Abstract

Electroholography is attracting attention as an ideal 3D image presentation method. Developing such methods involves significant computational complexity; thus, they are difficult to realize. Typically, large cluster systems with a control PC and a field-programmable gate array (FPGA) acceleration board are used to reduce hologram calculation time. However such systems cannot be used for embedded 3D systems, such as a head-mounted display. In this study, we developed a compact holographic computer using a Xilinx Zynq UltraScale+ MPSoC with an ARM CPU and an FPGA on a single chip. The proposed system can reproduce a 3D video at 15 frames per second for a spatial light modulator of 1,920 $\times$ 1,080 pixels from an object represented by 6,500 point cloud sources. The proposed system can be embedded in various systems, e.g., head-mounted displays and 3D televisions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
HORN-6 special-purpose clustered computing system for electroholography

Yasuyuki Ichihashi, Hirotaka Nakayama, Tomoyoshi Ito, Nobuyuki Masuda, Tomoyoshi Shimobaba, Atsushi Shiraki, and Takashige Sugie
Opt. Express 17(16) 13895-13903 (2009)

Special-purpose computer HORN-5 for a real-time electroholography

Tomoyoshi Ito, Nobuyuki Masuda, Kotaro Yoshimura, Atsushi Shiraki, Tomoyoshi Shimobaba, and Takashige Sugie
Opt. Express 13(6) 1923-1932 (2005)

References

  • View by:
  • |
  • |
  • |

  1. G. Kramida, “Resolving the vergence-accommodation conflict in head-mounted displays,” IEEE Trans. Vis. Comput. Graph. 22(7), 1912–1931 (2016).
    [Crossref]
  2. S. R. Bharadwaj and T. R. Candy, “Accommodative and vergence responses to conflicting blur and disparity stimuli during development,” J. Vis. 9(11), 4 (2009).
    [Crossref]
  3. D. Hoffman, A. Girshick, K. Akeley, and M. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
    [Crossref]
  4. M. Lambooij, M. Fortuin, I. Heynderickx, and W. IJsselsteijn, “Visual discomfort and visual fatigue of stereoscopic displays: A review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
    [Crossref]
  5. S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D displays,” Proc. SPIE 7690, 76900B2010.
    [Crossref]
  6. T. Bando, A. Iijima, and S. Yano, “Visual fatigue caused by stereoscopic images and the search for the requirement to prevent them: a review,” Displays 33(2), 76–83 (2012).
    [Crossref]
  7. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [Crossref]
  8. P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 12121990.
    [Crossref]
  9. M. Lucente, “Interactive three-dimensional holographic displays: seeing the future in depth,” SIGGRAPH Comput. Graph. Curr. New, Emerg. Disp. Syst. 31(2), 63–67 (1997).
    [Crossref]
  10. Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “Horn-6 special-purpose clustered computing system for electroholography,” Opt. Express 17(16), 13895–13903 (2009).
    [Crossref]
  11. T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nat. Electron. 1(4), 254–259 (2018).
    [Crossref]
  12. P. Tsang, J. Liu, T. Poon, and K. Cheung, “Fast generation of hologram sub-lines based on field programmable gate array,” Adv. Imaging p. DWC2 (2009).
  13. N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer generated holography using a graphics processing unit,” Opt. Express 14(2), 603–608 (2006).
    [Crossref]
  14. Y. Pan, X. Xu, S. Solanki, X. Liang, R. B. A. Tanjung, C. Tan, and T.-C. Chong, “Fast cgh computation using s-lut on gpu,” Opt. Express 17(21), 18543–18555 (2009).
    [Crossref]
  15. H. Niwase, N. Takada, H. Araki, H. Nakayama, A. Sugiyama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time spatiotemporal division multiplexing electroholography with a single graphics processing unit utilizing movie features,” Opt. Express 22(23), 28052–28057 (2014).
    [Crossref]
  16. L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, “Computer generated holography using parallel commodity graphics hardware,” Opt. Express 14(17), 7636–7641 (2006).
    [Crossref]
  17. P. W. M. Tsang, A. S. M. Jiao, and T.-C. Poon, “Fast conversion of digital fresnel hologram to phase-only hologram based on localized error diffusion and redistribution,” Opt. Express 22(5), 5060–5066 (2014).
    [Crossref]
  18. T. Ichikawa, T. Yoneyama, and Y. Sakamoto, “Cgh calculation with the ray tracing method for the fourier transform optical system,” Opt. Express 21(26), 32019–32031 (2013).
    [Crossref]
  19. E. Murakami, Y. Oguro, and Y. Sakamoto, “Study on compact head-mounted display system using electro-holography for augmented reality,” IEICE Trans. Electron. E100.C(11), 965–971 (2017).
    [Crossref]
  20. T. Ito and T. Shimobaba, “One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquid-crystal display toward a three-dimensional television,” Opt. Express 12(9), 1788–1793 (2004).
    [Crossref]
  21. T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “Electroholographic display unit for three-dimensional display by use of special-purpose computational chip for holography and reflective lcd panel,” Opt. Express 13(11), 4196–4201 (2005).
    [Crossref]
  22. T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Review of fast calculation techniques for computer-generated holograms with the point-light-source-based model,” IEEE Trans. Ind. Inform. 13(5), 2447–2454 (2017).
    [Crossref]
  23. T. Shimobaba and T. Ito, “An efficient computational method suitable for hardware of computer-generated hologram with phase computation by addition,” Comput. Phys. Commun. 138(1), 44–52 (2001).
    [Crossref]
  24. Y. Takaki and K. Fujii, “Viewing-zone scanning holographic display using a mems spatial light modulator,” Opt. Express 22(20), 24713–24721 (2014).
    [Crossref]
  25. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
    [Crossref]

2018 (1)

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nat. Electron. 1(4), 254–259 (2018).
[Crossref]

2017 (3)

E. Murakami, Y. Oguro, and Y. Sakamoto, “Study on compact head-mounted display system using electro-holography for augmented reality,” IEICE Trans. Electron. E100.C(11), 965–971 (2017).
[Crossref]

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Review of fast calculation techniques for computer-generated holograms with the point-light-source-based model,” IEEE Trans. Ind. Inform. 13(5), 2447–2454 (2017).
[Crossref]

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

2016 (1)

G. Kramida, “Resolving the vergence-accommodation conflict in head-mounted displays,” IEEE Trans. Vis. Comput. Graph. 22(7), 1912–1931 (2016).
[Crossref]

2014 (3)

2013 (1)

2012 (1)

T. Bando, A. Iijima, and S. Yano, “Visual fatigue caused by stereoscopic images and the search for the requirement to prevent them: a review,” Displays 33(2), 76–83 (2012).
[Crossref]

2010 (1)

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D displays,” Proc. SPIE 7690, 76900B2010.
[Crossref]

2009 (4)

M. Lambooij, M. Fortuin, I. Heynderickx, and W. IJsselsteijn, “Visual discomfort and visual fatigue of stereoscopic displays: A review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
[Crossref]

S. R. Bharadwaj and T. R. Candy, “Accommodative and vergence responses to conflicting blur and disparity stimuli during development,” J. Vis. 9(11), 4 (2009).
[Crossref]

Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “Horn-6 special-purpose clustered computing system for electroholography,” Opt. Express 17(16), 13895–13903 (2009).
[Crossref]

Y. Pan, X. Xu, S. Solanki, X. Liang, R. B. A. Tanjung, C. Tan, and T.-C. Chong, “Fast cgh computation using s-lut on gpu,” Opt. Express 17(21), 18543–18555 (2009).
[Crossref]

2008 (1)

D. Hoffman, A. Girshick, K. Akeley, and M. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

2006 (2)

2005 (1)

2004 (1)

2001 (1)

T. Shimobaba and T. Ito, “An efficient computational method suitable for hardware of computer-generated hologram with phase computation by addition,” Comput. Phys. Commun. 138(1), 44–52 (2001).
[Crossref]

1997 (1)

M. Lucente, “Interactive three-dimensional holographic displays: seeing the future in depth,” SIGGRAPH Comput. Graph. Curr. New, Emerg. Disp. Syst. 31(2), 63–67 (1997).
[Crossref]

1990 (1)

P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 12121990.
[Crossref]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref]

Ahrenberg, L.

Akamatsu, T.

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nat. Electron. 1(4), 254–259 (2018).
[Crossref]

Akeley, K.

D. Hoffman, A. Girshick, K. Akeley, and M. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

Araki, H.

Bando, T.

T. Bando, A. Iijima, and S. Yano, “Visual fatigue caused by stereoscopic images and the search for the requirement to prevent them: a review,” Displays 33(2), 76–83 (2012).
[Crossref]

Banks, M.

D. Hoffman, A. Girshick, K. Akeley, and M. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

Benton, S. A.

P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 12121990.
[Crossref]

Benzie, P.

Bharadwaj, S. R.

S. R. Bharadwaj and T. R. Candy, “Accommodative and vergence responses to conflicting blur and disparity stimuli during development,” J. Vis. 9(11), 4 (2009).
[Crossref]

Candy, T. R.

S. R. Bharadwaj and T. R. Candy, “Accommodative and vergence responses to conflicting blur and disparity stimuli during development,” J. Vis. 9(11), 4 (2009).
[Crossref]

Cheung, K.

P. Tsang, J. Liu, T. Poon, and K. Cheung, “Fast generation of hologram sub-lines based on field programmable gate array,” Adv. Imaging p. DWC2 (2009).

Chong, T.-C.

Endo, Y.

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nat. Electron. 1(4), 254–259 (2018).
[Crossref]

Fortuin, M.

M. Lambooij, M. Fortuin, I. Heynderickx, and W. IJsselsteijn, “Visual discomfort and visual fatigue of stereoscopic displays: A review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
[Crossref]

Fujii, K.

Fütterer, G.

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D displays,” Proc. SPIE 7690, 76900B2010.
[Crossref]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref]

Georgiou, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Girshick, A.

D. Hoffman, A. Girshick, K. Akeley, and M. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

Häussler, R.

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D displays,” Proc. SPIE 7690, 76900B2010.
[Crossref]

Heynderickx, I.

M. Lambooij, M. Fortuin, I. Heynderickx, and W. IJsselsteijn, “Visual discomfort and visual fatigue of stereoscopic displays: A review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
[Crossref]

Hirayama, R.

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nat. Electron. 1(4), 254–259 (2018).
[Crossref]

Hoffman, D.

D. Hoffman, A. Girshick, K. Akeley, and M. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

Ichihashi, Y.

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nat. Electron. 1(4), 254–259 (2018).
[Crossref]

Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “Horn-6 special-purpose clustered computing system for electroholography,” Opt. Express 17(16), 13895–13903 (2009).
[Crossref]

Ichikawa, T.

Iijima, A.

T. Bando, A. Iijima, and S. Yano, “Visual fatigue caused by stereoscopic images and the search for the requirement to prevent them: a review,” Displays 33(2), 76–83 (2012).
[Crossref]

IJsselsteijn, W.

M. Lambooij, M. Fortuin, I. Heynderickx, and W. IJsselsteijn, “Visual discomfort and visual fatigue of stereoscopic displays: A review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
[Crossref]

Ito, T.

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nat. Electron. 1(4), 254–259 (2018).
[Crossref]

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Review of fast calculation techniques for computer-generated holograms with the point-light-source-based model,” IEEE Trans. Ind. Inform. 13(5), 2447–2454 (2017).
[Crossref]

H. Niwase, N. Takada, H. Araki, H. Nakayama, A. Sugiyama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time spatiotemporal division multiplexing electroholography with a single graphics processing unit utilizing movie features,” Opt. Express 22(23), 28052–28057 (2014).
[Crossref]

Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “Horn-6 special-purpose clustered computing system for electroholography,” Opt. Express 17(16), 13895–13903 (2009).
[Crossref]

N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer generated holography using a graphics processing unit,” Opt. Express 14(2), 603–608 (2006).
[Crossref]

T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “Electroholographic display unit for three-dimensional display by use of special-purpose computational chip for holography and reflective lcd panel,” Opt. Express 13(11), 4196–4201 (2005).
[Crossref]

T. Ito and T. Shimobaba, “One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquid-crystal display toward a three-dimensional television,” Opt. Express 12(9), 1788–1793 (2004).
[Crossref]

T. Shimobaba and T. Ito, “An efficient computational method suitable for hardware of computer-generated hologram with phase computation by addition,” Comput. Phys. Commun. 138(1), 44–52 (2001).
[Crossref]

Jepsen, M. L.

P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 12121990.
[Crossref]

Jiao, A. S. M.

Kakue, T.

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nat. Electron. 1(4), 254–259 (2018).
[Crossref]

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Review of fast calculation techniques for computer-generated holograms with the point-light-source-based model,” IEEE Trans. Ind. Inform. 13(5), 2447–2454 (2017).
[Crossref]

H. Niwase, N. Takada, H. Araki, H. Nakayama, A. Sugiyama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time spatiotemporal division multiplexing electroholography with a single graphics processing unit utilizing movie features,” Opt. Express 22(23), 28052–28057 (2014).
[Crossref]

Kollin, J.

P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 12121990.
[Crossref]

Kollin, J. S.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Kramida, G.

G. Kramida, “Resolving the vergence-accommodation conflict in head-mounted displays,” IEEE Trans. Vis. Comput. Graph. 22(7), 1912–1931 (2016).
[Crossref]

Lambooij, M.

M. Lambooij, M. Fortuin, I. Heynderickx, and W. IJsselsteijn, “Visual discomfort and visual fatigue of stereoscopic displays: A review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
[Crossref]

Leister, N.

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D displays,” Proc. SPIE 7690, 76900B2010.
[Crossref]

Liang, X.

Liu, J.

P. Tsang, J. Liu, T. Poon, and K. Cheung, “Fast generation of hologram sub-lines based on field programmable gate array,” Adv. Imaging p. DWC2 (2009).

Lucente, M.

M. Lucente, “Interactive three-dimensional holographic displays: seeing the future in depth,” SIGGRAPH Comput. Graph. Curr. New, Emerg. Disp. Syst. 31(2), 63–67 (1997).
[Crossref]

Lucente, M. E.

P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 12121990.
[Crossref]

Magnor, M.

Maimone, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Masuda, N.

Murakami, E.

E. Murakami, Y. Oguro, and Y. Sakamoto, “Study on compact head-mounted display system using electro-holography for augmented reality,” IEICE Trans. Electron. E100.C(11), 965–971 (2017).
[Crossref]

Nakayama, H.

Nishitsuji, T.

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nat. Electron. 1(4), 254–259 (2018).
[Crossref]

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Review of fast calculation techniques for computer-generated holograms with the point-light-source-based model,” IEEE Trans. Ind. Inform. 13(5), 2447–2454 (2017).
[Crossref]

Niwase, H.

Oguro, Y.

E. Murakami, Y. Oguro, and Y. Sakamoto, “Study on compact head-mounted display system using electro-holography for augmented reality,” IEICE Trans. Electron. E100.C(11), 965–971 (2017).
[Crossref]

Oikawa, M.

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nat. Electron. 1(4), 254–259 (2018).
[Crossref]

Pan, Y.

Poon, T.

P. Tsang, J. Liu, T. Poon, and K. Cheung, “Fast generation of hologram sub-lines based on field programmable gate array,” Adv. Imaging p. DWC2 (2009).

Poon, T.-C.

Reichelt, S.

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D displays,” Proc. SPIE 7690, 76900B2010.
[Crossref]

Sakamoto, Y.

E. Murakami, Y. Oguro, and Y. Sakamoto, “Study on compact head-mounted display system using electro-holography for augmented reality,” IEICE Trans. Electron. E100.C(11), 965–971 (2017).
[Crossref]

T. Ichikawa, T. Yoneyama, and Y. Sakamoto, “Cgh calculation with the ray tracing method for the fourier transform optical system,” Opt. Express 21(26), 32019–32031 (2013).
[Crossref]

Shimobaba, T.

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nat. Electron. 1(4), 254–259 (2018).
[Crossref]

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Review of fast calculation techniques for computer-generated holograms with the point-light-source-based model,” IEEE Trans. Ind. Inform. 13(5), 2447–2454 (2017).
[Crossref]

H. Niwase, N. Takada, H. Araki, H. Nakayama, A. Sugiyama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time spatiotemporal division multiplexing electroholography with a single graphics processing unit utilizing movie features,” Opt. Express 22(23), 28052–28057 (2014).
[Crossref]

Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “Horn-6 special-purpose clustered computing system for electroholography,” Opt. Express 17(16), 13895–13903 (2009).
[Crossref]

T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “Electroholographic display unit for three-dimensional display by use of special-purpose computational chip for holography and reflective lcd panel,” Opt. Express 13(11), 4196–4201 (2005).
[Crossref]

T. Ito and T. Shimobaba, “One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquid-crystal display toward a three-dimensional television,” Opt. Express 12(9), 1788–1793 (2004).
[Crossref]

T. Shimobaba and T. Ito, “An efficient computational method suitable for hardware of computer-generated hologram with phase computation by addition,” Comput. Phys. Commun. 138(1), 44–52 (2001).
[Crossref]

Shiraki, A.

Solanki, S.

St-Hilaire, P.

P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 12121990.
[Crossref]

Sugie, T.

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nat. Electron. 1(4), 254–259 (2018).
[Crossref]

Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “Horn-6 special-purpose clustered computing system for electroholography,” Opt. Express 17(16), 13895–13903 (2009).
[Crossref]

N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer generated holography using a graphics processing unit,” Opt. Express 14(2), 603–608 (2006).
[Crossref]

Sugiyama, A.

Takada, N.

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nat. Electron. 1(4), 254–259 (2018).
[Crossref]

H. Niwase, N. Takada, H. Araki, H. Nakayama, A. Sugiyama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time spatiotemporal division multiplexing electroholography with a single graphics processing unit utilizing movie features,” Opt. Express 22(23), 28052–28057 (2014).
[Crossref]

Takaki, Y.

Tan, C.

Tanaka, T.

Tanjung, R. B. A.

Tsang, P.

P. Tsang, J. Liu, T. Poon, and K. Cheung, “Fast generation of hologram sub-lines based on field programmable gate array,” Adv. Imaging p. DWC2 (2009).

Tsang, P. W. M.

Underkoffler, J. S.

P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 12121990.
[Crossref]

Watson, J.

Xu, X.

Yano, S.

T. Bando, A. Iijima, and S. Yano, “Visual fatigue caused by stereoscopic images and the search for the requirement to prevent them: a review,” Displays 33(2), 76–83 (2012).
[Crossref]

Yoneyama, T.

Yoshikawa, H.

P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 12121990.
[Crossref]

ACM Trans. Graph. (1)

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Comput. Phys. Commun. (1)

T. Shimobaba and T. Ito, “An efficient computational method suitable for hardware of computer-generated hologram with phase computation by addition,” Comput. Phys. Commun. 138(1), 44–52 (2001).
[Crossref]

Displays (1)

T. Bando, A. Iijima, and S. Yano, “Visual fatigue caused by stereoscopic images and the search for the requirement to prevent them: a review,” Displays 33(2), 76–83 (2012).
[Crossref]

IEEE Trans. Ind. Inform. (1)

T. Nishitsuji, T. Shimobaba, T. Kakue, and T. Ito, “Review of fast calculation techniques for computer-generated holograms with the point-light-source-based model,” IEEE Trans. Ind. Inform. 13(5), 2447–2454 (2017).
[Crossref]

IEEE Trans. Vis. Comput. Graph. (1)

G. Kramida, “Resolving the vergence-accommodation conflict in head-mounted displays,” IEEE Trans. Vis. Comput. Graph. 22(7), 1912–1931 (2016).
[Crossref]

IEICE Trans. Electron. (1)

E. Murakami, Y. Oguro, and Y. Sakamoto, “Study on compact head-mounted display system using electro-holography for augmented reality,” IEICE Trans. Electron. E100.C(11), 965–971 (2017).
[Crossref]

J. Imaging Sci. Technol. (1)

M. Lambooij, M. Fortuin, I. Heynderickx, and W. IJsselsteijn, “Visual discomfort and visual fatigue of stereoscopic displays: A review,” J. Imaging Sci. Technol. 53(3), 030201 (2009).
[Crossref]

J. Vis. (2)

S. R. Bharadwaj and T. R. Candy, “Accommodative and vergence responses to conflicting blur and disparity stimuli during development,” J. Vis. 9(11), 4 (2009).
[Crossref]

D. Hoffman, A. Girshick, K. Akeley, and M. Banks, “Vergence-accommodation conflicts hinder visual performance and cause visual fatigue,” J. Vis. 8(3), 33 (2008).
[Crossref]

Nat. Electron. (1)

T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, and T. Ito, “High-performance parallel computing for next-generation holographic imaging,” Nat. Electron. 1(4), 254–259 (2018).
[Crossref]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[Crossref]

Opt. Express (10)

T. Ito and T. Shimobaba, “One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquid-crystal display toward a three-dimensional television,” Opt. Express 12(9), 1788–1793 (2004).
[Crossref]

T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “Electroholographic display unit for three-dimensional display by use of special-purpose computational chip for holography and reflective lcd panel,” Opt. Express 13(11), 4196–4201 (2005).
[Crossref]

N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer generated holography using a graphics processing unit,” Opt. Express 14(2), 603–608 (2006).
[Crossref]

L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, “Computer generated holography using parallel commodity graphics hardware,” Opt. Express 14(17), 7636–7641 (2006).
[Crossref]

Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “Horn-6 special-purpose clustered computing system for electroholography,” Opt. Express 17(16), 13895–13903 (2009).
[Crossref]

Y. Pan, X. Xu, S. Solanki, X. Liang, R. B. A. Tanjung, C. Tan, and T.-C. Chong, “Fast cgh computation using s-lut on gpu,” Opt. Express 17(21), 18543–18555 (2009).
[Crossref]

T. Ichikawa, T. Yoneyama, and Y. Sakamoto, “Cgh calculation with the ray tracing method for the fourier transform optical system,” Opt. Express 21(26), 32019–32031 (2013).
[Crossref]

P. W. M. Tsang, A. S. M. Jiao, and T.-C. Poon, “Fast conversion of digital fresnel hologram to phase-only hologram based on localized error diffusion and redistribution,” Opt. Express 22(5), 5060–5066 (2014).
[Crossref]

Y. Takaki and K. Fujii, “Viewing-zone scanning holographic display using a mems spatial light modulator,” Opt. Express 22(20), 24713–24721 (2014).
[Crossref]

H. Niwase, N. Takada, H. Araki, H. Nakayama, A. Sugiyama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time spatiotemporal division multiplexing electroholography with a single graphics processing unit utilizing movie features,” Opt. Express 22(23), 28052–28057 (2014).
[Crossref]

Proc. SPIE (2)

P. St-Hilaire, S. A. Benton, M. E. Lucente, M. L. Jepsen, J. Kollin, H. Yoshikawa, and J. S. Underkoffler, “Electronic display system for computational holography,” Proc. SPIE 1212, 12121990.
[Crossref]

S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D displays,” Proc. SPIE 7690, 76900B2010.
[Crossref]

SIGGRAPH Comput. Graph. Curr. New, Emerg. Disp. Syst. (1)

M. Lucente, “Interactive three-dimensional holographic displays: seeing the future in depth,” SIGGRAPH Comput. Graph. Curr. New, Emerg. Disp. Syst. 31(2), 63–67 (1997).
[Crossref]

Other (1)

P. Tsang, J. Liu, T. Poon, and K. Cheung, “Fast generation of hologram sub-lines based on field programmable gate array,” Adv. Imaging p. DWC2 (2009).

Supplementary Material (1)

NameDescription
» Visualization 1       Optically reconstructed movie of electro-holography created with the proposed system.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Optical environment. The proposed special-purpose computer is mounted on a ZCU102 evaluation board.
Fig. 2.
Fig. 2. Block architecture of the proposed special-purpose computer, including an ARM Mali-400 MP2 display controller.
Fig. 3.
Fig. 3. Block architecture of the Light Intensity Calculator (LIC). There are a number of 810 intensity calculators in LIC. It works at 250MHz.
Fig. 4.
Fig. 4. Block architecture of special pipeline.
Fig. 5.
Fig. 5. (a) Point cloud image (original data) and (b) reconstructed image (see Visualization 1).

Tables (3)

Tables Icon

Table 1. Logical resources of ZCU102. Available shows the number of the resource. Block RAM is the on-chip memory. DSP48 is a high-speed arithmetic circuit.

Tables Icon

Table 2. Calculation time

Tables Icon

Table 3. FPGA resource usage

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( x a , y a ) = j = 1 M A j cos [ π λ ( x a x j ) 2 + ( y a y j ) 2 z j ] .
z j i n v = π λ z j .
I ( x a , y a ) = j = 1 M cos [ { ( x a x j ) 2 + ( y a y j ) 2 } z j i n v ] .
t ( s i n g l e p i x e l ) = I + D 1 H .
t ( a l l p i x e l s ) = 1920 × 1080 810 × 8 + 6500 1 250 × 10 6 = 0.0662 s .

Metrics