Abstract

A fiber-coupled photoconductive antenna (PCA) is a powerful tool for portable terahertz (THz) systems using a compact 1550-nm mode-locked Er:fiber laser with a fiber output port. However, a low-temperature-grown GaAs (LTG-GaAs) PCA could not be used for this purpose due to the need for wavelength conversion of the 1550-nm light, regardless of the good characteristics for PCA. In this article, we achieved the fiber coupling of the 1550-nm mode-locked fiber laser light on a bowtie-shaped LTG-GaAs PCA detector without the need for wavelength conversion. While the two-step photo-absorption mediated by midgap states in the LTG-GaAs PCA makes it possible to use the 1550-nm light, the similarity of the size between the PCA gap spacing and the fiber core diameter enables the direct contact coupling between the fiber output tip and the PCA gap without any optical components. The developed lens-less fiber-coupled LTG-GaAs PCA detector was effectively applied for the absolute frequency measurement of continuous-wave THz radiation based on the photo-carrier THz frequency comb. The combination of the lens-less fiber-coupled LTG-GaAs PCA with the compact 1550-nm fiber laser will be useful for the portable apparatus for the absolute frequency measurement of practical CW-THz sources and other applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Real-time absolute frequency measurement of continuous-wave terahertz radiation based on dual terahertz combs of photocarriers with different frequency spacings

Takeshi Yasui, Kenta Hayashi, Ryuji Ichikawa, Harsono Cahyadi, Yi-Da Hsieh, Yasuhiro Mizutani, Hirotsugu Yamamoto, Tetsuo Iwata, Hajime Inaba, and Kaoru Minoshima
Opt. Express 23(9) 11367-11377 (2015)

Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer

Takeshi Yasui, Ryotaro Nakamura, Kohji Kawamoto, Atsushi Ihara, Yoshihide Fujimoto, Shuko Yokoyama, Hajime Inaba, Kaoru Minoshima, Tadao Nagatsuma, and Tsutomu Araki
Opt. Express 17(19) 17034-17043 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
    [Crossref]
  2. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
    [Crossref]
  3. M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs THz emitters for 1.56 µm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
    [Crossref]
  4. B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths,” Opt. Express 16(13), 9565–9570 (2008).
    [Crossref]
  5. M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 µm probe,” Appl. Phys. Lett. 77(9), 1396–1398 (2000).
    [Crossref]
  6. J.-M. Rämer, F. Ospald, G. von Freymann, and R. Beigang, “Generation and detection of terahertz radiation up to 4.5 THz by low-temperature grown GaAs photoconductive antennas excited at 1560 nm,” Appl. Phys. Lett. 103(2), 021119 (2013).
    [Crossref]
  7. S. Yokoyama, R. Nakamura, M. Nose, T. Araki, and T. Yasui, “Terahertz spectrum analyzer based on a terahertz frequency comb,” Opt. Express 16(17), 13052–13061 (2008).
    [Crossref]
  8. T. Yasui, R. Nakamura, K. Kawamoto, A. Ihara, Y. Fujimoto, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer,” Opt. Express 17(19), 17034–17043 (2009).
    [Crossref]
  9. H. Füser, R. Judaschke, and M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett. 99(12), 121111 (2011).
    [Crossref]
  10. H. Ito, S. Nagano, M. Kumagai, M. Kajita, and Y. Hanado, “Terahertz frequency counter with a fractional frequency uncertainty at the 10−17 level,” Appl. Phys. Express 6(10), 102202 (2013).
    [Crossref]
  11. T. Minamikawa, K. Hayashi, T. Mizuguchi, Y.-D. Hsieh, D. G. Abdelsalam, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Real-time determination of absolute frequency in continuous-wave terahertz radiation with a photocarrier terahertz frequency comb induced by an unstabilized femtosecond laser,” J. Infrared Millimeter Terahertz Waves 37(5), 473–485 (2016).
    [Crossref]
  12. G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).
    [Crossref]
  13. M. Ravaro, C. Manquest, C. Sirtori, S. Barbieri, G. Santarelli, K. Blary, J.-F. Lampin, S. P. Khanna, and E. H. Linfield, “Phase-locking of a 2.5 THz quantum cascade laser to a frequency comb using a GaAs photomixer,” Opt. Lett. 36(20), 3969–3971 (2011).
    [Crossref]
  14. D.-S. Yee, Y. Jang, Y. Kim, and D.-C. Seo, “Terahertz spectrum analyzer based on frequency and power measurement,” Opt. Lett. 35(15), 2532–2534 (2010).
    [Crossref]
  15. G. Hu, T. Mizuguchi, R. Oe, K. Nitta, X. Zhao, T. Minamikawa, T. Li, Z. Zheng, and T. Yasui, “Dual terahertz comb spectroscopy with a single free-running fibre laser,” Sci. Rep. 8(1), 11155 (2018).
    [Crossref]
  16. R. D. Baker, N. T. Yardimci, Y.-H. Ou, K. Kieu, and M. Jarrahi, “Self-triggered asynchronous optical sampling terahertz spectroscopy using a bidirectional mode-locked fiber laser,” Sci. Rep. 8(1), 14802 (2018).
    [Crossref]
  17. T. Yasui, M. Fujio, S. Yokoyama, and T. Araki, “Phase-slope and phase measurements of tunable CW-THz radiation with terahertz comb for wide-dynamic-range, high-resolution, distance measurement of optically rough object,” Opt. Express 22(14), 17349–17359 (2014).
    [Crossref]

2018 (2)

G. Hu, T. Mizuguchi, R. Oe, K. Nitta, X. Zhao, T. Minamikawa, T. Li, Z. Zheng, and T. Yasui, “Dual terahertz comb spectroscopy with a single free-running fibre laser,” Sci. Rep. 8(1), 11155 (2018).
[Crossref]

R. D. Baker, N. T. Yardimci, Y.-H. Ou, K. Kieu, and M. Jarrahi, “Self-triggered asynchronous optical sampling terahertz spectroscopy using a bidirectional mode-locked fiber laser,” Sci. Rep. 8(1), 14802 (2018).
[Crossref]

2017 (1)

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).
[Crossref]

2016 (1)

T. Minamikawa, K. Hayashi, T. Mizuguchi, Y.-D. Hsieh, D. G. Abdelsalam, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Real-time determination of absolute frequency in continuous-wave terahertz radiation with a photocarrier terahertz frequency comb induced by an unstabilized femtosecond laser,” J. Infrared Millimeter Terahertz Waves 37(5), 473–485 (2016).
[Crossref]

2014 (1)

2013 (2)

H. Ito, S. Nagano, M. Kumagai, M. Kajita, and Y. Hanado, “Terahertz frequency counter with a fractional frequency uncertainty at the 10−17 level,” Appl. Phys. Express 6(10), 102202 (2013).
[Crossref]

J.-M. Rämer, F. Ospald, G. von Freymann, and R. Beigang, “Generation and detection of terahertz radiation up to 4.5 THz by low-temperature grown GaAs photoconductive antennas excited at 1560 nm,” Appl. Phys. Lett. 103(2), 021119 (2013).
[Crossref]

2011 (2)

H. Füser, R. Judaschke, and M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett. 99(12), 121111 (2011).
[Crossref]

M. Ravaro, C. Manquest, C. Sirtori, S. Barbieri, G. Santarelli, K. Blary, J.-F. Lampin, S. P. Khanna, and E. H. Linfield, “Phase-locking of a 2.5 THz quantum cascade laser to a frequency comb using a GaAs photomixer,” Opt. Lett. 36(20), 3969–3971 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (2)

2005 (1)

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs THz emitters for 1.56 µm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
[Crossref]

2000 (1)

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 µm probe,” Appl. Phys. Lett. 77(9), 1396–1398 (2000).
[Crossref]

1997 (1)

1984 (1)

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[Crossref]

Abdelsalam, D. G.

T. Minamikawa, K. Hayashi, T. Mizuguchi, Y.-D. Hsieh, D. G. Abdelsalam, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Real-time determination of absolute frequency in continuous-wave terahertz radiation with a photocarrier terahertz frequency comb induced by an unstabilized femtosecond laser,” J. Infrared Millimeter Terahertz Waves 37(5), 473–485 (2016).
[Crossref]

Araki, T.

Auston, D. H.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[Crossref]

Bai, M.

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).
[Crossref]

Baker, R. D.

R. D. Baker, N. T. Yardimci, Y.-H. Ou, K. Kieu, and M. Jarrahi, “Self-triggered asynchronous optical sampling terahertz spectroscopy using a bidirectional mode-locked fiber laser,” Sci. Rep. 8(1), 14802 (2018).
[Crossref]

Barbieri, S.

Beigang, R.

J.-M. Rämer, F. Ospald, G. von Freymann, and R. Beigang, “Generation and detection of terahertz radiation up to 4.5 THz by low-temperature grown GaAs photoconductive antennas excited at 1560 nm,” Appl. Phys. Lett. 103(2), 021119 (2013).
[Crossref]

Bieler, M.

H. Füser, R. Judaschke, and M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett. 99(12), 121111 (2011).
[Crossref]

Blary, K.

Böttcher, J.

Cheung, K. P.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[Crossref]

Fujimoto, Y.

Fujio, M.

Füser, H.

H. Füser, R. Judaschke, and M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett. 99(12), 121111 (2011).
[Crossref]

Hanado, Y.

H. Ito, S. Nagano, M. Kumagai, M. Kajita, and Y. Hanado, “Terahertz frequency counter with a fractional frequency uncertainty at the 10−17 level,” Appl. Phys. Express 6(10), 102202 (2013).
[Crossref]

Hayashi, K.

T. Minamikawa, K. Hayashi, T. Mizuguchi, Y.-D. Hsieh, D. G. Abdelsalam, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Real-time determination of absolute frequency in continuous-wave terahertz radiation with a photocarrier terahertz frequency comb induced by an unstabilized femtosecond laser,” J. Infrared Millimeter Terahertz Waves 37(5), 473–485 (2016).
[Crossref]

Hsieh, Y.-D.

T. Minamikawa, K. Hayashi, T. Mizuguchi, Y.-D. Hsieh, D. G. Abdelsalam, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Real-time determination of absolute frequency in continuous-wave terahertz radiation with a photocarrier terahertz frequency comb induced by an unstabilized femtosecond laser,” J. Infrared Millimeter Terahertz Waves 37(5), 473–485 (2016).
[Crossref]

Hu, G.

G. Hu, T. Mizuguchi, R. Oe, K. Nitta, X. Zhao, T. Minamikawa, T. Li, Z. Zheng, and T. Yasui, “Dual terahertz comb spectroscopy with a single free-running fibre laser,” Sci. Rep. 8(1), 11155 (2018).
[Crossref]

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).
[Crossref]

Ihara, A.

Inaba, H.

Ito, H.

H. Ito, S. Nagano, M. Kumagai, M. Kajita, and Y. Hanado, “Terahertz frequency counter with a fractional frequency uncertainty at the 10−17 level,” Appl. Phys. Express 6(10), 102202 (2013).
[Crossref]

Iwata, T.

T. Minamikawa, K. Hayashi, T. Mizuguchi, Y.-D. Hsieh, D. G. Abdelsalam, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Real-time determination of absolute frequency in continuous-wave terahertz radiation with a photocarrier terahertz frequency comb induced by an unstabilized femtosecond laser,” J. Infrared Millimeter Terahertz Waves 37(5), 473–485 (2016).
[Crossref]

Jang, Y.

Jarrahi, M.

R. D. Baker, N. T. Yardimci, Y.-H. Ou, K. Kieu, and M. Jarrahi, “Self-triggered asynchronous optical sampling terahertz spectroscopy using a bidirectional mode-locked fiber laser,” Sci. Rep. 8(1), 14802 (2018).
[Crossref]

Judaschke, R.

H. Füser, R. Judaschke, and M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett. 99(12), 121111 (2011).
[Crossref]

Kajita, M.

H. Ito, S. Nagano, M. Kumagai, M. Kajita, and Y. Hanado, “Terahertz frequency counter with a fractional frequency uncertainty at the 10−17 level,” Appl. Phys. Express 6(10), 102202 (2013).
[Crossref]

Kawamoto, K.

Khanna, S. P.

Kieu, K.

R. D. Baker, N. T. Yardimci, Y.-H. Ou, K. Kieu, and M. Jarrahi, “Self-triggered asynchronous optical sampling terahertz spectroscopy using a bidirectional mode-locked fiber laser,” Sci. Rep. 8(1), 14802 (2018).
[Crossref]

Kim, Y.

Kumagai, M.

H. Ito, S. Nagano, M. Kumagai, M. Kajita, and Y. Hanado, “Terahertz frequency counter with a fractional frequency uncertainty at the 10−17 level,” Appl. Phys. Express 6(10), 102202 (2013).
[Crossref]

Künzel, H.

Lampin, J.-F.

Lee, K.-S.

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 µm probe,” Appl. Phys. Lett. 77(9), 1396–1398 (2000).
[Crossref]

Li, C.

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).
[Crossref]

Li, T.

G. Hu, T. Mizuguchi, R. Oe, K. Nitta, X. Zhao, T. Minamikawa, T. Li, Z. Zheng, and T. Yasui, “Dual terahertz comb spectroscopy with a single free-running fibre laser,” Sci. Rep. 8(1), 11155 (2018).
[Crossref]

Linfield, E. H.

Manquest, C.

Matsuura, S.

Minamikawa, T.

G. Hu, T. Mizuguchi, R. Oe, K. Nitta, X. Zhao, T. Minamikawa, T. Li, Z. Zheng, and T. Yasui, “Dual terahertz comb spectroscopy with a single free-running fibre laser,” Sci. Rep. 8(1), 11155 (2018).
[Crossref]

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).
[Crossref]

T. Minamikawa, K. Hayashi, T. Mizuguchi, Y.-D. Hsieh, D. G. Abdelsalam, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Real-time determination of absolute frequency in continuous-wave terahertz radiation with a photocarrier terahertz frequency comb induced by an unstabilized femtosecond laser,” J. Infrared Millimeter Terahertz Waves 37(5), 473–485 (2016).
[Crossref]

Minoshima, K.

Mizuguchi, T.

G. Hu, T. Mizuguchi, R. Oe, K. Nitta, X. Zhao, T. Minamikawa, T. Li, Z. Zheng, and T. Yasui, “Dual terahertz comb spectroscopy with a single free-running fibre laser,” Sci. Rep. 8(1), 11155 (2018).
[Crossref]

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).
[Crossref]

T. Minamikawa, K. Hayashi, T. Mizuguchi, Y.-D. Hsieh, D. G. Abdelsalam, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Real-time determination of absolute frequency in continuous-wave terahertz radiation with a photocarrier terahertz frequency comb induced by an unstabilized femtosecond laser,” J. Infrared Millimeter Terahertz Waves 37(5), 473–485 (2016).
[Crossref]

Mizuno, T.

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).
[Crossref]

Mizutani, Y.

T. Minamikawa, K. Hayashi, T. Mizuguchi, Y.-D. Hsieh, D. G. Abdelsalam, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Real-time determination of absolute frequency in continuous-wave terahertz radiation with a photocarrier terahertz frequency comb induced by an unstabilized femtosecond laser,” J. Infrared Millimeter Terahertz Waves 37(5), 473–485 (2016).
[Crossref]

Nagano, S.

H. Ito, S. Nagano, M. Kumagai, M. Kajita, and Y. Hanado, “Terahertz frequency counter with a fractional frequency uncertainty at the 10−17 level,” Appl. Phys. Express 6(10), 102202 (2013).
[Crossref]

Nagatsuma, T.

Nakamura, R.

Nakashima, S.

Nitta, K.

G. Hu, T. Mizuguchi, R. Oe, K. Nitta, X. Zhao, T. Minamikawa, T. Li, Z. Zheng, and T. Yasui, “Dual terahertz comb spectroscopy with a single free-running fibre laser,” Sci. Rep. 8(1), 11155 (2018).
[Crossref]

Nose, M.

Oe, R.

G. Hu, T. Mizuguchi, R. Oe, K. Nitta, X. Zhao, T. Minamikawa, T. Li, Z. Zheng, and T. Yasui, “Dual terahertz comb spectroscopy with a single free-running fibre laser,” Sci. Rep. 8(1), 11155 (2018).
[Crossref]

Ospald, F.

J.-M. Rämer, F. Ospald, G. von Freymann, and R. Beigang, “Generation and detection of terahertz radiation up to 4.5 THz by low-temperature grown GaAs photoconductive antennas excited at 1560 nm,” Appl. Phys. Lett. 103(2), 021119 (2013).
[Crossref]

Ou, Y.-H.

R. D. Baker, N. T. Yardimci, Y.-H. Ou, K. Kieu, and M. Jarrahi, “Self-triggered asynchronous optical sampling terahertz spectroscopy using a bidirectional mode-locked fiber laser,” Sci. Rep. 8(1), 14802 (2018).
[Crossref]

Rämer, J.-M.

J.-M. Rämer, F. Ospald, G. von Freymann, and R. Beigang, “Generation and detection of terahertz radiation up to 4.5 THz by low-temperature grown GaAs photoconductive antennas excited at 1560 nm,” Appl. Phys. Lett. 103(2), 021119 (2013).
[Crossref]

Ravaro, M.

Roehle, H.

Sakai, K.

Santarelli, G.

Sartorius, B.

Schell, M.

Schlak, M.

Seo, D.-C.

Sirtori, C.

Smith, P. R.

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[Crossref]

Stanze, D.

Suzuki, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs THz emitters for 1.56 µm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
[Crossref]

Tani, M.

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 µm probe,” Appl. Phys. Lett. 77(9), 1396–1398 (2000).
[Crossref]

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36(30), 7853–7859 (1997).
[Crossref]

Tonouchi, M.

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs THz emitters for 1.56 µm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
[Crossref]

Venghaus, H.

von Freymann, G.

J.-M. Rämer, F. Ospald, G. von Freymann, and R. Beigang, “Generation and detection of terahertz radiation up to 4.5 THz by low-temperature grown GaAs photoconductive antennas excited at 1560 nm,” Appl. Phys. Lett. 103(2), 021119 (2013).
[Crossref]

Yamamoto, H.

T. Minamikawa, K. Hayashi, T. Mizuguchi, Y.-D. Hsieh, D. G. Abdelsalam, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Real-time determination of absolute frequency in continuous-wave terahertz radiation with a photocarrier terahertz frequency comb induced by an unstabilized femtosecond laser,” J. Infrared Millimeter Terahertz Waves 37(5), 473–485 (2016).
[Crossref]

Yang, Y.

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).
[Crossref]

Yardimci, N. T.

R. D. Baker, N. T. Yardimci, Y.-H. Ou, K. Kieu, and M. Jarrahi, “Self-triggered asynchronous optical sampling terahertz spectroscopy using a bidirectional mode-locked fiber laser,” Sci. Rep. 8(1), 14802 (2018).
[Crossref]

Yasui, T.

G. Hu, T. Mizuguchi, R. Oe, K. Nitta, X. Zhao, T. Minamikawa, T. Li, Z. Zheng, and T. Yasui, “Dual terahertz comb spectroscopy with a single free-running fibre laser,” Sci. Rep. 8(1), 11155 (2018).
[Crossref]

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).
[Crossref]

T. Minamikawa, K. Hayashi, T. Mizuguchi, Y.-D. Hsieh, D. G. Abdelsalam, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Real-time determination of absolute frequency in continuous-wave terahertz radiation with a photocarrier terahertz frequency comb induced by an unstabilized femtosecond laser,” J. Infrared Millimeter Terahertz Waves 37(5), 473–485 (2016).
[Crossref]

T. Yasui, M. Fujio, S. Yokoyama, and T. Araki, “Phase-slope and phase measurements of tunable CW-THz radiation with terahertz comb for wide-dynamic-range, high-resolution, distance measurement of optically rough object,” Opt. Express 22(14), 17349–17359 (2014).
[Crossref]

T. Yasui, R. Nakamura, K. Kawamoto, A. Ihara, Y. Fujimoto, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Real-time monitoring of continuous-wave terahertz radiation using a fiber-based, terahertz-comb-referenced spectrum analyzer,” Opt. Express 17(19), 17034–17043 (2009).
[Crossref]

S. Yokoyama, R. Nakamura, M. Nose, T. Araki, and T. Yasui, “Terahertz spectrum analyzer based on a terahertz frequency comb,” Opt. Express 16(17), 13052–13061 (2008).
[Crossref]

Yee, D.-S.

Yokoyama, S.

Zhang, X.-C.

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 µm probe,” Appl. Phys. Lett. 77(9), 1396–1398 (2000).
[Crossref]

Zhao, X.

G. Hu, T. Mizuguchi, R. Oe, K. Nitta, X. Zhao, T. Minamikawa, T. Li, Z. Zheng, and T. Yasui, “Dual terahertz comb spectroscopy with a single free-running fibre laser,” Sci. Rep. 8(1), 11155 (2018).
[Crossref]

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).
[Crossref]

Zheng, Z.

G. Hu, T. Mizuguchi, R. Oe, K. Nitta, X. Zhao, T. Minamikawa, T. Li, Z. Zheng, and T. Yasui, “Dual terahertz comb spectroscopy with a single free-running fibre laser,” Sci. Rep. 8(1), 11155 (2018).
[Crossref]

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

H. Ito, S. Nagano, M. Kumagai, M. Kajita, and Y. Hanado, “Terahertz frequency counter with a fractional frequency uncertainty at the 10−17 level,” Appl. Phys. Express 6(10), 102202 (2013).
[Crossref]

Appl. Phys. Lett. (5)

M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs THz emitters for 1.56 µm wavelength excitation,” Appl. Phys. Lett. 86(5), 051104 (2005).
[Crossref]

D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45(3), 284–286 (1984).
[Crossref]

H. Füser, R. Judaschke, and M. Bieler, “High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser,” Appl. Phys. Lett. 99(12), 121111 (2011).
[Crossref]

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55 µm probe,” Appl. Phys. Lett. 77(9), 1396–1398 (2000).
[Crossref]

J.-M. Rämer, F. Ospald, G. von Freymann, and R. Beigang, “Generation and detection of terahertz radiation up to 4.5 THz by low-temperature grown GaAs photoconductive antennas excited at 1560 nm,” Appl. Phys. Lett. 103(2), 021119 (2013).
[Crossref]

J. Infrared Millimeter Terahertz Waves (1)

T. Minamikawa, K. Hayashi, T. Mizuguchi, Y.-D. Hsieh, D. G. Abdelsalam, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Real-time determination of absolute frequency in continuous-wave terahertz radiation with a photocarrier terahertz frequency comb induced by an unstabilized femtosecond laser,” J. Infrared Millimeter Terahertz Waves 37(5), 473–485 (2016).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Sci. Rep. (3)

G. Hu, T. Mizuguchi, R. Oe, K. Nitta, X. Zhao, T. Minamikawa, T. Li, Z. Zheng, and T. Yasui, “Dual terahertz comb spectroscopy with a single free-running fibre laser,” Sci. Rep. 8(1), 11155 (2018).
[Crossref]

R. D. Baker, N. T. Yardimci, Y.-H. Ou, K. Kieu, and M. Jarrahi, “Self-triggered asynchronous optical sampling terahertz spectroscopy using a bidirectional mode-locked fiber laser,” Sci. Rep. 8(1), 14802 (2018).
[Crossref]

G. Hu, T. Mizuguchi, X. Zhao, T. Minamikawa, T. Mizuno, Y. Yang, C. Li, M. Bai, Z. Zheng, and T. Yasui, “Measurement of absolute frequency of continuous-wave terahertz radiation in real time using a free-running, dual-wavelength mode-locked, erbium-doped fibre laser,” Sci. Rep. 7(1), 42082 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Relationship between the input laser power and the PCA resistance with respect to the 1550-nm light and the 775-nm light.
Fig. 2.
Fig. 2. Experimental setup for the absolute frequency measurement of CW-THz radiation based on the PC-THz comb. PCA: bowtie-shaped low-temperature-grown GaAs photoconductive antenna; AMP: current preamplifier. Inset shows the schematic diagram and the photograph of the lens-less fiber-coupled bowtie-shaped LTG-GaAs PCA.
Fig. 3.
Fig. 3. RF spectrum of the fbeat signal (RBW = 1 kHz).
Fig. 4.
Fig. 4. Temporal changes of instantaneous values of (a) frep, (b) fbeat, (c) sign of fbeat, (d) m, and (e) fTHz for a measurement time of 1.5 s. The measurement rate was 10 Hz. Green broken line indicates the timing for the sudden change of fTHz from 88,080,000,000 Hz to 88,192,248,000 Hz.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f T H z = m f r e p ± f b e a t
f T H z = m f r e p 1 ± f b e a t 1 = m f r e p 2 ± f b e a t 2

Metrics