Abstract

Photon sieves, a collection of randomly positioned apertures, focus electromagnetic radiation diffractively and find applications in x-ray optics to astronomy to bio-medical imaging. Femtosecond laser direct writing is an emerging rapid, reliable, and versatile technique for creating diffraction-limited features in dielectrics and metals. Using this technique, we produce localized spots with a modified refractive index within bulk glass and thus fabricate phase photon sieves for optical wavelengths. The distribution of spots was based on numerical simulations. A comparison of the performance of the phase photon sieves and zone-plates created showed a superior performance of the former in terms of tighter focusing and reduction of secondary maxima, thus offering better spatial resolution and imaging capabilities.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides

Shane M. Eaton, Haibin Zhang, Mi Li Ng, Jianzhao Li, Wei-Jen Chen, Stephen Ho, and Peter R. Herman
Opt. Express 16(13) 9443-9458 (2008)

Flexible binary phase photon sieves on polyimide substrates by laser ablation

Matthew N. Julian, David G. MacDonnell, and Mool C. Gupta
Opt. Lett. 43(10) 2368-2371 (2018)

Ultra-large multi-region photon sieves

Zhifeng Chen, Chinhua Wang, Donglin Pu, Jin Hu, and Linsen Chen
Opt. Express 18(15) 16279-16288 (2010)

References

  • View by:
  • |
  • |
  • |

  1. L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
    [Crossref]
  2. G. Andersen and D. Tullson, “Photon sieve telescope,” in Astronomical Telescopes and Instrumentation, International Society for Optics and Photonics, (2006).
  3. G. Andersen and D. Tullson, “Broadband antihole photon sieve telescope,” Appl. Opt. 46(18), 3706–3708 (2007).
    [Crossref]
  4. Y. Cheng, J. Zhu, Y. He, Y. Tang, S. Hu, and L. Zhao, “Quadratic grating apodized photon sieves for simultaneous multiplane microscopy,” Opt. Lasers Eng. 97, 78–85 (2017).
    [Crossref]
  5. G. Cheng, C. Hu, P. Xu, and T. Xing, “Zernike apodized photon sieves for high-resolution phase-contrast x-ray microscopy,” Opt. Lett. 35(21), 3610–3612 (2010).
    [Crossref]
  6. W. Jiang, S. Hu, Y. He, and Y. Bu, “An artificial compound eye of photon Sieves,” Opt. Laser Technol. 74, 93–96 (2015).
    [Crossref]
  7. K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C.-W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
    [Crossref]
  8. F. S. Oktem, J. M. Dovila, and F. Kamalabadi, “Image formation model for photon sieves,” in Image Processing (ICIP), 20th IEEE International Conference on. IEEE (2013).
  9. X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319–28329 (2016).
    [Crossref]
  10. G. Andersen, “Large optical photon sieve,” Opt. Lett. 30(22), 2976–2978 (2005).
    [Crossref]
  11. G. Cheng, T. Xing, Z. Liao, Y. Yang, and J. Ma “Resolution enhancement of photon sieve based on apodization. in Holography and Diffractive Optics III,” International Society for Optics and Photonics (2008).
  12. C. Rubio, J. M Fuster, S. Castiñeira-Ibáñez, A. Uris, F. Belmar, and P. Candelas, “Pinhole Zone Plate Lens for Ultrasound Focusing,” Sensors 17(7), 1690 (2017).
    [Crossref]
  13. T. R. M. Sales and G. M. Morris, “Diffractive–refractive behavior of kinoform lenses,” Appl. Opt. 36(1), 253–257 (1997).
    [Crossref]
  14. J. Jordan, P. M. Hirsch, L. B. Lesem, and D. L. Van Rooy, “Kinoform lenses,” Appl. Opt. 9(8), 1883–1887 (1970).
    [Crossref]
  15. A. Sabatyan and S. Mirzaie, “Efficiency-enhanced photon sieve using Gaussian/overlapping distribution of pinholes,” Appl. Opt. 50(11), 1517–1522 (2011).
    [Crossref]
  16. Z. Chen, C. Wang, D. Pu, J. Hu, and L. Chen, “Ultra-large multi-region photon sieves,” Opt. Express 18(15), 16279–16288 (2010).
    [Crossref]
  17. Q. Cao and J. Jahns, “Nonparaxial model for the focusing of high-numerical-aperture photon sieves,” J. Opt. Soc. Am. A 20(6), 1005–1012 (2003).
    [Crossref]
  18. M. Kalläne, J. Buck, S. Harm, R. Seemann, K. Rossnagel, and L. Kipp, “Focusing light with a reflection photon sieve,” Opt. lett. 36(13), 2405–2407 (2011).
    [Crossref]
  19. W. Sun, Y. Hu, D. G. MacDonnell, H. J. Kim, C. Weimer, and R. R. Baize, “Fully reflective photon sieve,” J. Quant. Spectrosc. Radiat. Transfer 206, 101–104 (2018).
    [Crossref]
  20. F. J. Salgado-Remacha, L. M. Sanchez-Brea, F. J. Alvarez-Rios, and E. Bernabeu, “Rough Fresnel zone plates over metallic surfaces,” Appl. Opt. 49(10), 1750–1756 (2010).
    [Crossref]
  21. V. R. Rodrigues, J. Thomas, S. Chidangil, H. Ramachandran, and D. Mathur, “Microfabrication of Fresnel zone plates by laser induced solid ablation,” J. Opt. 18(7), 075403 (2016).
    [Crossref]
  22. M. N. Julian, D. G. MacDonnell, and M. C. Gupta, “Fabrication of photon sieves by laser ablation and optical properties,” Opt. Express 25(25), 31528–31538 (2017).
    [Crossref]
  23. J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photon. Technol. Lett. 21(1), 21–23 (2009).
    [Crossref]
  24. R. M. Vázquez, S. M. Eaton, R. Ramponi, G. Cerullo, and R. Osellame, “Fabrication of binary Fresnel lenses in PMMA by femtosecond laser surface ablation,” Opt. Express 19(2), 11597–11604 (2011).
    [Crossref]
  25. M. N. Julian, D. G. MacDonnell, and M. C. Gupta, “Binary phase photon sieves on flexible polyimide substrates by laser ablation,” Opt. Lett. 43(10), 2368–2371 (2018).
    [Crossref]
  26. M. N. Julian, D. G. MacDonnell, and M. C. Gupta, “High Efficiency Photon Sieves by Laser Direct Writing,” in Frontiers in Optics / Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JW3A.10].
  27. Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
    [Crossref]
  28. D. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, and H. B. Sun, “High efficiency multilevel phase type fractal zone plates,” Opt. Lett. 33(24), 2913–2915 (2008).
    [Crossref]
  29. B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79(4–6), 767–769 (2004).
    [Crossref]
  30. A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. USA 101(16), 5856–5861 (2004).
    [Crossref]
  31. C. Hou, “Novel diffractive optical element: binary photon sieve,” Opt. Eng. 50(6), 068001 (2011).
    [Crossref]
  32. The pre-fabrication cleaning process consists of an acid-wash to leach out ions, first by soaking in 5% HNO3 in deionised water for 2 hours followed by rinsing in de-ionised water and drying. Next, a base-wash is carried out by soaking in NaOH, followed by rinsing and drying. The glass is thereafter cleaned by acetone and methanol, and given a final washing with de-ionised water and blow dried. After fabrication, the element is cleaned with methanol and ultrasonicated to remove surface contaminants due to handling.
  33. K. Mittholiya, P. K. Anshad, A. K. Mallik, S. Bhardwaj, A. Hegde, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Inscription of waveguides and power splitters in borosilicate glass using ultrashort laser pulses,” J. Opt. 46(3), 304–310 (2017).
    [Crossref]
  34. J. A. Dharmadhikari, K. Pradyna, A. Bhatnagar, D. Mathur, and A. K. Dharmadhikari, “Effect of chirp on the index contrast of waveguides written in BK7 glass with ultrashort laser pulses,” Opt. Commun. 287(2), 122–127 (2013).
    [Crossref]
  35. J. Thomas, S. Chidangil, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, A. K. Dharmdhikari, and D. Mathur, “Femtosecond Laser-Induced Dot-pattern Formation in BK7 Glasses,” in International Conference on Fibre Optics and Photonics, Optical Society of America (2012).
  36. J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, S. Chidangil, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304(1), 29–38 (2013).
    [Crossref]
  37. R. Menon, D. Gil, G. Barbastathis, and H. I. Smith, “Photon-sieve lithography,” J. Opt. Soc. Am. A 22(2), 342–345 (2005).
    [Crossref]
  38. S. D. Eder, X. Guo, T. Kaltenbacher, M. M. Greve, M. Kallane, L. Kipp, and B. Holst, “Focusing of a neutral helium beam with a photon-sieve structure,” Phys. Rev. A 91(4), 043608 (2015).
    [Crossref]
  39. J. Kirz and D. Attwood, “X-ray Data Booklet,” Section 4.4 : Zone Plates, https://xdb.lbl.gov/Section4/Sec_4-4.html
  40. D. Attwood, “Zone Plate Microscopy,” Lecture 22, http://www.coe.berkeley.edu/AST/srms .

2018 (2)

W. Sun, Y. Hu, D. G. MacDonnell, H. J. Kim, C. Weimer, and R. R. Baize, “Fully reflective photon sieve,” J. Quant. Spectrosc. Radiat. Transfer 206, 101–104 (2018).
[Crossref]

M. N. Julian, D. G. MacDonnell, and M. C. Gupta, “Binary phase photon sieves on flexible polyimide substrates by laser ablation,” Opt. Lett. 43(10), 2368–2371 (2018).
[Crossref]

2017 (4)

M. N. Julian, D. G. MacDonnell, and M. C. Gupta, “Fabrication of photon sieves by laser ablation and optical properties,” Opt. Express 25(25), 31528–31538 (2017).
[Crossref]

K. Mittholiya, P. K. Anshad, A. K. Mallik, S. Bhardwaj, A. Hegde, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Inscription of waveguides and power splitters in borosilicate glass using ultrashort laser pulses,” J. Opt. 46(3), 304–310 (2017).
[Crossref]

C. Rubio, J. M Fuster, S. Castiñeira-Ibáñez, A. Uris, F. Belmar, and P. Candelas, “Pinhole Zone Plate Lens for Ultrasound Focusing,” Sensors 17(7), 1690 (2017).
[Crossref]

Y. Cheng, J. Zhu, Y. He, Y. Tang, S. Hu, and L. Zhao, “Quadratic grating apodized photon sieves for simultaneous multiplane microscopy,” Opt. Lasers Eng. 97, 78–85 (2017).
[Crossref]

2016 (2)

X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319–28329 (2016).
[Crossref]

V. R. Rodrigues, J. Thomas, S. Chidangil, H. Ramachandran, and D. Mathur, “Microfabrication of Fresnel zone plates by laser induced solid ablation,” J. Opt. 18(7), 075403 (2016).
[Crossref]

2015 (3)

W. Jiang, S. Hu, Y. He, and Y. Bu, “An artificial compound eye of photon Sieves,” Opt. Laser Technol. 74, 93–96 (2015).
[Crossref]

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C.-W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
[Crossref]

S. D. Eder, X. Guo, T. Kaltenbacher, M. M. Greve, M. Kallane, L. Kipp, and B. Holst, “Focusing of a neutral helium beam with a photon-sieve structure,” Phys. Rev. A 91(4), 043608 (2015).
[Crossref]

2013 (2)

J. A. Dharmadhikari, K. Pradyna, A. Bhatnagar, D. Mathur, and A. K. Dharmadhikari, “Effect of chirp on the index contrast of waveguides written in BK7 glass with ultrashort laser pulses,” Opt. Commun. 287(2), 122–127 (2013).
[Crossref]

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, S. Chidangil, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304(1), 29–38 (2013).
[Crossref]

2011 (4)

2010 (4)

2009 (1)

J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photon. Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

2008 (1)

2007 (1)

2005 (2)

2004 (2)

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79(4–6), 767–769 (2004).
[Crossref]

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. USA 101(16), 5856–5861 (2004).
[Crossref]

2003 (1)

2001 (1)

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref]

1997 (1)

1970 (1)

Adelung, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref]

Alti, K.

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, S. Chidangil, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304(1), 29–38 (2013).
[Crossref]

Alvarez-Rios, F. J.

Andersen, G.

G. Andersen and D. Tullson, “Broadband antihole photon sieve telescope,” Appl. Opt. 46(18), 3706–3708 (2007).
[Crossref]

G. Andersen, “Large optical photon sieve,” Opt. Lett. 30(22), 2976–2978 (2005).
[Crossref]

G. Andersen and D. Tullson, “Photon sieve telescope,” in Astronomical Telescopes and Instrumentation, International Society for Optics and Photonics, (2006).

Anisimov, S. I.

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79(4–6), 767–769 (2004).
[Crossref]

Anshad, P. K.

K. Mittholiya, P. K. Anshad, A. K. Mallik, S. Bhardwaj, A. Hegde, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Inscription of waveguides and power splitters in borosilicate glass using ultrashort laser pulses,” J. Opt. 46(3), 304–310 (2017).
[Crossref]

Attwood, D.

J. Kirz and D. Attwood, “X-ray Data Booklet,” Section 4.4 : Zone Plates, https://xdb.lbl.gov/Section4/Sec_4-4.html

D. Attwood, “Zone Plate Microscopy,” Lecture 22, http://www.coe.berkeley.edu/AST/srms .

Baize, R. R.

W. Sun, Y. Hu, D. G. MacDonnell, H. J. Kim, C. Weimer, and R. R. Baize, “Fully reflective photon sieve,” J. Quant. Spectrosc. Radiat. Transfer 206, 101–104 (2018).
[Crossref]

Barbastathis, G.

Belmar, F.

C. Rubio, J. M Fuster, S. Castiñeira-Ibáñez, A. Uris, F. Belmar, and P. Candelas, “Pinhole Zone Plate Lens for Ultrasound Focusing,” Sensors 17(7), 1690 (2017).
[Crossref]

Bernabeu, E.

Bernard, R.

K. Mittholiya, P. K. Anshad, A. K. Mallik, S. Bhardwaj, A. Hegde, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Inscription of waveguides and power splitters in borosilicate glass using ultrashort laser pulses,” J. Opt. 46(3), 304–310 (2017).
[Crossref]

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, S. Chidangil, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304(1), 29–38 (2013).
[Crossref]

J. Thomas, S. Chidangil, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, A. K. Dharmdhikari, and D. Mathur, “Femtosecond Laser-Induced Dot-pattern Formation in BK7 Glasses,” in International Conference on Fibre Optics and Photonics, Optical Society of America (2012).

Berndt, R.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref]

Bhardwaj, S.

K. Mittholiya, P. K. Anshad, A. K. Mallik, S. Bhardwaj, A. Hegde, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Inscription of waveguides and power splitters in borosilicate glass using ultrashort laser pulses,” J. Opt. 46(3), 304–310 (2017).
[Crossref]

Bhatnagar, A.

K. Mittholiya, P. K. Anshad, A. K. Mallik, S. Bhardwaj, A. Hegde, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Inscription of waveguides and power splitters in borosilicate glass using ultrashort laser pulses,” J. Opt. 46(3), 304–310 (2017).
[Crossref]

J. A. Dharmadhikari, K. Pradyna, A. Bhatnagar, D. Mathur, and A. K. Dharmadhikari, “Effect of chirp on the index contrast of waveguides written in BK7 glass with ultrashort laser pulses,” Opt. Commun. 287(2), 122–127 (2013).
[Crossref]

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, S. Chidangil, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304(1), 29–38 (2013).
[Crossref]

J. Thomas, S. Chidangil, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, A. K. Dharmdhikari, and D. Mathur, “Femtosecond Laser-Induced Dot-pattern Formation in BK7 Glasses,” in International Conference on Fibre Optics and Photonics, Optical Society of America (2012).

Bu, Y.

W. Jiang, S. Hu, Y. He, and Y. Bu, “An artificial compound eye of photon Sieves,” Opt. Laser Technol. 74, 93–96 (2015).
[Crossref]

Buck, J.

Candelas, P.

C. Rubio, J. M Fuster, S. Castiñeira-Ibáñez, A. Uris, F. Belmar, and P. Candelas, “Pinhole Zone Plate Lens for Ultrasound Focusing,” Sensors 17(7), 1690 (2017).
[Crossref]

Cao, Q.

Castiñeira-Ibáñez, S.

C. Rubio, J. M Fuster, S. Castiñeira-Ibáñez, A. Uris, F. Belmar, and P. Candelas, “Pinhole Zone Plate Lens for Ultrasound Focusing,” Sensors 17(7), 1690 (2017).
[Crossref]

Cerullo, G.

Chen, C.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
[Crossref]

Chen, L.

X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319–28329 (2016).
[Crossref]

Z. Chen, C. Wang, D. Pu, J. Hu, and L. Chen, “Ultra-large multi-region photon sieves,” Opt. Express 18(15), 16279–16288 (2010).
[Crossref]

Chen, Q.-D.

Chen, Z.

Cheng, G.

G. Cheng, C. Hu, P. Xu, and T. Xing, “Zernike apodized photon sieves for high-resolution phase-contrast x-ray microscopy,” Opt. Lett. 35(21), 3610–3612 (2010).
[Crossref]

G. Cheng, T. Xing, Z. Liao, Y. Yang, and J. Ma “Resolution enhancement of photon sieve based on apodization. in Holography and Diffractive Optics III,” International Society for Optics and Photonics (2008).

Cheng, Y.

Y. Cheng, J. Zhu, Y. He, Y. Tang, S. Hu, and L. Zhao, “Quadratic grating apodized photon sieves for simultaneous multiplane microscopy,” Opt. Lasers Eng. 97, 78–85 (2017).
[Crossref]

Chidangil, S.

V. R. Rodrigues, J. Thomas, S. Chidangil, H. Ramachandran, and D. Mathur, “Microfabrication of Fresnel zone plates by laser induced solid ablation,” J. Opt. 18(7), 075403 (2016).
[Crossref]

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, S. Chidangil, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304(1), 29–38 (2013).
[Crossref]

J. Thomas, S. Chidangil, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, A. K. Dharmdhikari, and D. Mathur, “Femtosecond Laser-Induced Dot-pattern Formation in BK7 Glasses,” in International Conference on Fibre Optics and Photonics, Optical Society of America (2012).

Choi, H. Y.

J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photon. Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Dharmadhikari, A. K.

K. Mittholiya, P. K. Anshad, A. K. Mallik, S. Bhardwaj, A. Hegde, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Inscription of waveguides and power splitters in borosilicate glass using ultrashort laser pulses,” J. Opt. 46(3), 304–310 (2017).
[Crossref]

J. A. Dharmadhikari, K. Pradyna, A. Bhatnagar, D. Mathur, and A. K. Dharmadhikari, “Effect of chirp on the index contrast of waveguides written in BK7 glass with ultrashort laser pulses,” Opt. Commun. 287(2), 122–127 (2013).
[Crossref]

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, S. Chidangil, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304(1), 29–38 (2013).
[Crossref]

Dharmadhikari, J. A.

K. Mittholiya, P. K. Anshad, A. K. Mallik, S. Bhardwaj, A. Hegde, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Inscription of waveguides and power splitters in borosilicate glass using ultrashort laser pulses,” J. Opt. 46(3), 304–310 (2017).
[Crossref]

J. A. Dharmadhikari, K. Pradyna, A. Bhatnagar, D. Mathur, and A. K. Dharmadhikari, “Effect of chirp on the index contrast of waveguides written in BK7 glass with ultrashort laser pulses,” Opt. Commun. 287(2), 122–127 (2013).
[Crossref]

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, S. Chidangil, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304(1), 29–38 (2013).
[Crossref]

J. Thomas, S. Chidangil, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, A. K. Dharmdhikari, and D. Mathur, “Femtosecond Laser-Induced Dot-pattern Formation in BK7 Glasses,” in International Conference on Fibre Optics and Photonics, Optical Society of America (2012).

Dharmdhikari, A. K.

J. Thomas, S. Chidangil, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, A. K. Dharmdhikari, and D. Mathur, “Femtosecond Laser-Induced Dot-pattern Formation in BK7 Glasses,” in International Conference on Fibre Optics and Photonics, Optical Society of America (2012).

Dovila, J. M.

F. S. Oktem, J. M. Dovila, and F. Kamalabadi, “Image formation model for photon sieves,” in Image Processing (ICIP), 20th IEEE International Conference on. IEEE (2013).

Eaton, S. M.

Eder, S. D.

S. D. Eder, X. Guo, T. Kaltenbacher, M. M. Greve, M. Kallane, L. Kipp, and B. Holst, “Focusing of a neutral helium beam with a photon-sieve structure,” Phys. Rev. A 91(4), 043608 (2015).
[Crossref]

Fuster, J. M

C. Rubio, J. M Fuster, S. Castiñeira-Ibáñez, A. Uris, F. Belmar, and P. Candelas, “Pinhole Zone Plate Lens for Ultrasound Focusing,” Sensors 17(7), 1690 (2017).
[Crossref]

Garcia-Vidal, F. J.

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C.-W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
[Crossref]

Gil, D.

Greve, M. M.

S. D. Eder, X. Guo, T. Kaltenbacher, M. M. Greve, M. Kallane, L. Kipp, and B. Holst, “Focusing of a neutral helium beam with a photon-sieve structure,” Phys. Rev. A 91(4), 043608 (2015).
[Crossref]

Guo, L.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
[Crossref]

Guo, X.

S. D. Eder, X. Guo, T. Kaltenbacher, M. M. Greve, M. Kallane, L. Kipp, and B. Holst, “Focusing of a neutral helium beam with a photon-sieve structure,” Phys. Rev. A 91(4), 043608 (2015).
[Crossref]

Gupta, M. C.

Harm, S.

M. Kalläne, J. Buck, S. Harm, R. Seemann, K. Rossnagel, and L. Kipp, “Focusing light with a reflection photon sieve,” Opt. lett. 36(13), 2405–2407 (2011).
[Crossref]

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref]

He, Y.

Y. Cheng, J. Zhu, Y. He, Y. Tang, S. Hu, and L. Zhao, “Quadratic grating apodized photon sieves for simultaneous multiplane microscopy,” Opt. Lasers Eng. 97, 78–85 (2017).
[Crossref]

W. Jiang, S. Hu, Y. He, and Y. Bu, “An artificial compound eye of photon Sieves,” Opt. Laser Technol. 74, 93–96 (2015).
[Crossref]

Hegde, A.

K. Mittholiya, P. K. Anshad, A. K. Mallik, S. Bhardwaj, A. Hegde, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Inscription of waveguides and power splitters in borosilicate glass using ultrashort laser pulses,” J. Opt. 46(3), 304–310 (2017).
[Crossref]

Hirsch, P. M.

Holst, B.

S. D. Eder, X. Guo, T. Kaltenbacher, M. M. Greve, M. Kallane, L. Kipp, and B. Holst, “Focusing of a neutral helium beam with a photon-sieve structure,” Phys. Rev. A 91(4), 043608 (2015).
[Crossref]

Hong, M.

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C.-W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
[Crossref]

Hou, C.

C. Hou, “Novel diffractive optical element: binary photon sieve,” Opt. Eng. 50(6), 068001 (2011).
[Crossref]

Hu, C.

Hu, J.

X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319–28329 (2016).
[Crossref]

Z. Chen, C. Wang, D. Pu, J. Hu, and L. Chen, “Ultra-large multi-region photon sieves,” Opt. Express 18(15), 16279–16288 (2010).
[Crossref]

Hu, S.

Y. Cheng, J. Zhu, Y. He, Y. Tang, S. Hu, and L. Zhao, “Quadratic grating apodized photon sieves for simultaneous multiplane microscopy,” Opt. Lasers Eng. 97, 78–85 (2017).
[Crossref]

W. Jiang, S. Hu, Y. He, and Y. Bu, “An artificial compound eye of photon Sieves,” Opt. Laser Technol. 74, 93–96 (2015).
[Crossref]

Hu, Y.

W. Sun, Y. Hu, D. G. MacDonnell, H. J. Kim, C. Weimer, and R. R. Baize, “Fully reflective photon sieve,” J. Quant. Spectrosc. Radiat. Transfer 206, 101–104 (2018).
[Crossref]

Huang, K.

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C.-W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
[Crossref]

Hunt, A. J.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. USA 101(16), 5856–5861 (2004).
[Crossref]

Jahns, J.

Jiang, W.

W. Jiang, S. Hu, Y. He, and Y. Bu, “An artificial compound eye of photon Sieves,” Opt. Laser Technol. 74, 93–96 (2015).
[Crossref]

Joglekar, A. P.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. USA 101(16), 5856–5861 (2004).
[Crossref]

Johnson, R. L.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref]

Jordan, J.

Julian, M. N.

Kallane, M.

S. D. Eder, X. Guo, T. Kaltenbacher, M. M. Greve, M. Kallane, L. Kipp, and B. Holst, “Focusing of a neutral helium beam with a photon-sieve structure,” Phys. Rev. A 91(4), 043608 (2015).
[Crossref]

Kalläne, M.

Kaltenbacher, T.

S. D. Eder, X. Guo, T. Kaltenbacher, M. M. Greve, M. Kallane, L. Kipp, and B. Holst, “Focusing of a neutral helium beam with a photon-sieve structure,” Phys. Rev. A 91(4), 043608 (2015).
[Crossref]

Kamalabadi, F.

F. S. Oktem, J. M. Dovila, and F. Kamalabadi, “Image formation model for photon sieves,” in Image Processing (ICIP), 20th IEEE International Conference on. IEEE (2013).

Kim, H. J.

W. Sun, Y. Hu, D. G. MacDonnell, H. J. Kim, C. Weimer, and R. R. Baize, “Fully reflective photon sieve,” J. Quant. Spectrosc. Radiat. Transfer 206, 101–104 (2018).
[Crossref]

Kim, J.

J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photon. Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Kim, J. K.

J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photon. Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Kipp, L.

S. D. Eder, X. Guo, T. Kaltenbacher, M. M. Greve, M. Kallane, L. Kipp, and B. Holst, “Focusing of a neutral helium beam with a photon-sieve structure,” Phys. Rev. A 91(4), 043608 (2015).
[Crossref]

M. Kalläne, J. Buck, S. Harm, R. Seemann, K. Rossnagel, and L. Kipp, “Focusing light with a reflection photon sieve,” Opt. lett. 36(13), 2405–2407 (2011).
[Crossref]

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref]

Kirz, J.

J. Kirz and D. Attwood, “X-ray Data Booklet,” Section 4.4 : Zone Plates, https://xdb.lbl.gov/Section4/Sec_4-4.html

Lee, B.

J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photon. Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Lesem, L. B.

Li, A.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
[Crossref]

Li, Y.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
[Crossref]

Liao, Z.

G. Cheng, T. Xing, Z. Liao, Y. Yang, and J. Ma “Resolution enhancement of photon sieve based on apodization. in Holography and Diffractive Optics III,” International Society for Optics and Photonics (2008).

Lin, Y.

X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319–28329 (2016).
[Crossref]

Liu, H.

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C.-W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
[Crossref]

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. USA 101(16), 5856–5861 (2004).
[Crossref]

Luk’yanchuk, B.

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C.-W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
[Crossref]

Ma, J.

G. Cheng, T. Xing, Z. Liao, Y. Yang, and J. Ma “Resolution enhancement of photon sieve based on apodization. in Holography and Diffractive Optics III,” International Society for Optics and Photonics (2008).

MacDonnell, D. G.

W. Sun, Y. Hu, D. G. MacDonnell, H. J. Kim, C. Weimer, and R. R. Baize, “Fully reflective photon sieve,” J. Quant. Spectrosc. Radiat. Transfer 206, 101–104 (2018).
[Crossref]

M. N. Julian, D. G. MacDonnell, and M. C. Gupta, “Binary phase photon sieves on flexible polyimide substrates by laser ablation,” Opt. Lett. 43(10), 2368–2371 (2018).
[Crossref]

M. N. Julian, D. G. MacDonnell, and M. C. Gupta, “Fabrication of photon sieves by laser ablation and optical properties,” Opt. Express 25(25), 31528–31538 (2017).
[Crossref]

M. N. Julian, D. G. MacDonnell, and M. C. Gupta, “High Efficiency Photon Sieves by Laser Direct Writing,” in Frontiers in Optics / Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JW3A.10].

Mallik, A. K.

K. Mittholiya, P. K. Anshad, A. K. Mallik, S. Bhardwaj, A. Hegde, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Inscription of waveguides and power splitters in borosilicate glass using ultrashort laser pulses,” J. Opt. 46(3), 304–310 (2017).
[Crossref]

Mathur, D.

K. Mittholiya, P. K. Anshad, A. K. Mallik, S. Bhardwaj, A. Hegde, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Inscription of waveguides and power splitters in borosilicate glass using ultrashort laser pulses,” J. Opt. 46(3), 304–310 (2017).
[Crossref]

V. R. Rodrigues, J. Thomas, S. Chidangil, H. Ramachandran, and D. Mathur, “Microfabrication of Fresnel zone plates by laser induced solid ablation,” J. Opt. 18(7), 075403 (2016).
[Crossref]

J. A. Dharmadhikari, K. Pradyna, A. Bhatnagar, D. Mathur, and A. K. Dharmadhikari, “Effect of chirp on the index contrast of waveguides written in BK7 glass with ultrashort laser pulses,” Opt. Commun. 287(2), 122–127 (2013).
[Crossref]

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, S. Chidangil, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304(1), 29–38 (2013).
[Crossref]

J. Thomas, S. Chidangil, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, A. K. Dharmdhikari, and D. Mathur, “Femtosecond Laser-Induced Dot-pattern Formation in BK7 Glasses,” in International Conference on Fibre Optics and Photonics, Optical Society of America (2012).

Menon, R.

Meyhöfer, E.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. USA 101(16), 5856–5861 (2004).
[Crossref]

Mirzaie, S.

Mittholiya, K.

K. Mittholiya, P. K. Anshad, A. K. Mallik, S. Bhardwaj, A. Hegde, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Inscription of waveguides and power splitters in borosilicate glass using ultrashort laser pulses,” J. Opt. 46(3), 304–310 (2017).
[Crossref]

Morris, G. M.

Mourou, G.

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. USA 101(16), 5856–5861 (2004).
[Crossref]

Niu, L.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
[Crossref]

Niu, L.-G.

Oh, K.

J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photon. Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Oktem, F. S.

F. S. Oktem, J. M. Dovila, and F. Kamalabadi, “Image formation model for photon sieves,” in Image Processing (ICIP), 20th IEEE International Conference on. IEEE (2013).

Osellame, R.

Pradyna, K.

J. A. Dharmadhikari, K. Pradyna, A. Bhatnagar, D. Mathur, and A. K. Dharmadhikari, “Effect of chirp on the index contrast of waveguides written in BK7 glass with ultrashort laser pulses,” Opt. Commun. 287(2), 122–127 (2013).
[Crossref]

Pu, D.

X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319–28329 (2016).
[Crossref]

Z. Chen, C. Wang, D. Pu, J. Hu, and L. Chen, “Ultra-large multi-region photon sieves,” Opt. Express 18(15), 16279–16288 (2010).
[Crossref]

Qiu, C.-W.

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C.-W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
[Crossref]

Ramachandran, H.

V. R. Rodrigues, J. Thomas, S. Chidangil, H. Ramachandran, and D. Mathur, “Microfabrication of Fresnel zone plates by laser induced solid ablation,” J. Opt. 18(7), 075403 (2016).
[Crossref]

Ramponi, R.

Rethfeld, B.

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79(4–6), 767–769 (2004).
[Crossref]

Rodrigues, V. R.

V. R. Rodrigues, J. Thomas, S. Chidangil, H. Ramachandran, and D. Mathur, “Microfabrication of Fresnel zone plates by laser induced solid ablation,” J. Opt. 18(7), 075403 (2016).
[Crossref]

Rossnagel, K.

Rubio, C.

C. Rubio, J. M Fuster, S. Castiñeira-Ibáñez, A. Uris, F. Belmar, and P. Candelas, “Pinhole Zone Plate Lens for Ultrasound Focusing,” Sensors 17(7), 1690 (2017).
[Crossref]

Sabatyan, A.

Sales, T. R. M.

Salgado-Remacha, F. J.

Sanchez-Brea, L. M.

Seemann, R.

M. Kalläne, J. Buck, S. Harm, R. Seemann, K. Rossnagel, and L. Kipp, “Focusing light with a reflection photon sieve,” Opt. lett. 36(13), 2405–2407 (2011).
[Crossref]

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref]

Shin, W.

J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photon. Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Skibowski, M.

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref]

Smith, H. I.

Sohn, I.-B.

J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photon. Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

Sokolowski-Tinten, K.

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79(4–6), 767–769 (2004).
[Crossref]

Sun, H. B.

Sun, W.

W. Sun, Y. Hu, D. G. MacDonnell, H. J. Kim, C. Weimer, and R. R. Baize, “Fully reflective photon sieve,” J. Quant. Spectrosc. Radiat. Transfer 206, 101–104 (2018).
[Crossref]

Tang, Y.

Y. Cheng, J. Zhu, Y. He, Y. Tang, S. Hu, and L. Zhao, “Quadratic grating apodized photon sieves for simultaneous multiplane microscopy,” Opt. Lasers Eng. 97, 78–85 (2017).
[Crossref]

Teng, J.

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C.-W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
[Crossref]

Thomas, J.

V. R. Rodrigues, J. Thomas, S. Chidangil, H. Ramachandran, and D. Mathur, “Microfabrication of Fresnel zone plates by laser induced solid ablation,” J. Opt. 18(7), 075403 (2016).
[Crossref]

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, S. Chidangil, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304(1), 29–38 (2013).
[Crossref]

J. Thomas, S. Chidangil, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, A. K. Dharmdhikari, and D. Mathur, “Femtosecond Laser-Induced Dot-pattern Formation in BK7 Glasses,” in International Conference on Fibre Optics and Photonics, Optical Society of America (2012).

Tullson, D.

G. Andersen and D. Tullson, “Broadband antihole photon sieve telescope,” Appl. Opt. 46(18), 3706–3708 (2007).
[Crossref]

G. Andersen and D. Tullson, “Photon sieve telescope,” in Astronomical Telescopes and Instrumentation, International Society for Optics and Photonics, (2006).

Uris, A.

C. Rubio, J. M Fuster, S. Castiñeira-Ibáñez, A. Uris, F. Belmar, and P. Candelas, “Pinhole Zone Plate Lens for Ultrasound Focusing,” Sensors 17(7), 1690 (2017).
[Crossref]

Van Rooy, D. L.

Vázquez, R. M.

Von Der Linde, D.

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79(4–6), 767–769 (2004).
[Crossref]

Wang, C.

X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319–28329 (2016).
[Crossref]

Z. Chen, C. Wang, D. Pu, J. Hu, and L. Chen, “Ultra-large multi-region photon sieves,” Opt. Express 18(15), 16279–16288 (2010).
[Crossref]

Wang, R.

Weimer, C.

W. Sun, Y. Hu, D. G. MacDonnell, H. J. Kim, C. Weimer, and R. R. Baize, “Fully reflective photon sieve,” J. Quant. Spectrosc. Radiat. Transfer 206, 101–104 (2018).
[Crossref]

Wu, D.

Wu, S.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
[Crossref]

Xing, T.

G. Cheng, C. Hu, P. Xu, and T. Xing, “Zernike apodized photon sieves for high-resolution phase-contrast x-ray microscopy,” Opt. Lett. 35(21), 3610–3612 (2010).
[Crossref]

G. Cheng, T. Xing, Z. Liao, Y. Yang, and J. Ma “Resolution enhancement of photon sieve based on apodization. in Holography and Diffractive Optics III,” International Society for Optics and Photonics (2008).

Xu, F.

X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319–28329 (2016).
[Crossref]

Xu, P.

Yang, H.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
[Crossref]

Yang, Y.

G. Cheng, T. Xing, Z. Liao, Y. Yang, and J. Ma “Resolution enhancement of photon sieve based on apodization. in Holography and Diffractive Optics III,” International Society for Optics and Photonics (2008).

Yu, Y.

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
[Crossref]

Zhao, L.

Y. Cheng, J. Zhu, Y. He, Y. Tang, S. Hu, and L. Zhao, “Quadratic grating apodized photon sieves for simultaneous multiplane microscopy,” Opt. Lasers Eng. 97, 78–85 (2017).
[Crossref]

Zhao, X.

X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319–28329 (2016).
[Crossref]

Zhu, J.

Y. Cheng, J. Zhu, Y. He, Y. Tang, S. Hu, and L. Zhao, “Quadratic grating apodized photon sieves for simultaneous multiplane microscopy,” Opt. Lasers Eng. 97, 78–85 (2017).
[Crossref]

Zhu, X.

X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319–28329 (2016).
[Crossref]

Appl. Opt. (5)

Appl. Phys. A (1)

B. Rethfeld, K. Sokolowski-Tinten, D. Von Der Linde, and S. I. Anisimov, “Timescales in the response of materials to femtosecond laser excitation,” Appl. Phys. A 79(4–6), 767–769 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. K. Kim, J. Kim, K. Oh, I.-B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photon. Technol. Lett. 21(1), 21–23 (2009).
[Crossref]

J. Opt. (3)

V. R. Rodrigues, J. Thomas, S. Chidangil, H. Ramachandran, and D. Mathur, “Microfabrication of Fresnel zone plates by laser induced solid ablation,” J. Opt. 18(7), 075403 (2016).
[Crossref]

Y. Li, Y. Yu, L. Guo, S. Wu, C. Chen, L. Niu, A. Li, and H. Yang, “High efficiency multilevel phase-type Fresnel zone plates produced by two-photon polymerization of SU-8,” J. Opt. 12(3), 035203 (2010).
[Crossref]

K. Mittholiya, P. K. Anshad, A. K. Mallik, S. Bhardwaj, A. Hegde, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, D. Mathur, and A. K. Dharmadhikari, “Inscription of waveguides and power splitters in borosilicate glass using ultrashort laser pulses,” J. Opt. 46(3), 304–310 (2017).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Quant. Spectrosc. Radiat. Transfer (1)

W. Sun, Y. Hu, D. G. MacDonnell, H. J. Kim, C. Weimer, and R. R. Baize, “Fully reflective photon sieve,” J. Quant. Spectrosc. Radiat. Transfer 206, 101–104 (2018).
[Crossref]

Nat. Commun. (1)

K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, and C.-W. Qiu, “Ultrahigh-capacity non-periodic photon sieves operating in visible light,” Nat. Commun. 6(1), 7059 (2015).
[Crossref]

Nature (1)

L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001).
[Crossref]

Opt. Commun. (2)

J. A. Dharmadhikari, K. Pradyna, A. Bhatnagar, D. Mathur, and A. K. Dharmadhikari, “Effect of chirp on the index contrast of waveguides written in BK7 glass with ultrashort laser pulses,” Opt. Commun. 287(2), 122–127 (2013).
[Crossref]

J. Thomas, R. Bernard, K. Alti, A. K. Dharmadhikari, J. A. Dharmadhikari, A. Bhatnagar, S. Chidangil, and D. Mathur, “Pattern formation in transparent media using ultrashort laser pulses,” Opt. Commun. 304(1), 29–38 (2013).
[Crossref]

Opt. Eng. (1)

C. Hou, “Novel diffractive optical element: binary photon sieve,” Opt. Eng. 50(6), 068001 (2011).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

W. Jiang, S. Hu, Y. He, and Y. Bu, “An artificial compound eye of photon Sieves,” Opt. Laser Technol. 74, 93–96 (2015).
[Crossref]

Opt. Lasers Eng. (1)

Y. Cheng, J. Zhu, Y. He, Y. Tang, S. Hu, and L. Zhao, “Quadratic grating apodized photon sieves for simultaneous multiplane microscopy,” Opt. Lasers Eng. 97, 78–85 (2017).
[Crossref]

Opt. Lett. (4)

Phys. Rev. A (1)

S. D. Eder, X. Guo, T. Kaltenbacher, M. M. Greve, M. Kallane, L. Kipp, and B. Holst, “Focusing of a neutral helium beam with a photon-sieve structure,” Phys. Rev. A 91(4), 043608 (2015).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: Applications to nanomorphing,” Proc. Natl. Acad. Sci. USA 101(16), 5856–5861 (2004).
[Crossref]

Sci. Rep. (1)

X. Zhao, J. Hu, Y. Lin, F. Xu, X. Zhu, D. Pu, L. Chen, and C. Wang, “Ultra-broadband achromatic imaging with diffractive photon sieves,” Sci. Rep. 6(1), 28319–28329 (2016).
[Crossref]

Sensors (1)

C. Rubio, J. M Fuster, S. Castiñeira-Ibáñez, A. Uris, F. Belmar, and P. Candelas, “Pinhole Zone Plate Lens for Ultrasound Focusing,” Sensors 17(7), 1690 (2017).
[Crossref]

Other (8)

M. N. Julian, D. G. MacDonnell, and M. C. Gupta, “High Efficiency Photon Sieves by Laser Direct Writing,” in Frontiers in Optics / Laser Science, OSA Technical Digest (Optical Society of America, 2018), paper JW3A.10].

The pre-fabrication cleaning process consists of an acid-wash to leach out ions, first by soaking in 5% HNO3 in deionised water for 2 hours followed by rinsing in de-ionised water and drying. Next, a base-wash is carried out by soaking in NaOH, followed by rinsing and drying. The glass is thereafter cleaned by acetone and methanol, and given a final washing with de-ionised water and blow dried. After fabrication, the element is cleaned with methanol and ultrasonicated to remove surface contaminants due to handling.

J. Thomas, S. Chidangil, A. Bhatnagar, R. Bernard, J. A. Dharmadhikari, A. K. Dharmdhikari, and D. Mathur, “Femtosecond Laser-Induced Dot-pattern Formation in BK7 Glasses,” in International Conference on Fibre Optics and Photonics, Optical Society of America (2012).

F. S. Oktem, J. M. Dovila, and F. Kamalabadi, “Image formation model for photon sieves,” in Image Processing (ICIP), 20th IEEE International Conference on. IEEE (2013).

G. Andersen and D. Tullson, “Photon sieve telescope,” in Astronomical Telescopes and Instrumentation, International Society for Optics and Photonics, (2006).

G. Cheng, T. Xing, Z. Liao, Y. Yang, and J. Ma “Resolution enhancement of photon sieve based on apodization. in Holography and Diffractive Optics III,” International Society for Optics and Photonics (2008).

J. Kirz and D. Attwood, “X-ray Data Booklet,” Section 4.4 : Zone Plates, https://xdb.lbl.gov/Section4/Sec_4-4.html

D. Attwood, “Zone Plate Microscopy,” Lecture 22, http://www.coe.berkeley.edu/AST/srms .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Schematic depiction of the experimental set-up. AC is the autocorrelator, PD is the photodetector, and SP is the fiber coupled spectrometer, XYZ is the micro-position translation stage, MO is the microscope objective, CCD is the camera and S is the sample irradiated. (b) Magnified section of the dotted circle in (a) representing the fabrication process.
Fig. 2.
Fig. 2. The different traces obtained in soda lime glass upon varying the translational parameters for direct femtosecond laser writing using the oscillator system (MHz repetition rate) (a) Variation in modification, as the femtosecond laser focus is moved deeper into the sample, starting from 0 (surface), to a depth of 80 μm, in steps of 5 μm and translation speed of 5 mm/s (b) Variation with speed. All lines, in this case, were drawn on the surface, and in the same direction.
Fig. 3.
Fig. 3. Gradient index variation within spots created by femtosecond laser direct writing using (a) oscillator system and (b) amplifier system.
Fig. 4.
Fig. 4. (a) The zone plate; (b) the photon sieve with discrete spots of size similar to the zone width; (c) photon sieve with discrete spots having size smaller than the zone width; and (d) photon sieve with randomized discrete spot sizes within the zones.
Fig. 5.
Fig. 5. Comparison of the focusing properties of the zone plate and the photon sieves. The top row depicts computer generated zone plates with 2, 4, 6, 8, and 10 zones. The next row gives the corresponding intensity pattern in the focal plane. The third row depicts the computer generated photon sieves with 2, 4, 6, 8, and 10 zones with randomised apertures. The last row gives the corresponding intensity pattern in the focal plane.
Fig. 6.
Fig. 6. Simulation of (a) Regular zone plate; (b) Random-single zones; and (c) Random-double zones (see text), each having 26 zones. Given below each is the calculated intensity pattern at its focal plane.
Fig. 7.
Fig. 7. (a) A typical femtosecond written zone plate of 49 zones that we fabricated. Close-up of written diffractive element with N = 49 zones by an (b) oscillator, 1.5 mm/s translation speed; (c) amplifier, 5 mm/s translation speed; (d) amplifier, 1 cm/s translation speed. The sizes of the modified spots are ∼3 ± 0.3 μm.
Fig. 8.
Fig. 8. Zone plates of (a) 49 zones and (b) 15 zones made with the oscillator system, zone plates of (c) 49 zones and (d) 15 zones made using the amplifier system, photon sieves of (e) 49 and (f, g) 15 zones made with the amplifier system. See text for more details. The discrete spots for the photon sieves are randomized in position and size (type shown in Fig. 4(d)). The parameter Δx is the focal spot size. Data analyzed and reported is from an aggregate of a minimum of four sieves each. The focal spot measurements have an error bar of ± 0.3μm.
Fig. 9.
Fig. 9. (a) Photomicrograph of a modified region at a depth of ∼45 μm. Each circular region is an index-modified spot fabricated by irradiation by the femtosecond pulses from the oscillator. (b) A photon sieve fabricated at a depth of ∼45 μm. The discrete spots for the photon sieve are randomized in position and size (type shown in Fig. 4d).
Fig. 10.
Fig. 10. Intensity profile in the focal plane for the photon sieve shown in Fig. 9(b).

Tables (2)

Tables Icon

Table 1. Comparison of size of focal spot obtained from numerical simulations for the zone plate and photon sieves of 2, 4, 6, 8, and 10 zones.

Tables Icon

Table 2. Focusing parameters for photon sieve of designed focal length 25 mm, fabricated by femtosecond oscillator (5.1 MHz) or amplifier (1 kHz) system.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ x   d m i n ( d w ) m a x

Metrics