M. Kamp, A. Rastelli, O. G. Schmidt, B. Hecht, K. Lindfors, and M. Lippitz, “On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot,” Nano Lett. 17(7), 4291–4296 (2017).
[Crossref]

T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17(4), 2634–2639 (2017).
[Crossref]

2016 (3)

A. Huck and U. L. Anderson, “Coupling single emitters to quantum plasmonic circuits,” Nanophotonics 5(3), 483–495 (2016).
[Crossref]

J. Torres, P. Ferrand, G. C. Francs, and J. Wenger, “Coupling Emitters and Silver Nanowires to Achieve Long-Range Plasmon-Mediated Fluorescence Energy Transfer,” ACS Nano 10(4), 3968–3976 (2016).
[Crossref]

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

2015 (5)

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15(4), 2380–2384 (2015).
[Crossref]

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref]

Q. Li, H. Wei, and H. Xu, “Quantum yield of single surface plasmons generated by a quantum dot coupled with a silver nanowire,” Nano Lett. 15(12), 8181–8187 (2015).
[Crossref]

X. Chen, C. Zou, Z. Gong, C. Dong, G. Guo, and F. Sun, “Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond,” Light: Sci. Appl. 4(1), e230 (2015).
[Crossref]

H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, and Q. Gong, “Efficient Single Photon Emission and Collection Based on Excitation of Gap Surface Plasmons,” Phys. Rev. Lett. 114(19), 193002 (2015).
[Crossref]

2014 (7)

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning single quantum wmitter fluorescence lifetime imaging: quantitative analysis of the local density of photonic states,” Nano Lett. 14(5), 2623–2627 (2014).
[Crossref]

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref]

N. Verhart, G. Lepert, A. Billing, J. Hwang, and E. Hinds, “Single dipole evanescently coupled to a multimode waveguide,” Opt. Express 22(16), 19633–19640 (2014).
[Crossref]

A. Liu, C.-L. Zou, X. Ren, X. Xiong, Y.-J. Cai, H. Liu, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Independently analyzing different surface plasmon polariton modes on silver nanowire,” Opt. Express 22(19), 23372–23378 (2014).
[Crossref]

S. Chonan, S. Kato, and T. Aoki, “Efficient single-mode photon-coupling device utilizing a nanofiber tip,” Sci. Rep. 4(1), 4785 (2014).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Q. Li, H. Wei, and H. Xu, “Resolving single plasmons generated by multiquantum-emitters on a silver nanowire,” Nano Lett. 14(6), 3358–3363 (2014).
[Crossref]

2013 (4)

M. S. Tame, K. McEnery, S. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
[Crossref]

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7(6), 855–881 (2013).
[Crossref]

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

2012 (3)

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2012).
[Crossref]

G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, S. K. Ozdemir, M. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12(5), 2504–2508 (2012).
[Crossref]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref]

2011 (5)

T. Schröder, W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Lett. 11(1), 198–202 (2011).
[Crossref]

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106(9), 096801 (2011).
[Crossref]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(1), 387 (2011).
[Crossref]

L.-L. Wang, C.-L. Zou, X.-F. Ren, A.-P. Liu, L. Lv, Y.-J. Cai, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Exciton-plasmon-photon conversion in silver nanowire: Polarization dependence,” Appl. Phys. Lett. 99(6), 061103 (2011).
[Crossref]

2010 (1)

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

2009 (2)

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95(22), 221109 (2009).
[Crossref]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref]

2008 (2)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref]

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref]

2007 (3)

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref]

D. E. Chang, A. S. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).
[Crossref]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
[Crossref]

2005 (1)

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, “High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots,” Appl. Phys. Lett. 87(7), 071905 (2005).
[Crossref]

2002 (2)

E. Altewischer, M. Van Exter, and J. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[Crossref]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref]

1993 (1)

M. A. Kastner, “Artificial atoms,” Phys. Today 46(1), 24–31 (1993).
[Crossref]

Aharonovich, I.

T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17(4), 2634–2639 (2017).
[Crossref]

Aichele, T.

T. Schröder, W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Lett. 11(1), 198–202 (2011).
[Crossref]

Akimov, A.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref]

Alaverdyan, Y.

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref]

Altewischer, E.

E. Altewischer, M. Van Exter, and J. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[Crossref]

Andersen, S. K. H.

S. K. H. Andersen, S. Bogdanov, O. Makarova, Y. Xuan, M. Y. Shalaginov, A. Boltasseva, S. I. Bozhevolnyi, and V. M. Shalaev, “Hybrid Plasmonic Bullseye Antennas for Efficient Photon Collection,” ACS Photon. 5(3), 692–698 (2018).
[Crossref]

Andersen, U. L.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106(9), 096801 (2011).
[Crossref]

Anderson, U. L.

A. Huck and U. L. Anderson, “Coupling single emitters to quantum plasmonic circuits,” Nanophotonics 5(3), 483–495 (2016).
[Crossref]

Aoki, T.

S. Chonan, S. Kato, and T. Aoki, “Efficient single-mode photon-coupling device utilizing a nanofiber tip,” Sci. Rep. 4(1), 4785 (2014).
[Crossref]

Arcari, M.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Ardelean, J. V.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13(12), 1137–1142 (2018).
[Crossref]

Bao, J.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref]

Barmak, K.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13(12), 1137–1142 (2018).
[Crossref]

Barrow, S. J.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Bauerschmidt, S. T.

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

Baumberg, J. J.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Benson, O.

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning single quantum wmitter fluorescence lifetime imaging: quantitative analysis of the local density of photonic states,” Nano Lett. 14(5), 2623–2627 (2014).
[Crossref]

T. Schröder, W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Lett. 11(1), 198–202 (2011).
[Crossref]

Benz, F.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Bermúdez-Ureña, E.

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref]

Billing, A.

Bogdanov, S.

S. K. H. Andersen, S. Bogdanov, O. Makarova, Y. Xuan, M. Y. Shalaginov, A. Boltasseva, S. I. Bozhevolnyi, and V. M. Shalaev, “Hybrid Plasmonic Bullseye Antennas for Efficient Photon Collection,” ACS Photon. 5(3), 692–698 (2018).
[Crossref]

Boltasseva, A.

S. K. H. Andersen, S. Bogdanov, O. Makarova, Y. Xuan, M. Y. Shalaginov, A. Boltasseva, S. I. Bozhevolnyi, and V. M. Shalaev, “Hybrid Plasmonic Bullseye Antennas for Efficient Photon Collection,” ACS Photon. 5(3), 692–698 (2018).
[Crossref]

Bozhevolnyi, S. I.

S. K. H. Andersen, S. Bogdanov, O. Makarova, Y. Xuan, M. Y. Shalaginov, A. Boltasseva, S. I. Bozhevolnyi, and V. M. Shalaev, “Hybrid Plasmonic Bullseye Antennas for Efficient Photon Collection,” ACS Photon. 5(3), 692–698 (2018).
[Crossref]

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref]

Busch, K.

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning single quantum wmitter fluorescence lifetime imaging: quantitative analysis of the local density of photonic states,” Nano Lett. 14(5), 2623–2627 (2014).
[Crossref]

Cai, Y.-J.

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15(4), 2380–2384 (2015).
[Crossref]

A. Liu, C.-L. Zou, X. Ren, X. Xiong, Y.-J. Cai, H. Liu, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Independently analyzing different surface plasmon polariton modes on silver nanowire,” Opt. Express 22(19), 23372–23378 (2014).
[Crossref]

L.-L. Wang, C.-L. Zou, X.-F. Ren, A.-P. Liu, L. Lv, Y.-J. Cai, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Exciton-plasmon-photon conversion in silver nanowire: Polarization dependence,” Appl. Phys. Lett. 99(6), 061103 (2011).
[Crossref]

Cavaliere-Jaricot, S.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref]

Chang, D.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref]

Chang, D. E.

D. E. Chang, A. S. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).
[Crossref]

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
[Crossref]

Chen, C.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref]

Chen, X.

X. Chen, C. Zou, Z. Gong, C. Dong, G. Guo, and F. Sun, “Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond,” Light: Sci. Appl. 4(1), e230 (2015).
[Crossref]

Chen, X.-D.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Chikkaraddy, R.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Choi, Y.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2012).
[Crossref]

Chonan, S.

S. Chonan, S. Kato, and T. Aoki, “Efficient single-mode photon-coupling device utilizing a nanofiber tip,” Sci. Rep. 4(1), 4785 (2014).
[Crossref]

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref]

Cui, J.-M.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

De Keersmaecker, H.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref]

Demetriadou, A.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Demler, E. A.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
[Crossref]

Di Martino, G.

G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, S. K. Ozdemir, M. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12(5), 2504–2508 (2012).
[Crossref]

Dong, C.

X. Chen, C. Zou, Z. Gong, C. Dong, G. Guo, and F. Sun, “Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond,” Light: Sci. Appl. 4(1), e230 (2015).
[Crossref]

Dong, C.-H.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95(22), 221109 (2009).
[Crossref]

Duan, J.-Y.

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95(22), 221109 (2009).
[Crossref]

Duan, X.

H. Hao, J. Ren, X. Duan, G. Lu, I. C. Khoo, Q. Gong, and Y. Gu, “High-contrast switching and high-efficiency extracting for spontaneous emission based on tunable gap surface plasmon,” Sci. Rep. 8(1), 11244 (2018).
[Crossref]

Engel, P.

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning single quantum wmitter fluorescence lifetime imaging: quantitative analysis of the local density of photonic states,” Nano Lett. 14(5), 2623–2627 (2014).
[Crossref]

Ferrand, P.

J. Torres, P. Ferrand, G. C. Francs, and J. Wenger, “Coupling Emitters and Silver Nanowires to Achieve Long-Range Plasmon-Mediated Fluorescence Energy Transfer,” ACS Nano 10(4), 3968–3976 (2016).
[Crossref]

Fox, P.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Francs, G. C.

J. Torres, P. Ferrand, G. C. Francs, and J. Wenger, “Coupling Emitters and Silver Nanowires to Achieve Long-Range Plasmon-Mediated Fluorescence Energy Transfer,” ACS Nano 10(4), 3968–3976 (2016).
[Crossref]

Fron, E.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref]

Fujiwara, M.

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

García-Vidal, F. J.

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref]

Geiselmann, M.

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref]

Goldberg, B. B.

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, “High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots,” Appl. Phys. Lett. 87(7), 071905 (2005).
[Crossref]

Gong, Q.

H. Hao, J. Ren, X. Duan, G. Lu, I. C. Khoo, Q. Gong, and Y. Gu, “High-contrast switching and high-efficiency extracting for spontaneous emission based on tunable gap surface plasmon,” Sci. Rep. 8(1), 11244 (2018).
[Crossref]

D. Xu, X. Xiong, L. Wu, X. F. Ren, C. E. Png, G. C. Guo, Q. Gong, and Y. F. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photon. 10(4), 703–756 (2018).
[Crossref]

H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, and Q. Gong, “Efficient Single Photon Emission and Collection Based on Excitation of Gap Surface Plasmons,” Phys. Rev. Lett. 114(19), 193002 (2015).
[Crossref]

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Gong, Z.

X. Chen, C. Zou, Z. Gong, C. Dong, G. Guo, and F. Sun, “Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond,” Light: Sci. Appl. 4(1), e230 (2015).
[Crossref]

Gonzalez-Ballestero, C.

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref]

Grabolle, M.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref]

Gray, S. K.

M. Hensen, T. Heilpern, S. K. Gray, and W. Pfeiffer, “Strong Coupling and Entanglement of Quantum Emitters Embedded in a Nanoantenna-Enhanced Plasmonic Cavity,” ACS Photon. 5(1), 240–248 (2018).
[Crossref]

Gu, Y.

H. Hao, J. Ren, X. Duan, G. Lu, I. C. Khoo, Q. Gong, and Y. Gu, “High-contrast switching and high-efficiency extracting for spontaneous emission based on tunable gap surface plasmon,” Sci. Rep. 8(1), 11244 (2018).
[Crossref]

H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, and Q. Gong, “Efficient Single Photon Emission and Collection Based on Excitation of Gap Surface Plasmons,” Phys. Rev. Lett. 114(19), 193002 (2015).
[Crossref]

Guan, J.-G.

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95(22), 221109 (2009).
[Crossref]

Guo, G.

X. Chen, C. Zou, Z. Gong, C. Dong, G. Guo, and F. Sun, “Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond,” Light: Sci. Appl. 4(1), e230 (2015).
[Crossref]

Guo, G. C.

Guo, G.-C.

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15(4), 2380–2384 (2015).
[Crossref]

A. Liu, C.-L. Zou, X. Ren, X. Xiong, Y.-J. Cai, H. Liu, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Independently analyzing different surface plasmon polariton modes on silver nanowire,” Opt. Express 22(19), 23372–23378 (2014).
[Crossref]

X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
[Crossref]

L.-L. Wang, C.-L. Zou, X.-F. Ren, A.-P. Liu, L. Lv, Y.-J. Cai, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Exciton-plasmon-photon conversion in silver nanowire: Polarization dependence,” Appl. Phys. Lett. 99(6), 061103 (2011).
[Crossref]

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95(22), 221109 (2009).
[Crossref]

Guo, G.-P.

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15(4), 2380–2384 (2015).
[Crossref]

A. Liu, C.-L. Zou, X. Ren, X. Xiong, Y.-J. Cai, H. Liu, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Independently analyzing different surface plasmon polariton modes on silver nanowire,” Opt. Express 22(19), 23372–23378 (2014).
[Crossref]

L.-L. Wang, C.-L. Zou, X.-F. Ren, A.-P. Liu, L. Lv, Y.-J. Cai, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Exciton-plasmon-photon conversion in silver nanowire: Polarization dependence,” Appl. Phys. Lett. 99(6), 061103 (2011).
[Crossref]

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95(22), 221109 (2009).
[Crossref]

Guo, X.

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7(6), 855–881 (2013).
[Crossref]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref]

Hakuta, K.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref]

Han, Z.-F.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Hansen, S. L.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Hao, H.

H. Hao, J. Ren, X. Duan, G. Lu, I. C. Khoo, Q. Gong, and Y. Gu, “High-contrast switching and high-efficiency extracting for spontaneous emission based on tunable gap surface plasmon,” Sci. Rep. 8(1), 11244 (2018).
[Crossref]

Hecht, B.

X. Wu, P. Jiang, G. Razinskas, Y. Huo, H. Zhang, M. Kamp, A. Rastelli, O. G. Schmidt, B. Hecht, K. Lindfors, and M. Lippitz, “On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot,” Nano Lett. 17(7), 4291–4296 (2017).
[Crossref]

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006). pp 224–278.

Heilpern, T.

M. Hensen, T. Heilpern, S. K. Gray, and W. Pfeiffer, “Strong Coupling and Entanglement of Quantum Emitters Embedded in a Nanoantenna-Enhanced Plasmonic Cavity,” ACS Photon. 5(1), 240–248 (2018).
[Crossref]

Hemmer, P.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref]

D. E. Chang, A. S. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).
[Crossref]

Hensen, M.

M. Hensen, T. Heilpern, S. K. Gray, and W. Pfeiffer, “Strong Coupling and Entanglement of Quantum Emitters Embedded in a Nanoantenna-Enhanced Plasmonic Cavity,” ACS Photon. 5(1), 240–248 (2018).
[Crossref]

Heo, C.-J.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2012).
[Crossref]

Hess, O.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Hinds, E.

Hofkens, J.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref]

Holmgaard, T.

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref]

Hone, J. C.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13(12), 1137–1142 (2018).
[Crossref]

Huck, A.

A. Huck and U. L. Anderson, “Coupling single emitters to quantum plasmonic circuits,” Nanophotonics 5(3), 483–495 (2016).
[Crossref]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106(9), 096801 (2011).
[Crossref]

Huo, Y.

X. Wu, P. Jiang, G. Razinskas, Y. Huo, H. Zhang, M. Kamp, A. Rastelli, O. G. Schmidt, B. Hecht, K. Lindfors, and M. Lippitz, “On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot,” Nano Lett. 17(7), 4291–4296 (2017).
[Crossref]

Hutchison, J.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref]

Hwang, J.

Ippolito, S. B.

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, “High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots,” Appl. Phys. Lett. 87(7), 071905 (2005).
[Crossref]

Javadi, A.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Jiang, P.

X. Wu, P. Jiang, G. Razinskas, Y. Huo, H. Zhang, M. Kamp, A. Rastelli, O. G. Schmidt, B. Hecht, K. Lindfors, and M. Lippitz, “On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot,” Nano Lett. 17(7), 4291–4296 (2017).
[Crossref]

Käll, M.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(1), 387 (2011).
[Crossref]

Kamp, M.

X. Wu, P. Jiang, G. Razinskas, Y. Huo, H. Zhang, M. Kamp, A. Rastelli, O. G. Schmidt, B. Hecht, K. Lindfors, and M. Lippitz, “On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot,” Nano Lett. 17(7), 4291–4296 (2017).
[Crossref]

Kastner, M. A.

M. A. Kastner, “Artificial atoms,” Phys. Today 46(1), 24–31 (1993).
[Crossref]

Kato, S.

S. Chonan, S. Kato, and T. Aoki, “Efficient single-mode photon-coupling device utilizing a nanofiber tip,” Sci. Rep. 4(1), 4785 (2014).
[Crossref]

Kéna-Cohen, S.

G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, S. K. Ozdemir, M. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12(5), 2504–2508 (2012).
[Crossref]

Kenens, B.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref]

Kewes, G.

T. Schröder, W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Lett. 11(1), 198–202 (2011).
[Crossref]

Khoo, I. C.

H. Hao, J. Ren, X. Duan, G. Lu, I. C. Khoo, Q. Gong, and Y. Gu, “High-contrast switching and high-efficiency extracting for spontaneous emission based on tunable gap surface plasmon,” Sci. Rep. 8(1), 11244 (2018).
[Crossref]

Kim, B.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13(12), 1137–1142 (2018).
[Crossref]

Kim, M.

M. S. Tame, K. McEnery, S. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, S. K. Ozdemir, M. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12(5), 2504–2508 (2012).
[Crossref]

Kumar, S.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106(9), 096801 (2011).
[Crossref]

Le Kien, F.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref]

Lee, J.

M. S. Tame, K. McEnery, S. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Lee, L. P.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2012).
[Crossref]

Lepert, G.

Li, M.

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15(4), 2380–2384 (2015).
[Crossref]

Li, Q.

Q. Li, H. Wei, and H. Xu, “Quantum yield of single surface plasmons generated by a quantum dot coupled with a silver nanowire,” Nano Lett. 15(12), 8181–8187 (2015).
[Crossref]

Q. Li, H. Wei, and H. Xu, “Resolving single plasmons generated by multiquantum-emitters on a silver nanowire,” Nano Lett. 14(6), 3358–3363 (2014).
[Crossref]

Lian, H.

H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, and Q. Gong, “Efficient Single Photon Emission and Collection Based on Excitation of Gap Surface Plasmons,” Phys. Rev. Lett. 114(19), 193002 (2015).
[Crossref]

Liao, Q.

Lindfors, K.

X. Wu, P. Jiang, G. Razinskas, Y. Huo, H. Zhang, M. Kamp, A. Rastelli, O. G. Schmidt, B. Hecht, K. Lindfors, and M. Lippitz, “On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot,” Nano Lett. 17(7), 4291–4296 (2017).
[Crossref]

Lippitz, M.

X. Wu, P. Jiang, G. Razinskas, Y. Huo, H. Zhang, M. Kamp, A. Rastelli, O. G. Schmidt, B. Hecht, K. Lindfors, and M. Lippitz, “On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot,” Nano Lett. 17(7), 4291–4296 (2017).
[Crossref]

Liu, A.

Liu, A.-P.

X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
[Crossref]

L.-L. Wang, C.-L. Zou, X.-F. Ren, A.-P. Liu, L. Lv, Y.-J. Cai, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Exciton-plasmon-photon conversion in silver nanowire: Polarization dependence,” Appl. Phys. Lett. 99(6), 061103 (2011).
[Crossref]

Liu, H.

Liu, J.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Liu, Z.

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, “High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots,” Appl. Phys. Lett. 87(7), 071905 (2005).
[Crossref]

Lodahl, P.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Lu, G.

H. Hao, J. Ren, X. Duan, G. Lu, I. C. Khoo, Q. Gong, and Y. Gu, “High-contrast switching and high-efficiency extracting for spontaneous emission based on tunable gap surface plasmon,” Sci. Rep. 8(1), 11244 (2018).
[Crossref]

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref]

Lukin, M.

D. E. Chang, A. S. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).
[Crossref]

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref]

Lukin, M. D.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
[Crossref]

Luo, Y.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13(12), 1137–1142 (2018).
[Crossref]

Lv, L.

L.-L. Wang, C.-L. Zou, X.-F. Ren, A.-P. Liu, L. Lv, Y.-J. Cai, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Exciton-plasmon-photon conversion in silver nanowire: Polarization dependence,” Appl. Phys. Lett. 99(6), 061103 (2011).
[Crossref]

Ma, Y.

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7(6), 855–881 (2013).
[Crossref]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref]

Mahmoodian, S.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Maier, S.

M. S. Tame, K. McEnery, S. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Maier, S. A.

G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, S. K. Ozdemir, M. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12(5), 2504–2508 (2012).
[Crossref]

Makarova, O.

S. K. H. Andersen, S. Bogdanov, O. Makarova, Y. Xuan, M. Y. Shalaginov, A. Boltasseva, S. I. Bozhevolnyi, and V. M. Shalaev, “Hybrid Plasmonic Bullseye Antennas for Efficient Photon Collection,” ACS Photon. 5(3), 692–698 (2018).
[Crossref]

Marty, R.

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref]

McEnery, K.

M. S. Tame, K. McEnery, S. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Mirin, R.

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, “High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots,” Appl. Phys. Lett. 87(7), 071905 (2005).
[Crossref]

Mizuno, H.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref]

Moreno, E.

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref]

Morinaga, M.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref]

Mukherjee, A.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref]

Nann, T.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref]

Nijs, B.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Nitschke, R.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref]

Noda, T.

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006). pp 224–278.

O’brien, J. L.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref]

Odom, T. W.

T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17(4), 2634–2639 (2017).
[Crossref]

Ozdemir, S. K.

G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, S. K. Ozdemir, M. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12(5), 2504–2508 (2012).
[Crossref]

Özdemir, S.

M. S. Tame, K. McEnery, S. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Park, H.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref]

Park, J.-H.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2012).
[Crossref]

Pelton, M.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref]

Pfeiffer, W.

M. Hensen, T. Heilpern, S. K. Gray, and W. Pfeiffer, “Strong Coupling and Entanglement of Quantum Emitters Embedded in a Nanoantenna-Enhanced Plasmonic Cavity,” ACS Photon. 5(1), 240–248 (2018).
[Crossref]

Plant, J.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref]

Png, C. E.

Politi, A.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref]

Purcell, E. M.

E. M. Purcell, Confined Electrons and Photons (Springer, 1995) p. 839.

Qiu, M.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref]

Quidant, R.

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref]

Radko, I. P.

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref]

Rarity, J. G.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref]

Rastelli, A.

X. Wu, P. Jiang, G. Razinskas, Y. Huo, H. Zhang, M. Kamp, A. Rastelli, O. G. Schmidt, B. Hecht, K. Lindfors, and M. Lippitz, “On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot,” Nano Lett. 17(7), 4291–4296 (2017).
[Crossref]

Razinskas, G.

X. Wu, P. Jiang, G. Razinskas, Y. Huo, H. Zhang, M. Kamp, A. Rastelli, O. G. Schmidt, B. Hecht, K. Lindfors, and M. Lippitz, “On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot,” Nano Lett. 17(7), 4291–4296 (2017).
[Crossref]

Ren, J.

H. Hao, J. Ren, X. Duan, G. Lu, I. C. Khoo, Q. Gong, and Y. Gu, “High-contrast switching and high-efficiency extracting for spontaneous emission based on tunable gap surface plasmon,” Sci. Rep. 8(1), 11244 (2018).
[Crossref]

H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, and Q. Gong, “Efficient Single Photon Emission and Collection Based on Excitation of Gap Surface Plasmons,” Phys. Rev. Lett. 114(19), 193002 (2015).
[Crossref]

Ren, X.

Ren, X. F.

Ren, X.-F.

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15(4), 2380–2384 (2015).
[Crossref]

X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
[Crossref]

L.-L. Wang, C.-L. Zou, X.-F. Ren, A.-P. Liu, L. Lv, Y.-J. Cai, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Exciton-plasmon-photon conversion in silver nanowire: Polarization dependence,” Appl. Phys. Lett. 99(6), 061103 (2011).
[Crossref]

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95(22), 221109 (2009).
[Crossref]

Resch-Genger, U.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref]

Rhodes, D. A.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13(12), 1137–1142 (2018).
[Crossref]

Rocha, S.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref]

Rosta, E.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Russell, P. St. J.

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

Santori, C.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref]

Schell, A. W.

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning single quantum wmitter fluorescence lifetime imaging: quantitative analysis of the local density of photonic states,” Nano Lett. 14(5), 2623–2627 (2014).
[Crossref]

Schell, W.

T. Schröder, W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Lett. 11(1), 198–202 (2011).
[Crossref]

Scherman, O. A.

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

Schmidt, M. A.

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

Schmidt, O. G.

X. Wu, P. Jiang, G. Razinskas, Y. Huo, H. Zhang, M. Kamp, A. Rastelli, O. G. Schmidt, B. Hecht, K. Lindfors, and M. Lippitz, “On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot,” Nano Lett. 17(7), 4291–4296 (2017).
[Crossref]

Schröder, T.

T. Schröder, W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Lett. 11(1), 198–202 (2011).
[Crossref]

Shakoor, A.

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106(9), 096801 (2011).
[Crossref]

Shalaev, V. M.

S. K. H. Andersen, S. Bogdanov, O. Makarova, Y. Xuan, M. Y. Shalaginov, A. Boltasseva, S. I. Bozhevolnyi, and V. M. Shalaev, “Hybrid Plasmonic Bullseye Antennas for Efficient Photon Collection,” ACS Photon. 5(3), 692–698 (2018).
[Crossref]

Shalaginov, M. Y.

S. K. H. Andersen, S. Bogdanov, O. Makarova, Y. Xuan, M. Y. Shalaginov, A. Boltasseva, S. I. Bozhevolnyi, and V. M. Shalaev, “Hybrid Plasmonic Bullseye Antennas for Efficient Photon Collection,” ACS Photon. 5(3), 692–698 (2018).
[Crossref]

Shepard, G. D.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13(12), 1137–1142 (2018).
[Crossref]

Söllner, I.

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Solomon, G. S.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref]

Sonnefraud, Y.

G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, S. K. Ozdemir, M. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12(5), 2504–2508 (2012).
[Crossref]

Sørensen, A. S.

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
[Crossref]

D. E. Chang, A. S. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).
[Crossref]

Strauf, S.

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13(12), 1137–1142 (2018).
[Crossref]

Su, L.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref]

Sun, F.

X. Chen, C. Zou, Z. Gong, C. Dong, G. Guo, and F. Sun, “Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond,” Light: Sci. Appl. 4(1), e230 (2015).
[Crossref]

Sun, F.-W.

A. Liu, C.-L. Zou, X. Ren, X. Xiong, Y.-J. Cai, H. Liu, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Independently analyzing different surface plasmon polariton modes on silver nanowire,” Opt. Express 22(19), 23372–23378 (2014).
[Crossref]

X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
[Crossref]

L.-L. Wang, C.-L. Zou, X.-F. Ren, A.-P. Liu, L. Lv, Y.-J. Cai, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Exciton-plasmon-photon conversion in silver nanowire: Polarization dependence,” Appl. Phys. Lett. 99(6), 061103 (2011).
[Crossref]

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Takeuchi, S.

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

Tame, M.

G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, S. K. Ozdemir, M. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12(5), 2504–2508 (2012).
[Crossref]

Tame, M. S.

M. S. Tame, K. McEnery, S. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Tian, X.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(1), 387 (2011).
[Crossref]

Tong, L.

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7(6), 855–881 (2013).
[Crossref]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref]

Tong, L.-M.

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15(4), 2380–2384 (2015).
[Crossref]

Torres, J.

J. Torres, P. Ferrand, G. C. Francs, and J. Wenger, “Coupling Emitters and Silver Nanowires to Achieve Long-Range Plasmon-Mediated Fluorescence Energy Transfer,” ACS Nano 10(4), 3968–3976 (2016).
[Crossref]

Toth, M.

T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17(4), 2634–2639 (2017).
[Crossref]

Toubaru, K.

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

Tran, T. T.

T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17(4), 2634–2639 (2017).
[Crossref]

Uebel, P.

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

Uji-i, H.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref]

Ünlü, M. S.

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, “High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots,” Appl. Phys. Lett. 87(7), 071905 (2005).
[Crossref]

Vamivakas, A. N.

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, “High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots,” Appl. Phys. Lett. 87(7), 071905 (2005).
[Crossref]

Van Dorpe, P.

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref]

Van Exter, M.

E. Altewischer, M. Van Exter, and J. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[Crossref]

Verhart, N.

Vuckovic, J.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref]

Wang, D.

T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17(4), 2634–2639 (2017).
[Crossref]

Wang, L.

H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, and Q. Gong, “Efficient Single Photon Emission and Collection Based on Excitation of Gap Surface Plasmons,” Phys. Rev. Lett. 114(19), 193002 (2015).
[Crossref]

Wang, L.-L.

L.-L. Wang, C.-L. Zou, X.-F. Ren, A.-P. Liu, L. Lv, Y.-J. Cai, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Exciton-plasmon-photon conversion in silver nanowire: Polarization dependence,” Appl. Phys. Lett. 99(6), 061103 (2011).
[Crossref]

Wang, Y.

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7(6), 855–881 (2013).
[Crossref]

Wang, Z.

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(1), 387 (2011).
[Crossref]

Wei, H.

Q. Li, H. Wei, and H. Xu, “Quantum yield of single surface plasmons generated by a quantum dot coupled with a silver nanowire,” Nano Lett. 15(12), 8181–8187 (2015).
[Crossref]

Q. Li, H. Wei, and H. Xu, “Resolving single plasmons generated by multiquantum-emitters on a silver nanowire,” Nano Lett. 14(6), 3358–3363 (2014).
[Crossref]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(1), 387 (2011).
[Crossref]

Wenger, J.

J. Torres, P. Ferrand, G. C. Francs, and J. Wenger, “Coupling Emitters and Silver Nanowires to Achieve Long-Range Plasmon-Mediated Fluorescence Energy Transfer,” ACS Nano 10(4), 3968–3976 (2016).
[Crossref]

Werra, J. F. M.

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning single quantum wmitter fluorescence lifetime imaging: quantitative analysis of the local density of photonic states,” Nano Lett. 14(5), 2623–2627 (2014).
[Crossref]

Wiley, B. J.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref]

Woerdman, J.

E. Altewischer, M. Van Exter, and J. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[Crossref]

Wolff, C.

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning single quantum wmitter fluorescence lifetime imaging: quantitative analysis of the local density of photonic states,” Nano Lett. 14(5), 2623–2627 (2014).
[Crossref]

Wu, L.

Wu, X.

X. Wu, P. Jiang, G. Razinskas, Y. Huo, H. Zhang, M. Kamp, A. Rastelli, O. G. Schmidt, B. Hecht, K. Lindfors, and M. Lippitz, “On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot,” Nano Lett. 17(7), 4291–4296 (2017).
[Crossref]

Xiao, Y. F.

Xiao, Y.-F.

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Xiong, X.

D. Xu, X. Xiong, L. Wu, X. F. Ren, C. E. Png, G. C. Guo, Q. Gong, and Y. F. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photon. 10(4), 703–756 (2018).
[Crossref]

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15(4), 2380–2384 (2015).
[Crossref]

A. Liu, C.-L. Zou, X. Ren, X. Xiong, Y.-J. Cai, H. Liu, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Independently analyzing different surface plasmon polariton modes on silver nanowire,” Opt. Express 22(19), 23372–23378 (2014).
[Crossref]

X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
[Crossref]

Xu, D.

Xu, H.

Q. Li, H. Wei, and H. Xu, “Quantum yield of single surface plasmons generated by a quantum dot coupled with a silver nanowire,” Nano Lett. 15(12), 8181–8187 (2015).
[Crossref]

Q. Li, H. Wei, and H. Xu, “Resolving single plasmons generated by multiquantum-emitters on a silver nanowire,” Nano Lett. 14(6), 3358–3363 (2014).
[Crossref]

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(1), 387 (2011).
[Crossref]

Xu, Z. Q.

T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17(4), 2634–2639 (2017).
[Crossref]

Xuan, Y.

S. K. H. Andersen, S. Bogdanov, O. Makarova, Y. Xuan, M. Y. Shalaginov, A. Boltasseva, S. I. Bozhevolnyi, and V. M. Shalaev, “Hybrid Plasmonic Bullseye Antennas for Efficient Photon Collection,” ACS Photon. 5(3), 692–698 (2018).
[Crossref]

Yalla, R.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref]

Yamamoto, Y.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref]

Yan, R.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2012).
[Crossref]

Yang, A.

T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17(4), 2634–2639 (2017).
[Crossref]

Yang, P.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2012).
[Crossref]

Yang, Q.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref]

Yang, R.

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95(22), 221109 (2009).
[Crossref]

Yang, S.-M.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2012).
[Crossref]

Ye, Y.-X.

X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
[Crossref]

Yu, C.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref]

Yu, H.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref]

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref]

Zhang, B.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref]

Zhang, F.

H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, and Q. Gong, “Efficient Single Photon Emission and Collection Based on Excitation of Gap Surface Plasmons,” Phys. Rev. Lett. 114(19), 193002 (2015).
[Crossref]

Zhang, H.

X. Wu, P. Jiang, G. Razinskas, Y. Huo, H. Zhang, M. Kamp, A. Rastelli, O. G. Schmidt, B. Hecht, K. Lindfors, and M. Lippitz, “On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot,” Nano Lett. 17(7), 4291–4296 (2017).
[Crossref]

Zhang, X.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref]

Zhao, H. Q.

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

Zhu, G.

Zibrov, A.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref]

Zou, C.

X. Chen, C. Zou, Z. Gong, C. Dong, G. Guo, and F. Sun, “Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond,” Light: Sci. Appl. 4(1), e230 (2015).
[Crossref]

Zou, C.-L.

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15(4), 2380–2384 (2015).
[Crossref]

A. Liu, C.-L. Zou, X. Ren, X. Xiong, Y.-J. Cai, H. Liu, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Independently analyzing different surface plasmon polariton modes on silver nanowire,” Opt. Express 22(19), 23372–23378 (2014).
[Crossref]

X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
[Crossref]

L.-L. Wang, C.-L. Zou, X.-F. Ren, A.-P. Liu, L. Lv, Y.-J. Cai, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Exciton-plasmon-photon conversion in silver nanowire: Polarization dependence,” Appl. Phys. Lett. 99(6), 061103 (2011).
[Crossref]

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

ACS Nano (1)

J. Torres, P. Ferrand, G. C. Francs, and J. Wenger, “Coupling Emitters and Silver Nanowires to Achieve Long-Range Plasmon-Mediated Fluorescence Energy Transfer,” ACS Nano 10(4), 3968–3976 (2016).
[Crossref]

ACS Photon. (2)

M. Hensen, T. Heilpern, S. K. Gray, and W. Pfeiffer, “Strong Coupling and Entanglement of Quantum Emitters Embedded in a Nanoantenna-Enhanced Plasmonic Cavity,” ACS Photon. 5(1), 240–248 (2018).
[Crossref]

S. K. H. Andersen, S. Bogdanov, O. Makarova, Y. Xuan, M. Y. Shalaginov, A. Boltasseva, S. I. Bozhevolnyi, and V. M. Shalaev, “Hybrid Plasmonic Bullseye Antennas for Efficient Photon Collection,” ACS Photon. 5(3), 692–698 (2018).
[Crossref]

Adv. Mater. (1)

G. Lu, H. De Keersmaecker, L. Su, B. Kenens, S. Rocha, E. Fron, C. Chen, P. Van Dorpe, H. Mizuno, J. Hofkens, J. Hutchison, and H. Uji-i, “Live-Cell SERS Endoscopy Using Plasmonic Nanowire Waveguides,” Adv. Mater. 26(30), 5124–5128 (2014).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (5)

L.-L. Wang, C.-L. Zou, X.-F. Ren, A.-P. Liu, L. Lv, Y.-J. Cai, F.-W. Sun, G.-C. Guo, and G.-P. Guo, “Exciton-plasmon-photon conversion in silver nanowire: Polarization dependence,” Appl. Phys. Lett. 99(6), 061103 (2011).
[Crossref]

P. Uebel, S. T. Bauerschmidt, M. A. Schmidt, and P. St. J. Russell, “A gold-nanotip optical fiber for plasmon-enhanced near-field detection,” Appl. Phys. Lett. 103(2), 021101 (2013).
[Crossref]

Z. Liu, B. B. Goldberg, S. B. Ippolito, A. N. Vamivakas, M. S. Ünlü, and R. Mirin, “High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots,” Appl. Phys. Lett. 87(7), 071905 (2005).
[Crossref]

C.-H. Dong, X.-F. Ren, R. Yang, J.-Y. Duan, J.-G. Guan, G.-C. Guo, and G.-P. Guo, “Coupling of light from an optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95(22), 221109 (2009).
[Crossref]

C.-L. Zou, F.-W. Sun, Y.-F. Xiao, C.-H. Dong, X.-D. Chen, J.-M. Cui, Q. Gong, Z.-F. Han, and G.-C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Laser Photon. Rev. (2)

X. Xiong, C.-L. Zou, X.-F. Ren, A.-P. Liu, Y.-X. Ye, F.-W. Sun, and G.-C. Guo, “Silver nanowires for photonics applications,” Laser Photon. Rev. 7(6), 901–919 (2013).
[Crossref]

X. Guo, Y. Ma, Y. Wang, and L. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser Photon. Rev. 7(6), 855–881 (2013).
[Crossref]

Light: Sci. Appl. (1)

X. Chen, C. Zou, Z. Gong, C. Dong, G. Guo, and F. Sun, “Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond,” Light: Sci. Appl. 4(1), e230 (2015).
[Crossref]

Nano Lett. (10)

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

T. Schröder, W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Lett. 11(1), 198–202 (2011).
[Crossref]

Q. Li, H. Wei, and H. Xu, “Quantum yield of single surface plasmons generated by a quantum dot coupled with a silver nanowire,” Nano Lett. 15(12), 8181–8187 (2015).
[Crossref]

X. Wu, P. Jiang, G. Razinskas, Y. Huo, H. Zhang, M. Kamp, A. Rastelli, O. G. Schmidt, B. Hecht, K. Lindfors, and M. Lippitz, “On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot,” Nano Lett. 17(7), 4291–4296 (2017).
[Crossref]

T. T. Tran, D. Wang, Z. Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays,” Nano Lett. 17(4), 2634–2639 (2017).
[Crossref]

Q. Li, H. Wei, and H. Xu, “Resolving single plasmons generated by multiquantum-emitters on a silver nanowire,” Nano Lett. 14(6), 3358–3363 (2014).
[Crossref]

G. Di Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, S. K. Ozdemir, M. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12(5), 2504–2508 (2012).
[Crossref]

M. Li, C.-L. Zou, X.-F. Ren, X. Xiong, Y.-J. Cai, G.-P. Guo, L.-M. Tong, and G.-C. Guo, “Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide,” Nano Lett. 15(4), 2380–2384 (2015).
[Crossref]

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning single quantum wmitter fluorescence lifetime imaging: quantitative analysis of the local density of photonic states,” Nano Lett. 14(5), 2623–2627 (2014).
[Crossref]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett. 9(12), 4515–4519 (2009).
[Crossref]

Nanophotonics (1)

A. Huck and U. L. Anderson, “Coupling single emitters to quantum plasmonic circuits,” Nanophotonics 5(3), 483–495 (2016).
[Crossref]

Nat. Commun. (2)

H. Wei, Z. Wang, X. Tian, M. Käll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2(1), 387 (2011).
[Crossref]

E. Bermúdez-Ureña, C. Gonzalez-Ballestero, M. Geiselmann, R. Marty, I. P. Radko, T. Holmgaard, Y. Alaverdyan, E. Moreno, F. J. García-Vidal, S. I. Bozhevolnyi, and R. Quidant, “Coupling of individual quantum emitters to channel plasmons,” Nat. Commun. 6(1), 7883 (2015).
[Crossref]

Nat. Methods (1)

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008).
[Crossref]

Nat. Nanotechnol. (2)

Y. Luo, G. D. Shepard, J. V. Ardelean, D. A. Rhodes, B. Kim, K. Barmak, J. C. Hone, and S. Strauf, “Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities,” Nat. Nanotechnol. 13(12), 1137–1142 (2018).
[Crossref]

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2012).
[Crossref]

Nat. Phys. (2)

D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, “A single-photon transistor using nanoscale surface plasmons,” Nat. Phys. 3(11), 807–812 (2007).
[Crossref]

M. S. Tame, K. McEnery, S. Özdemir, J. Lee, S. Maier, and M. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Nature (3)

E. Altewischer, M. Van Exter, and J. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[Crossref]

R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref]

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref]

Opt. Express (3)

Phys. Rev. B (1)

D. E. Chang, A. S. Sørensen, P. Hemmer, and M. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76(3), 035420 (2007).
[Crossref]

Phys. Rev. Lett. (5)

H. Lian, Y. Gu, J. Ren, F. Zhang, L. Wang, and Q. Gong, “Efficient Single Photon Emission and Collection Based on Excitation of Gap Surface Plasmons,” Phys. Rev. Lett. 114(19), 193002 (2015).
[Crossref]

A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106(9), 096801 (2011).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, and P. Lodahl, “Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[Crossref]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref]

Phys. Today (1)

M. A. Kastner, “Artificial atoms,” Phys. Today 46(1), 24–31 (1993).
[Crossref]

Sci. Rep. (2)

S. Chonan, S. Kato, and T. Aoki, “Efficient single-mode photon-coupling device utilizing a nanofiber tip,” Sci. Rep. 4(1), 4785 (2014).
[Crossref]

H. Hao, J. Ren, X. Duan, G. Lu, I. C. Khoo, Q. Gong, and Y. Gu, “High-contrast switching and high-efficiency extracting for spontaneous emission based on tunable gap surface plasmon,” Sci. Rep. 8(1), 11244 (2018).
[Crossref]

Science (1)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008).
[Crossref]

Other (2)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006). pp 224–278.

E. M. Purcell, Confined Electrons and Photons (Springer, 1995) p. 839.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Experimental setup. (a) A $532nm$ continuous-wave laser or a $395nm$ ps-pulsed laser is used to excite the QD ensemble by an objective lens. PBS and HWP are used to control the polarization of the laser. The fluorescence is collected by the AgNW-fiber probe and filtered with a $561nm$ long pass filter to block the excitation laser before detection. The fluorescence can also be collected by the same objective lens. We use a single photon detector or a spectrometer to record the single photons emitted by the QDs. A multichannel analyzer is used to record the time interval between the laser pulse and the fluorescence photon, thus giving the lifetime of the fluorescence. PBS, polarization beamsplitter; HWP, half waveplate; BS, beamsplitter. (b) CCD image of the hybrid probe with laser light launched from the fiber. Magenta circles show the scattering laser light from the fiber taper end and the AgNW end. Inset: SEM (scanning electron microscope) image of the hybrid probe. Scalar bar: $10\mu m$ . (c) Eigenmodes of the AgNW. The AgNW can support three eigenmodes, $TEM_{0}$ and two degenerate modes, $TE_{1}$ and $TM_{1}$ . Here, we give the electric field distributions of $TEM_{0}$ (left panel) and $TM_{1}$ (right panel).
Fig. 2.
Fig. 2. Normalized fluorescence spectra of $CdSe$ quantum dots. Red line: Fluorescence of QDs on the substrate collected by the objective lens. Blue line: Fluorescence collected by the AgNW-fiber probe. The spectra are displaced vertically for comparison.
Fig. 3.
Fig. 3. Lifetime of the collected fluorescence. (a) QDs on silica substrate, with objective lens collection. Intensity-time relation is fitted with a single exponential function $f_{1}$ . Fitted lifetime is $\tau _{0}=15.25 \pm 0.10\:ns$ . (b) QDs on silica subsrate, with plasmonic probe collection. Solid line is fitted with the sum of two exponential functions $f_{2}$ . $\tau _{1}=2.21 \pm 0.07\:ns$ , $\tau _{2}=19.25 \pm 0.68\:ns$ . Dashed line is fitted with a single exponential function $f_{1}$ with $\tau _{0}=8.61 \pm 0.35ns$ . The large disagreement between the data and the fitted curve using $f_{1}$ implies that the collected photons come from at least two coupling processes with significant different lifetimes. (c) Intensity-time relation for fluorescence collected by fiber taper. The data is fitted with function $f_{1}$ with $\tau _{0}=19.02 \pm 0.26\:ns$ . In the experiment, the data acquisition time is different for different cases.
Fig. 4.
Fig. 4. Numerical simulation. (a) Effective mode area of the plasmonic modes. The inset is the schematic diagram of the plasmonic mode on AgNW. (b) Relation between the collection efficiency of the AgNW and its radius. The efficiency can even exceed $90\%$ when $r<30\:nm$ . It should be noted that the efficiency is the probability the photon directly radiated into the surface plasmonic modes, and does not include the propagation loss of the silver nanowire. (c) yz cut plane image of the 3D simulation. The radius of the nanowire is $100nm$ and the angle between the probe and the substrate is $10^\circ$ .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g ω 2 A e f f | E ( x ) | m a x [ E ( x ) ] c o s ( θ ) ,

Metrics