Abstract

The spontaneous emission of weak magnetic dipoles located in the vicinity of a plasmonic metal is analyzed theoretically and studied experimentally using Eu3+ ions in organic matrices as a spectroscopic probe. We show that close distances to metal are preferable for magnetic light enhancement experiments, as magnetic dipoles show weaker quenching than electric dipoles while the efficiencies of emission to surface plasmon polaritons are comparable for the both types of dipoles. The possibility of magnetic emission enhancement with SPPs in simple flat geometry is discussed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Spontaneous emission of electric and magnetic dipoles in the vicinity of thin and thick metal

R. Hussain, D. Keene, N. Noginova, and M. Durach
Opt. Express 22(7) 7744-7755 (2014)

Modification of electric and magnetic dipole emission in anisotropic plasmonic systems

N. Noginova, R. Hussain, M. A. Noginov, J. Vella, and A. Urbas
Opt. Express 21(20) 23087-23096 (2013)

Enhancing Eu3+ magnetic dipole emission by resonant plasmonic nanostructures

Rabia Hussain, Sergey S. Kruk, Carl E. Bonner, Mikhail A. Noginov, Isabelle Staude, Yuri S. Kivshar, Natalia Noginova, and Dragomir N. Neshev
Opt. Lett. 40(8) 1659-1662 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry and D. R. Smith, “Reversing Light With Negative Refraction,” Phys. Today 57(6), 37–43 (2004).
    [Crossref]
  2. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2(1), 176 (2011).
    [Crossref]
  3. R. Won, “Metasurface spin effect,” Nat. Photonics 7(11), 849 (2013).
    [Crossref]
  4. L. C. Kogos and R. Paiella, “Light Emission near a Gradient Metasurface,” ACS Photon. 3(2), 243–248 (2016).
    [Crossref]
  5. T. U. Tumkur, J. K. Kitur, C. E. Bonner, A. N. Poddubny, E. E. Narimanov, and M. A. Noginov, “Control of Förster energy transfer in the vicinity of metallic surfaces and hyperbolic metamaterials,” Faraday Discuss. 178, 395–412 (2015).
    [Crossref]
  6. M. Noginov, M. Lapine, V. Podolskiy, and Y. Kivshar, “Focus issue: hyperbolic metamaterials,” Opt. Express 21(12), 14895–14897 (2013).
    [Crossref]
  7. N. Engheta and R. W. Ziolkowski, Metamaterials: physics and engineering explorations (Wiley & Sons, 2006).
  8. F. Capolino, Applications of Metamaterials (Taylor & Francis, Inc., 2009).
  9. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  10. K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
    [Crossref]
  11. J. Butkus, A. P. Edwards, F. P. Quacquarelli, and A. M. Adawi, “Light emission enhancement using randomly distributed plasmonic nanoparticle arrays,” Opt. Mater. 36(9), 1502–1505 (2014).
    [Crossref]
  12. G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
    [Crossref]
  13. Y. He, K. Xia, G. Lu, H. Shen, Y. Cheng, Y. Liu, K. Shi, Y. Xiao, and Q. Gong, “Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods,” Nanoscale 7(2), 577–582 (2015).
    [Crossref]
  14. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(1–2), 37–38 (1946).
    [Crossref]
  15. Y. Urshumov, From optical magnetism to superresolution (LAP Lambert Academic Publishing, 2009).
  16. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref]
  17. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
    [Crossref]
  18. A. P. Slobozhanyuk, A. N. Poddubny, A. E. Krasnok, and P. A. Belov, “Magnetic Purcell factor in wire metamaterials,” Appl. Phys. Lett. 104(16), 161105 (2014).
    [Crossref]
  19. N. Noginova, G. Zhu, M. Mavy, and M.A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys. 103(7), 07E901 (2008).
    [Crossref]
  20. N. Noginova, Y. Barnakov, H. Li, and M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Express 17(13), 10767 (2009).
    [Crossref]
  21. R. Hussain, D. Keene, N. Noginova, and M. Durach, “Spontaneous emission of electric and magnetic dipoles in the vicinity of thin and thick metal,” Opt. Express 22(7), 7744–7755 (2014).
    [Crossref]
  22. N. Noginova, R. Hussain, M. A. Noginov, J. Vella, and A. Urbas, “Modification of electric and magnetic dipole emission in anisotropic plasmonic systems,” Opt. Express 21(20), 23087–23096 (2013).
    [Crossref]
  23. T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3(1), 979 (2012).
    [Crossref]
  24. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am. 67(12), 1607–1615 (1977).
    [Crossref]
  25. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am. 69(11), 1495–1503 (1979).
    [Crossref]
  26. W. L. Barnes, “Topical review, Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
    [Crossref]
  27. K. H. Drexhade, “Interaction of light with monomolecular dye layers,” Prog. Opt. 12, 163–232 (1974).
    [Crossref]
  28. S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
    [Crossref]
  29. S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett. 13(5), 2264–2269 (2013).
    [Crossref]
  30. B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, and H. T. Miyazaki, “Selective Plasmonic Enhancement of Electric- and Magnetic-Dipole Radiations of Er Ions,” Nano Lett. 16(8), 5191–5196 (2016).
    [Crossref]
  31. R. Hussain, S. S. Kruk, C. E. Bonner, M. A. Noginov, I. Staude, Y. S. Kivshar, N. Noginova, and D. N. Neshev, “Enhancing Eu3+ magnetic dipole emission by resonant plasmonic nanostructures,” Opt. Lett. 40(8), 1659–1662 (2015).
    [Crossref]
  32. B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(24), 245432 (2012).
    [Crossref]
  33. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
    [Crossref]
  34. Y. S. Kivshar and A. E. Miroshnichenko, “Meta-optics with Mie resonances,” Opt. Photon. News 28(1), 24 (2017).
    [Crossref]
  35. T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016).
    [Crossref]
  36. N. H. Tran, B. T. Phan, W. J. Yoon, S. Khym, and H. Ju, “Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves,” J. Electron. Mater. 46(6), 3654–3659 (2017).
    [Crossref]
  37. J. Gomez Rivas, G. Vecchi, and V. Giannini, “Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings,” New J. Phys. 10(10), 105007 (2008).
    [Crossref]
  38. Y. Jiang, H.-Yu Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface Plasmon Enhanced Fluorescence of Dye Molecules on Metal Grating Films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
    [Crossref]
  39. Y. C. Jun, K. C. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2(1), 283 (2011).
    [Crossref]
  40. C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
    [Crossref]
  41. A. Natori and D. Nakamura, “Magnetic-Field-Induced Transitions of Many-Electron States in Quantum Dots,” Jpn. J. Appl. Phys. 38(Part 1), 380–383 (1999).
    [Crossref]
  42. J. Ferguson, E. R. Krausz, and H. J. Guggenheim, “MCD spectroscopy of transition metal ions in fluoride crystals,” Mol. Phys. 29(6), 1785–1796 (1975).
    [Crossref]
  43. S. Freed and S. I. Weissman, “Multiple Nature of Elementary Sources of Radiation—Wide-Angle Interference,” Phys. Rev. 60(6), 440–442 (1941).
    [Crossref]
  44. K. Binnemans, “Interpretation of europium (III) spectra,” Coord. Chem. Rev. 295, 1–45 (2015).
    [Crossref]
  45. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  46. S. Mashhadi, M. LePain, J. Vella, A. M. Urbas, M. Durach, and N. Noginova, “Collective plasmonic oscillations in gold nanostrips arrays,” Opt. Express 25(15), 17581–17588 (2017).
    [Crossref]
  47. P. Genevet and F. Capasso, “Report on Progress: Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
    [Crossref]
  48. V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc. 74(1), 51–59 (2007).
    [Crossref]
  49. C. Yang, L. M. Fu, Y. Wang, J. P. Zhang, W. T. Wong, X. C. Ai, Q. Y. Qiao, B. S. Zou, and L. L. Gui, “A highly luminescent europium complex showing visible-light-sensitized red emission: Direct observation of the singlet pathway,” Angew. Chem. 43(38), 5010–5013 (2004).
    [Crossref]

2017 (3)

N. H. Tran, B. T. Phan, W. J. Yoon, S. Khym, and H. Ju, “Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves,” J. Electron. Mater. 46(6), 3654–3659 (2017).
[Crossref]

Y. S. Kivshar and A. E. Miroshnichenko, “Meta-optics with Mie resonances,” Opt. Photon. News 28(1), 24 (2017).
[Crossref]

S. Mashhadi, M. LePain, J. Vella, A. M. Urbas, M. Durach, and N. Noginova, “Collective plasmonic oscillations in gold nanostrips arrays,” Opt. Express 25(15), 17581–17588 (2017).
[Crossref]

2016 (3)

T. Feng, Y. Xu, Z. Liang, and W. Zhang, “All-dielectric hollow nanodisk for tailoring magnetic dipole emission,” Opt. Lett. 41(21), 5011–5014 (2016).
[Crossref]

B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, and H. T. Miyazaki, “Selective Plasmonic Enhancement of Electric- and Magnetic-Dipole Radiations of Er Ions,” Nano Lett. 16(8), 5191–5196 (2016).
[Crossref]

L. C. Kogos and R. Paiella, “Light Emission near a Gradient Metasurface,” ACS Photon. 3(2), 243–248 (2016).
[Crossref]

2015 (5)

T. U. Tumkur, J. K. Kitur, C. E. Bonner, A. N. Poddubny, E. E. Narimanov, and M. A. Noginov, “Control of Förster energy transfer in the vicinity of metallic surfaces and hyperbolic metamaterials,” Faraday Discuss. 178, 395–412 (2015).
[Crossref]

Y. He, K. Xia, G. Lu, H. Shen, Y. Cheng, Y. Liu, K. Shi, Y. Xiao, and Q. Gong, “Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods,” Nanoscale 7(2), 577–582 (2015).
[Crossref]

K. Binnemans, “Interpretation of europium (III) spectra,” Coord. Chem. Rev. 295, 1–45 (2015).
[Crossref]

R. Hussain, S. S. Kruk, C. E. Bonner, M. A. Noginov, I. Staude, Y. S. Kivshar, N. Noginova, and D. N. Neshev, “Enhancing Eu3+ magnetic dipole emission by resonant plasmonic nanostructures,” Opt. Lett. 40(8), 1659–1662 (2015).
[Crossref]

P. Genevet and F. Capasso, “Report on Progress: Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref]

2014 (3)

R. Hussain, D. Keene, N. Noginova, and M. Durach, “Spontaneous emission of electric and magnetic dipoles in the vicinity of thin and thick metal,” Opt. Express 22(7), 7744–7755 (2014).
[Crossref]

J. Butkus, A. P. Edwards, F. P. Quacquarelli, and A. M. Adawi, “Light emission enhancement using randomly distributed plasmonic nanoparticle arrays,” Opt. Mater. 36(9), 1502–1505 (2014).
[Crossref]

A. P. Slobozhanyuk, A. N. Poddubny, A. E. Krasnok, and P. A. Belov, “Magnetic Purcell factor in wire metamaterials,” Appl. Phys. Lett. 104(16), 161105 (2014).
[Crossref]

2013 (4)

2012 (4)

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3(1), 979 (2012).
[Crossref]

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(24), 245432 (2012).
[Crossref]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref]

2011 (4)

Y. Jiang, H.-Yu Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface Plasmon Enhanced Fluorescence of Dye Molecules on Metal Grating Films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Y. C. Jun, K. C. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2(1), 283 (2011).
[Crossref]

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[Crossref]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2(1), 176 (2011).
[Crossref]

2009 (3)

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[Crossref]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

N. Noginova, Y. Barnakov, H. Li, and M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Express 17(13), 10767 (2009).
[Crossref]

2008 (2)

N. Noginova, G. Zhu, M. Mavy, and M.A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys. 103(7), 07E901 (2008).
[Crossref]

J. Gomez Rivas, G. Vecchi, and V. Giannini, “Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings,” New J. Phys. 10(10), 105007 (2008).
[Crossref]

2007 (1)

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc. 74(1), 51–59 (2007).
[Crossref]

2005 (1)

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref]

2004 (2)

J. B. Pendry and D. R. Smith, “Reversing Light With Negative Refraction,” Phys. Today 57(6), 37–43 (2004).
[Crossref]

C. Yang, L. M. Fu, Y. Wang, J. P. Zhang, W. T. Wong, X. C. Ai, Q. Y. Qiao, B. S. Zou, and L. L. Gui, “A highly luminescent europium complex showing visible-light-sensitized red emission: Direct observation of the singlet pathway,” Angew. Chem. 43(38), 5010–5013 (2004).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

1999 (1)

A. Natori and D. Nakamura, “Magnetic-Field-Induced Transitions of Many-Electron States in Quantum Dots,” Jpn. J. Appl. Phys. 38(Part 1), 380–383 (1999).
[Crossref]

1998 (1)

W. L. Barnes, “Topical review, Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[Crossref]

1979 (1)

1977 (1)

1975 (1)

J. Ferguson, E. R. Krausz, and H. J. Guggenheim, “MCD spectroscopy of transition metal ions in fluoride crystals,” Mol. Phys. 29(6), 1785–1796 (1975).
[Crossref]

1974 (1)

K. H. Drexhade, “Interaction of light with monomolecular dye layers,” Prog. Opt. 12, 163–232 (1974).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(1–2), 37–38 (1946).
[Crossref]

1941 (1)

S. Freed and S. I. Weissman, “Multiple Nature of Elementary Sources of Radiation—Wide-Angle Interference,” Phys. Rev. 60(6), 440–442 (1941).
[Crossref]

Adawi, A. M.

J. Butkus, A. P. Edwards, F. P. Quacquarelli, and A. M. Adawi, “Light emission enhancement using randomly distributed plasmonic nanoparticle arrays,” Opt. Mater. 36(9), 1502–1505 (2014).
[Crossref]

Ahn, C. W.

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[Crossref]

Ai, X. C.

C. Yang, L. M. Fu, Y. Wang, J. P. Zhang, W. T. Wong, X. C. Ai, Q. Y. Qiao, B. S. Zou, and L. L. Gui, “A highly luminescent europium complex showing visible-light-sensitized red emission: Direct observation of the singlet pathway,” Angew. Chem. 43(38), 5010–5013 (2004).
[Crossref]

Barnakov, Y.

Barnes, W. L.

W. L. Barnes, “Topical review, Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[Crossref]

Basilio, L. I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref]

Bebey, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(24), 245432 (2012).
[Crossref]

Belov, P. A.

A. P. Slobozhanyuk, A. N. Poddubny, A. E. Krasnok, and P. A. Belov, “Magnetic Purcell factor in wire metamaterials,” Appl. Phys. Lett. 104(16), 161105 (2014).
[Crossref]

Bidault, S.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(24), 245432 (2012).
[Crossref]

Binnemans, K.

K. Binnemans, “Interpretation of europium (III) spectra,” Coord. Chem. Rev. 295, 1–45 (2015).
[Crossref]

Bonner, C. E.

T. U. Tumkur, J. K. Kitur, C. E. Bonner, A. N. Poddubny, E. E. Narimanov, and M. A. Noginov, “Control of Förster energy transfer in the vicinity of metallic surfaces and hyperbolic metamaterials,” Faraday Discuss. 178, 395–412 (2015).
[Crossref]

R. Hussain, S. S. Kruk, C. E. Bonner, M. A. Noginov, I. Staude, Y. S. Kivshar, N. Noginova, and D. N. Neshev, “Enhancing Eu3+ magnetic dipole emission by resonant plasmonic nanostructures,” Opt. Lett. 40(8), 1659–1662 (2015).
[Crossref]

Bonod, N.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(24), 245432 (2012).
[Crossref]

Brener, I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref]

Brongersma, M. L.

Y. C. Jun, K. C. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2(1), 283 (2011).
[Crossref]

Butkus, J.

J. Butkus, A. P. Edwards, F. P. Quacquarelli, and A. M. Adawi, “Light emission enhancement using randomly distributed plasmonic nanoparticle arrays,” Opt. Mater. 36(9), 1502–1505 (2014).
[Crossref]

Capasso, F.

P. Genevet and F. Capasso, “Report on Progress: Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref]

Capolino, F.

F. Capolino, Applications of Metamaterials (Taylor & Francis, Inc., 2009).

Chen, Q.-D.

Y. Jiang, H.-Yu Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface Plasmon Enhanced Fluorescence of Dye Molecules on Metal Grating Films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Chen, X.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2(1), 176 (2011).
[Crossref]

Cheng, Y.

Y. He, K. Xia, G. Lu, H. Shen, Y. Cheng, Y. Liu, K. Shi, Y. Xiao, and Q. Gong, “Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods,” Nanoscale 7(2), 577–582 (2015).
[Crossref]

Choi, B.

B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, and H. T. Miyazaki, “Selective Plasmonic Enhancement of Electric- and Magnetic-Dipole Radiations of Er Ions,” Nano Lett. 16(8), 5191–5196 (2016).
[Crossref]

Choi, K. C.

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Clem, P. G.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref]

Dodson, C. M.

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

Drexhade, K. H.

K. H. Drexhade, “Interaction of light with monomolecular dye layers,” Prog. Opt. 12, 163–232 (1974).
[Crossref]

Durach, M.

Economou, E. N.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref]

Edwards, A. P.

J. Butkus, A. P. Edwards, F. P. Quacquarelli, and A. M. Adawi, “Light emission enhancement using randomly distributed plasmonic nanoparticle arrays,” Opt. Mater. 36(9), 1502–1505 (2014).
[Crossref]

Engheta, N.

N. Engheta and R. W. Ziolkowski, Metamaterials: physics and engineering explorations (Wiley & Sons, 2006).

Feng, T.

Ferguson, J.

J. Ferguson, E. R. Krausz, and H. J. Guggenheim, “MCD spectroscopy of transition metal ions in fluoride crystals,” Mol. Phys. 29(6), 1785–1796 (1975).
[Crossref]

Freed, S.

S. Freed and S. I. Weissman, “Multiple Nature of Elementary Sources of Radiation—Wide-Angle Interference,” Phys. Rev. 60(6), 440–442 (1941).
[Crossref]

Fu, L. M.

C. Yang, L. M. Fu, Y. Wang, J. P. Zhang, W. T. Wong, X. C. Ai, Q. Y. Qiao, B. S. Zou, and L. L. Gui, “A highly luminescent europium complex showing visible-light-sensitized red emission: Direct observation of the singlet pathway,” Angew. Chem. 43(38), 5010–5013 (2004).
[Crossref]

Gao, B.-R.

Y. Jiang, H.-Yu Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface Plasmon Enhanced Fluorescence of Dye Molecules on Metal Grating Films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Genevet, P.

P. Genevet and F. Capasso, “Report on Progress: Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref]

Giannini, V.

J. Gomez Rivas, G. Vecchi, and V. Giannini, “Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings,” New J. Phys. 10(10), 105007 (2008).
[Crossref]

Ginn, J. C.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref]

Gomez Rivas, J.

J. Gomez Rivas, G. Vecchi, and V. Giannini, “Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings,” New J. Phys. 10(10), 105007 (2008).
[Crossref]

Gong, Q.

Y. He, K. Xia, G. Lu, H. Shen, Y. Cheng, Y. Liu, K. Shi, Y. Xiao, and Q. Gong, “Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods,” Nanoscale 7(2), 577–582 (2015).
[Crossref]

Guggenheim, H. J.

J. Ferguson, E. R. Krausz, and H. J. Guggenheim, “MCD spectroscopy of transition metal ions in fluoride crystals,” Mol. Phys. 29(6), 1785–1796 (1975).
[Crossref]

Gui, L. L.

C. Yang, L. M. Fu, Y. Wang, J. P. Zhang, W. T. Wong, X. C. Ai, Q. Y. Qiao, B. S. Zou, and L. L. Gui, “A highly luminescent europium complex showing visible-light-sensitized red emission: Direct observation of the singlet pathway,” Angew. Chem. 43(38), 5010–5013 (2004).
[Crossref]

Hao, Y.

Y. Jiang, H.-Yu Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface Plasmon Enhanced Fluorescence of Dye Molecules on Metal Grating Films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

He, Y.

Y. He, K. Xia, G. Lu, H. Shen, Y. Cheng, Y. Liu, K. Shi, Y. Xiao, and Q. Gong, “Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods,” Nanoscale 7(2), 577–582 (2015).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

Hines, P. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref]

Huang, K. C.

Y. C. Jun, K. C. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2(1), 283 (2011).
[Crossref]

Hussain, R.

Ihlefeld, J. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref]

Iwanaga, M.

B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, and H. T. Miyazaki, “Selective Plasmonic Enhancement of Electric- and Magnetic-Dipole Radiations of Er Ions,” Nano Lett. 16(8), 5191–5196 (2016).
[Crossref]

Jiang, K.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2(1), 176 (2011).
[Crossref]

Jiang, Y.

Y. Jiang, H.-Yu Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface Plasmon Enhanced Fluorescence of Dye Molecules on Metal Grating Films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Jin, Y.

Y. Jiang, H.-Yu Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface Plasmon Enhanced Fluorescence of Dye Molecules on Metal Grating Films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ju, H.

N. H. Tran, B. T. Phan, W. J. Yoon, S. Khym, and H. Ju, “Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves,” J. Electron. Mater. 46(6), 3654–3659 (2017).
[Crossref]

Jun, Y. C.

Y. C. Jun, K. C. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2(1), 283 (2011).
[Crossref]

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref]

Karaveli, S.

S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett. 13(5), 2264–2269 (2013).
[Crossref]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3(1), 979 (2012).
[Crossref]

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[Crossref]

Keene, D.

Khurgin, J. B.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

Khym, S.

N. H. Tran, B. T. Phan, W. J. Yoon, S. Khym, and H. Ju, “Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves,” J. Electron. Mater. 46(6), 3654–3659 (2017).
[Crossref]

Kitur, J. K.

T. U. Tumkur, J. K. Kitur, C. E. Bonner, A. N. Poddubny, E. E. Narimanov, and M. A. Noginov, “Control of Förster energy transfer in the vicinity of metallic surfaces and hyperbolic metamaterials,” Faraday Discuss. 178, 395–412 (2015).
[Crossref]

Kivshar, Y.

Kivshar, Y. S.

Kogos, L. C.

L. C. Kogos and R. Paiella, “Light Emission near a Gradient Metasurface,” ACS Photon. 3(2), 243–248 (2016).
[Crossref]

Koschny, T.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref]

Krasnok, A. E.

A. P. Slobozhanyuk, A. N. Poddubny, A. E. Krasnok, and P. A. Belov, “Magnetic Purcell factor in wire metamaterials,” Appl. Phys. Lett. 104(16), 161105 (2014).
[Crossref]

Krausz, E. R.

J. Ferguson, E. R. Krausz, and H. J. Guggenheim, “MCD spectroscopy of transition metal ions in fluoride crystals,” Mol. Phys. 29(6), 1785–1796 (1975).
[Crossref]

Kruk, S. S.

Kudryashova, V. A.

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc. 74(1), 51–59 (2007).
[Crossref]

Kunz, R. E.

Lapine, M.

Legendziewicz, J.

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc. 74(1), 51–59 (2007).
[Crossref]

LePain, M.

Li, H.

Liang, Z.

Liu, Y.

Y. He, K. Xia, G. Lu, H. Shen, Y. Cheng, Y. Liu, K. Shi, Y. Xiao, and Q. Gong, “Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods,” Nanoscale 7(2), 577–582 (2015).
[Crossref]

Lu, G.

Y. He, K. Xia, G. Lu, H. Shen, Y. Cheng, Y. Liu, K. Shi, Y. Xiao, and Q. Gong, “Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods,” Nanoscale 7(2), 577–582 (2015).
[Crossref]

Lukosz, W.

Luo, Y.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2(1), 176 (2011).
[Crossref]

Mashhadi, S.

Mavy, M.

N. Noginova, G. Zhu, M. Mavy, and M.A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys. 103(7), 07E901 (2008).
[Crossref]

Miroshnichenko, A. E.

Y. S. Kivshar and A. E. Miroshnichenko, “Meta-optics with Mie resonances,” Opt. Photon. News 28(1), 24 (2017).
[Crossref]

Miyazaki, H. T.

B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, and H. T. Miyazaki, “Selective Plasmonic Enhancement of Electric- and Magnetic-Dipole Radiations of Er Ions,” Nano Lett. 16(8), 5191–5196 (2016).
[Crossref]

Nakamura, D.

A. Natori and D. Nakamura, “Magnetic-Field-Induced Transitions of Many-Electron States in Quantum Dots,” Jpn. J. Appl. Phys. 38(Part 1), 380–383 (1999).
[Crossref]

Narimanov, E. E.

T. U. Tumkur, J. K. Kitur, C. E. Bonner, A. N. Poddubny, E. E. Narimanov, and M. A. Noginov, “Control of Förster energy transfer in the vicinity of metallic surfaces and hyperbolic metamaterials,” Faraday Discuss. 178, 395–412 (2015).
[Crossref]

Natori, A.

A. Natori and D. Nakamura, “Magnetic-Field-Induced Transitions of Many-Electron States in Quantum Dots,” Jpn. J. Appl. Phys. 38(Part 1), 380–383 (1999).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Neshev, D. N.

Noginov, M.

Noginov, M. A.

Noginov, M.A.

N. Noginova, G. Zhu, M. Mavy, and M.A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys. 103(7), 07E901 (2008).
[Crossref]

Noginova, N.

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Paiella, R.

L. C. Kogos and R. Paiella, “Light Emission near a Gradient Metasurface,” ACS Photon. 3(2), 243–248 (2016).
[Crossref]

Pendry, J. B.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2(1), 176 (2011).
[Crossref]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref]

J. B. Pendry and D. R. Smith, “Reversing Light With Negative Refraction,” Phys. Today 57(6), 37–43 (2004).
[Crossref]

Peters, D. W.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref]

Phan, B. T.

N. H. Tran, B. T. Phan, W. J. Yoon, S. Khym, and H. Ju, “Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves,” J. Electron. Mater. 46(6), 3654–3659 (2017).
[Crossref]

Poddubny, A. N.

T. U. Tumkur, J. K. Kitur, C. E. Bonner, A. N. Poddubny, E. E. Narimanov, and M. A. Noginov, “Control of Förster energy transfer in the vicinity of metallic surfaces and hyperbolic metamaterials,” Faraday Discuss. 178, 395–412 (2015).
[Crossref]

A. P. Slobozhanyuk, A. N. Poddubny, A. E. Krasnok, and P. A. Belov, “Magnetic Purcell factor in wire metamaterials,” Appl. Phys. Lett. 104(16), 161105 (2014).
[Crossref]

Podolskiy, V.

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(1–2), 37–38 (1946).
[Crossref]

Qiao, Q. Y.

C. Yang, L. M. Fu, Y. Wang, J. P. Zhang, W. T. Wong, X. C. Ai, Q. Y. Qiao, B. S. Zou, and L. L. Gui, “A highly luminescent europium complex showing visible-light-sensitized red emission: Direct observation of the singlet pathway,” Angew. Chem. 43(38), 5010–5013 (2004).
[Crossref]

Quacquarelli, F. P.

J. Butkus, A. P. Edwards, F. P. Quacquarelli, and A. M. Adawi, “Light emission enhancement using randomly distributed plasmonic nanoparticle arrays,” Opt. Mater. 36(9), 1502–1505 (2014).
[Crossref]

Rolly, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(24), 245432 (2012).
[Crossref]

Sakoda, K.

B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, and H. T. Miyazaki, “Selective Plasmonic Enhancement of Electric- and Magnetic-Dipole Radiations of Er Ions,” Nano Lett. 16(8), 5191–5196 (2016).
[Crossref]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Shen, H.

Y. He, K. Xia, G. Lu, H. Shen, Y. Cheng, Y. Liu, K. Shi, Y. Xiao, and Q. Gong, “Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods,” Nanoscale 7(2), 577–582 (2015).
[Crossref]

Shi, K.

Y. He, K. Xia, G. Lu, H. Shen, Y. Cheng, Y. Liu, K. Shi, Y. Xiao, and Q. Gong, “Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods,” Nanoscale 7(2), 577–582 (2015).
[Crossref]

Sinclair, M. B.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref]

Slobozhanyuk, A. P.

A. P. Slobozhanyuk, A. N. Poddubny, A. E. Krasnok, and P. A. Belov, “Magnetic Purcell factor in wire metamaterials,” Appl. Phys. Lett. 104(16), 161105 (2014).
[Crossref]

Smith, D. R.

J. B. Pendry and D. R. Smith, “Reversing Light With Negative Refraction,” Phys. Today 57(6), 37–43 (2004).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Soref, R. A.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

Soukoulis, C. M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref]

Staude, I.

Stevens, J. O.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref]

Stout, B.

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(24), 245432 (2012).
[Crossref]

Sugimoto, Y.

B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, and H. T. Miyazaki, “Selective Plasmonic Enhancement of Electric- and Magnetic-Dipole Radiations of Er Ions,” Nano Lett. 16(8), 5191–5196 (2016).
[Crossref]

Sun, G.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

Sun, H.-B.

Y. Jiang, H.-Yu Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface Plasmon Enhanced Fluorescence of Dye Molecules on Metal Grating Films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Szostak, R.

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc. 74(1), 51–59 (2007).
[Crossref]

Taminiau, T. H.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3(1), 979 (2012).
[Crossref]

Tran, N. H.

N. H. Tran, B. T. Phan, W. J. Yoon, S. Khym, and H. Ju, “Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves,” J. Electron. Mater. 46(6), 3654–3659 (2017).
[Crossref]

Tsaryuk, V. I.

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc. 74(1), 51–59 (2007).
[Crossref]

Tumkur, T. U.

T. U. Tumkur, J. K. Kitur, C. E. Bonner, A. N. Poddubny, E. E. Narimanov, and M. A. Noginov, “Control of Förster energy transfer in the vicinity of metallic surfaces and hyperbolic metamaterials,” Faraday Discuss. 178, 395–412 (2015).
[Crossref]

Urbas, A.

Urbas, A. M.

Urshumov, Y.

Y. Urshumov, From optical magnetism to superresolution (LAP Lambert Academic Publishing, 2009).

van Hulst, N. F.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3(1), 979 (2012).
[Crossref]

Vecchi, G.

J. Gomez Rivas, G. Vecchi, and V. Giannini, “Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings,” New J. Phys. 10(10), 105007 (2008).
[Crossref]

Vella, J.

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

Wang, H.

Y. Jiang, H.-Yu Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface Plasmon Enhanced Fluorescence of Dye Molecules on Metal Grating Films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Wang, H.-Yu

Y. Jiang, H.-Yu Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface Plasmon Enhanced Fluorescence of Dye Molecules on Metal Grating Films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Wang, Y.

C. Yang, L. M. Fu, Y. Wang, J. P. Zhang, W. T. Wong, X. C. Ai, Q. Y. Qiao, B. S. Zou, and L. L. Gui, “A highly luminescent europium complex showing visible-light-sensitized red emission: Direct observation of the singlet pathway,” Angew. Chem. 43(38), 5010–5013 (2004).
[Crossref]

Warne, L. K.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref]

Weinstein, A. J.

S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett. 13(5), 2264–2269 (2013).
[Crossref]

Weissman, S. I.

S. Freed and S. I. Weissman, “Multiple Nature of Elementary Sources of Radiation—Wide-Angle Interference,” Phys. Rev. 60(6), 440–442 (1941).
[Crossref]

Wendt, J. R.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref]

Won, R.

R. Won, “Metasurface spin effect,” Nat. Photonics 7(11), 849 (2013).
[Crossref]

Wong, W. T.

C. Yang, L. M. Fu, Y. Wang, J. P. Zhang, W. T. Wong, X. C. Ai, Q. Y. Qiao, B. S. Zou, and L. L. Gui, “A highly luminescent europium complex showing visible-light-sensitized red emission: Direct observation of the singlet pathway,” Angew. Chem. 43(38), 5010–5013 (2004).
[Crossref]

Xia, K.

Y. He, K. Xia, G. Lu, H. Shen, Y. Cheng, Y. Liu, K. Shi, Y. Xiao, and Q. Gong, “Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods,” Nanoscale 7(2), 577–582 (2015).
[Crossref]

Xiao, Y.

Y. He, K. Xia, G. Lu, H. Shen, Y. Cheng, Y. Liu, K. Shi, Y. Xiao, and Q. Gong, “Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods,” Nanoscale 7(2), 577–582 (2015).
[Crossref]

Xu, Y.

Yang, C.

C. Yang, L. M. Fu, Y. Wang, J. P. Zhang, W. T. Wong, X. C. Ai, Q. Y. Qiao, B. S. Zou, and L. L. Gui, “A highly luminescent europium complex showing visible-light-sensitized red emission: Direct observation of the singlet pathway,” Angew. Chem. 43(38), 5010–5013 (2004).
[Crossref]

Yang, K. Y.

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[Crossref]

Yoon, W. J.

N. H. Tran, B. T. Phan, W. J. Yoon, S. Khym, and H. Ju, “Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves,” J. Electron. Mater. 46(6), 3654–3659 (2017).
[Crossref]

Zhang, J.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2(1), 176 (2011).
[Crossref]

Zhang, J. P.

C. Yang, L. M. Fu, Y. Wang, J. P. Zhang, W. T. Wong, X. C. Ai, Q. Y. Qiao, B. S. Zou, and L. L. Gui, “A highly luminescent europium complex showing visible-light-sensitized red emission: Direct observation of the singlet pathway,” Angew. Chem. 43(38), 5010–5013 (2004).
[Crossref]

Zhang, S.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2(1), 176 (2011).
[Crossref]

Zhang, W.

Zhou, J.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref]

Zhu, G.

N. Noginova, G. Zhu, M. Mavy, and M.A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys. 103(7), 07E901 (2008).
[Crossref]

Zhuravlev, K. P.

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc. 74(1), 51–59 (2007).
[Crossref]

Zia, R.

S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett. 13(5), 2264–2269 (2013).
[Crossref]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3(1), 979 (2012).
[Crossref]

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[Crossref]

Ziolkowski, R. W.

N. Engheta and R. W. Ziolkowski, Metamaterials: physics and engineering explorations (Wiley & Sons, 2006).

Zolin, V. F.

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc. 74(1), 51–59 (2007).
[Crossref]

Zou, B. S.

C. Yang, L. M. Fu, Y. Wang, J. P. Zhang, W. T. Wong, X. C. Ai, Q. Y. Qiao, B. S. Zou, and L. L. Gui, “A highly luminescent europium complex showing visible-light-sensitized red emission: Direct observation of the singlet pathway,” Angew. Chem. 43(38), 5010–5013 (2004).
[Crossref]

ACS Photon. (1)

L. C. Kogos and R. Paiella, “Light Emission near a Gradient Metasurface,” ACS Photon. 3(2), 243–248 (2016).
[Crossref]

Angew. Chem. (1)

C. Yang, L. M. Fu, Y. Wang, J. P. Zhang, W. T. Wong, X. C. Ai, Q. Y. Qiao, B. S. Zou, and L. L. Gui, “A highly luminescent europium complex showing visible-light-sensitized red emission: Direct observation of the singlet pathway,” Angew. Chem. 43(38), 5010–5013 (2004).
[Crossref]

Appl. Phys. Lett. (3)

A. P. Slobozhanyuk, A. N. Poddubny, A. E. Krasnok, and P. A. Belov, “Magnetic Purcell factor in wire metamaterials,” Appl. Phys. Lett. 104(16), 161105 (2014).
[Crossref]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[Crossref]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

Coord. Chem. Rev. (1)

K. Binnemans, “Interpretation of europium (III) spectra,” Coord. Chem. Rev. 295, 1–45 (2015).
[Crossref]

Faraday Discuss. (1)

T. U. Tumkur, J. K. Kitur, C. E. Bonner, A. N. Poddubny, E. E. Narimanov, and M. A. Noginov, “Control of Förster energy transfer in the vicinity of metallic surfaces and hyperbolic metamaterials,” Faraday Discuss. 178, 395–412 (2015).
[Crossref]

J. Appl. Phys. (1)

N. Noginova, G. Zhu, M. Mavy, and M.A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys. 103(7), 07E901 (2008).
[Crossref]

J. Appl. Spectrosc. (1)

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc. 74(1), 51–59 (2007).
[Crossref]

J. Electron. Mater. (1)

N. H. Tran, B. T. Phan, W. J. Yoon, S. Khym, and H. Ju, “Dielectric Metal-Based Multilayers for Surface Plasmon Resonance with Enhanced Quality Factor of the Plasmonic Waves,” J. Electron. Mater. 46(6), 3654–3659 (2017).
[Crossref]

J. Mod. Opt. (1)

W. L. Barnes, “Topical review, Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45(4), 661–699 (1998).
[Crossref]

J. Opt. Soc. Am. (2)

J. Phys. Chem. C (1)

Y. Jiang, H.-Yu Wang, H. Wang, B.-R. Gao, Y. Hao, Y. Jin, Q.-D. Chen, and H.-B. Sun, “Surface Plasmon Enhanced Fluorescence of Dye Molecules on Metal Grating Films,” J. Phys. Chem. C 115(25), 12636–12642 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Natori and D. Nakamura, “Magnetic-Field-Induced Transitions of Many-Electron States in Quantum Dots,” Jpn. J. Appl. Phys. 38(Part 1), 380–383 (1999).
[Crossref]

Mol. Phys. (1)

J. Ferguson, E. R. Krausz, and H. J. Guggenheim, “MCD spectroscopy of transition metal ions in fluoride crystals,” Mol. Phys. 29(6), 1785–1796 (1975).
[Crossref]

Nano Lett. (2)

S. Karaveli, A. J. Weinstein, and R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett. 13(5), 2264–2269 (2013).
[Crossref]

B. Choi, M. Iwanaga, Y. Sugimoto, K. Sakoda, and H. T. Miyazaki, “Selective Plasmonic Enhancement of Electric- and Magnetic-Dipole Radiations of Er Ions,” Nano Lett. 16(8), 5191–5196 (2016).
[Crossref]

Nanoscale (1)

Y. He, K. Xia, G. Lu, H. Shen, Y. Cheng, Y. Liu, K. Shi, Y. Xiao, and Q. Gong, “Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods,” Nanoscale 7(2), 577–582 (2015).
[Crossref]

Nat. Commun. (3)

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2(1), 176 (2011).
[Crossref]

Y. C. Jun, K. C. Huang, and M. L. Brongersma, “Plasmonic beaming and active control over fluorescent emission,” Nat. Commun. 2(1), 283 (2011).
[Crossref]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat. Commun. 3(1), 979 (2012).
[Crossref]

Nat. Photonics (1)

R. Won, “Metasurface spin effect,” Nat. Photonics 7(11), 849 (2013).
[Crossref]

New J. Phys. (1)

J. Gomez Rivas, G. Vecchi, and V. Giannini, “Surface plasmon polariton-mediated enhancement of the emission of dye molecules on metallic gratings,” New J. Phys. 10(10), 105007 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. (1)

J. Butkus, A. P. Edwards, F. P. Quacquarelli, and A. M. Adawi, “Light emission enhancement using randomly distributed plasmonic nanoparticle arrays,” Opt. Mater. 36(9), 1502–1505 (2014).
[Crossref]

Opt. Photon. News (1)

Y. S. Kivshar and A. E. Miroshnichenko, “Meta-optics with Mie resonances,” Opt. Photon. News 28(1), 24 (2017).
[Crossref]

Phys. Rev. (2)

S. Freed and S. I. Weissman, “Multiple Nature of Elementary Sources of Radiation—Wide-Angle Interference,” Phys. Rev. 60(6), 440–442 (1941).
[Crossref]

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(1–2), 37–38 (1946).
[Crossref]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

Phys. Rev. B: Condens. Matter Mater. Phys. (1)

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, “Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances,” Phys. Rev. B: Condens. Matter Mater. Phys. 85(24), 245432 (2012).
[Crossref]

Phys. Rev. Lett. (4)

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett. 108(9), 097402 (2012).
[Crossref]

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “A composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref]

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95(22), 223902 (2005).
[Crossref]

Phys. Today (1)

J. B. Pendry and D. R. Smith, “Reversing Light With Negative Refraction,” Phys. Today 57(6), 37–43 (2004).
[Crossref]

Prog. Opt. (1)

K. H. Drexhade, “Interaction of light with monomolecular dye layers,” Prog. Opt. 12, 163–232 (1974).
[Crossref]

Rep. Prog. Phys. (1)

P. Genevet and F. Capasso, “Report on Progress: Holographic optical metasurfaces: a review of current progress,” Rep. Prog. Phys. 78(2), 024401 (2015).
[Crossref]

Other (4)

Y. Urshumov, From optical magnetism to superresolution (LAP Lambert Academic Publishing, 2009).

N. Engheta and R. W. Ziolkowski, Metamaterials: physics and engineering explorations (Wiley & Sons, 2006).

F. Capolino, Applications of Metamaterials (Taylor & Francis, Inc., 2009).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Schematics for simulations: dipole types and orientations, and pathways of energy flow; (b) Example of the calculations results, $\frac{{{k_0}}}{{{P_0}}}\frac{{d{P_e}}}{{d{k_x}}}$ for electric dipoles perpendicular to the surface (red), electric dipoles parallel (blue), magnetic dipoles perpendicular (orange), magnetic dipoles parallel (green) as the function of kx, at the distance 25 nm from a 30 nm gold film; (c) The same as (b), but focuses on the SPP peak; Probabilities of (d) excitation of SPP, (e) near field excitation of high-k modes; (f) Rate of emission for different types of dipoles normalized to that of vacuum in logarithmic scale; (g) Probabilities of the SPP excitation for electric (red) and magnetic (blue) dipoles with arbitrary orientations.
Fig. 2.
Fig. 2. Schematics of the experimental samples, (a) gratings and (b) prism; (c-e) Schematics of the energy levels (c), and spectra of the excitation (d) and spontaneous emission (e) of Eu3+ in Eu (NO3)3Bpy2 (red) and Eu(TTA)3(L1a) (blue). The magnetic dipole transition is indicated by the arrow.
Fig. 3.
Fig. 3. (a) The experimental setup, P is the polarizer, IF is the interferometric filter, PMT is the photomultiplier detector; (b) Emission of the electric dipole transition (λ  = 610 nm) at s (red) and p (blue) polarizations; (b) Magnetic dipole emission (λ =590 nm) at s (orange) and p (green) polarizations. Points are experimental, solid lines are calculations of far-field emission.
Fig. 4.
Fig. 4. Experiment with the flat film on the prism. (a) Schematics of the sample position inside the fluorometer; b) Spontaneous emission spectra recorded at p (blue) and s (red) polarization at the SPP decoupling conditions; (c) The ratio Ip / Is measured at the maximum of the electric transition, at λ =613 nm (triangles) and the maximum of the magnetic transition at 593 nm (squares).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d P e d k x = c k 0 2 R e [ k x k z ( p 2 2 [ k z 2 ( 1 R p e 2 i k z h ) + k 0 2 ( 1 + R s e 2 i k z h ) ] + p 2 k x 2 ( 1 + R p e 2 i k z h ) ) ] ,
d P m d k x = c k 0 2 R e [ k x k z ( m 2 2 [ k z 2 ( 1 R s e 2 i k z h ) + k 0 2 ( 1 + R p e 2 i k z h ) ] + m 2 k x 2 ( 1 + R s e 2 i k z h ) ) ] ,
P e = c k 0 2 Im ( p G ^ e ( r 0 , r 0 ) p ) , P m = c k 0 2 Im ( m G ^ m ( r 0 , r 0 ) m ) .
s i n θ = λ d ϵ m ϵ d ϵ m + ϵ d .

Metrics