Abstract

We propose the design of a broadband grating coupler using full-etched subwavelength gratings (SWGs) on a silicon-on-insulator platform efficiently coupling both TE and TM polarizations. Due to SWG’s unique property of refractive index engineering, our design achieves a simulated 3 dB operating bandwidth of 105 nm and 121 nm for the TE and TM polarizations, respectively. Our proposed device reaches a maximum coupling efficiency of –4.88 dB at 1550 nm, exhibiting near zero polarization dependent loss at 1550 nm. Although the results are obtained from the identical SWGC design, the optimized incident angle for TE and TM are 39° and 16°, respectively. The back-reflections from the proposed grating coupler are suppressed to as low as −20 dB. To the best of our knowledge, our design offers the best reported performance in bandwidth and polarization sensitivity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency

Pavel Cheben, Jens H. Schmid, Shurui Wang, Dan-Xia Xu, Martin Vachon, Siegfried Janz, Jean Lapointe, Yves Painchaud, and Marie-Josée Picard
Opt. Express 23(17) 22553-22563 (2015)

Bragg filter bandwidth engineering in subwavelength grating metamaterial waveguides

Pavel Cheben, Jiří Čtyroký, Jens H. Schmid, Shurui Wang, Jean Lapointe, J. Gonzalo Wangüemert-Pérez, Íñigo Molina-Fernández, Alejandro Ortega-Moñux, Robert Halir, Daniele Melati, Danxia Xu, Siegfried Janz, and Milan Dado
Opt. Lett. 44(4) 1043-1046 (2019)

High positional freedom SOI subwavelength grating coupler (SWG) for 300 mm foundry fabrication

Eng Wen Ong, Thomas Wallner, Nicholas M. Fahrenkopf, and Douglas D. Coolbaugh
Opt. Express 26(22) 28773-28792 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X. Chen, K. Xu, Z. Cheng, C. K. Y. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37(17), 3483 (2012).
    [Crossref]
  2. J. Zhang, J. Yang, H. Lu, W. Wu, J. Huang, and S. Chang, “Polarization-independent grating coupler based on silicon-on-insulator,” Chin. Opt. Lett. 13(9), 91301–91305 (2015).
    [Crossref]
  3. Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photon. Technol. Lett. 21(4), 242–244 (2009).
    [Crossref]
  4. Z. Cheng and H. K. Tsang, “Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides,” Opt. Lett. 39(7), 2206 (2014).
    [Crossref]
  5. L. C. Andreani, D. Gerace, M. Passoni, A. Bozzola, and L. Carroll, “Optimizing grating couplers for silicon photonics,” In Transparent Optical Networks (ICTON), 2016 18th International Conference on (pp. 1–4). IEEE (2016, July).
  6. D. Benedikovic, C. Alonso-Ramos, D. Pérez-Galacho, S. Guerber, V. Vakarin, G. Marcaud, and et al., “L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography,” Opt. Lett. 42(17), 3439 (2017).
    [Crossref]
  7. Q. Zhong, V. Veerasubramanian, Y. Wang, W. Shi, D. Patel, S. Ghosh, A. Samani, L. Chrostowski, R. Bojko, and D. V. Plant, “Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces,” Opt. Express 22(15), 18224 (2014).
    [Crossref]
  8. Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40(20), 4647–4650 (2015).
    [Crossref]
  9. A. Sánchez-Postigo, J. G. Wangüemert-Pérez, J. M. Luque-González, Í. Molina-Fernández, P. Cheben, C. A. Alonso-Ramos, and et al., “Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency,” Opt. Lett. 41(13), 3013 (2016).
    [Crossref]
  10. T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, and et al., “An O-band metamaterial converter interfacing standard optical fibers to silicon nanophotonic waveguides,” In Optical Fiber Communication Conference (pp. Th3F-3). Optical Society of America (2015, March).
  11. R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, and et al., “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9(1), 25–49 (2015).
    [Crossref]
  12. X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “Colorless grating couplers realized by interleaving dispersion engineered subwavelength structures,” Opt. Lett. 38(18), 3588 (2013).
    [Crossref]
  13. L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University Press, 2015).
  14. S. V. Kartalopoulos, Introduction to DWDM technology: data in a rainbow (SPIE Optical Engineering Press, 2000), pp. 56–57.
  15. A. Hornsteiner, “Fiber Optic Technology Trends in Data Transmission: Digitalization of data advance the need for constant upgrading of data networks,” Opt. Photonik 12(4), 20–24 (2017).
    [Crossref]
  16. A. Dewanjee, J. N. Caspers, D. F. James, and M. Mojahedi, “A low-loss, compact, broadband, polarization insensitive edge coupler for silicon photonics,” In Photonics Conference (IPC), 2014IEEE (2014, October).
  17. J. Cardenas, C. B. Poitras, K. Luke, L. W. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photon. Technol. Lett. 26(23), 2380–2382 (2014).
    [Crossref]
  18. J. Wang, Y. Xuan, C. Lee, B. Niu, L. Liu, G. N. Liu, and M Qi, ”Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers,” In Optical Fiber Communications Conference and Exhibition (OFC), 2016 (pp. 1–3). IEEE (2016, March).
  19. C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, and et al., “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
    [Crossref]
  20. B. B. Bakir, A. V. De Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
    [Crossref]
  21. P. Cheben, J. H. Schmid, S. Wang, D. X. Xu, M. Vachon, S. Janz, and et al., “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553 (2015).
    [Crossref]

2017 (2)

A. Hornsteiner, “Fiber Optic Technology Trends in Data Transmission: Digitalization of data advance the need for constant upgrading of data networks,” Opt. Photonik 12(4), 20–24 (2017).
[Crossref]

D. Benedikovic, C. Alonso-Ramos, D. Pérez-Galacho, S. Guerber, V. Vakarin, G. Marcaud, and et al., “L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography,” Opt. Lett. 42(17), 3439 (2017).
[Crossref]

2016 (1)

2015 (4)

P. Cheben, J. H. Schmid, S. Wang, D. X. Xu, M. Vachon, S. Janz, and et al., “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553 (2015).
[Crossref]

Y. Wang, W. Shi, X. Wang, Z. Lu, M. Caverley, R. Bojko, L. Chrostowski, and N. A. F. Jaeger, “Design of broadband subwavelength grating couplers with low back reflection,” Opt. Lett. 40(20), 4647–4650 (2015).
[Crossref]

J. Zhang, J. Yang, H. Lu, W. Wu, J. Huang, and S. Chang, “Polarization-independent grating coupler based on silicon-on-insulator,” Chin. Opt. Lett. 13(9), 91301–91305 (2015).
[Crossref]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, and et al., “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9(1), 25–49 (2015).
[Crossref]

2014 (3)

2013 (1)

2012 (1)

2011 (1)

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, and et al., “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

2010 (1)

B. B. Bakir, A. V. De Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

2009 (1)

Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photon. Technol. Lett. 21(4), 242–244 (2009).
[Crossref]

Alonso-Ramos, C.

D. Benedikovic, C. Alonso-Ramos, D. Pérez-Galacho, S. Guerber, V. Vakarin, G. Marcaud, and et al., “L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography,” Opt. Lett. 42(17), 3439 (2017).
[Crossref]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, and et al., “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9(1), 25–49 (2015).
[Crossref]

Alonso-Ramos, C. A.

Andreani, L. C.

L. C. Andreani, D. Gerace, M. Passoni, A. Bozzola, and L. Carroll, “Optimizing grating couplers for silicon photonics,” In Transparent Optical Networks (ICTON), 2016 18th International Conference on (pp. 1–4). IEEE (2016, July).

Bakir, B. B.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, and et al., “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

B. B. Bakir, A. V. De Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Barwicz, T.

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, and et al., “An O-band metamaterial converter interfacing standard optical fibers to silicon nanophotonic waveguides,” In Optical Fiber Communication Conference (pp. Th3F-3). Optical Society of America (2015, March).

Benedikovic, D.

Bernabe, S.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, and et al., “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Bock, P. J.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, and et al., “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9(1), 25–49 (2015).
[Crossref]

Bojko, R.

Bozzola, A.

L. C. Andreani, D. Gerace, M. Passoni, A. Bozzola, and L. Carroll, “Optimizing grating couplers for silicon photonics,” In Transparent Optical Networks (ICTON), 2016 18th International Conference on (pp. 1–4). IEEE (2016, July).

Cardenas, J.

J. Cardenas, C. B. Poitras, K. Luke, L. W. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photon. Technol. Lett. 26(23), 2380–2382 (2014).
[Crossref]

Carroll, L.

L. C. Andreani, D. Gerace, M. Passoni, A. Bozzola, and L. Carroll, “Optimizing grating couplers for silicon photonics,” In Transparent Optical Networks (ICTON), 2016 18th International Conference on (pp. 1–4). IEEE (2016, July).

Caspers, J. N.

A. Dewanjee, J. N. Caspers, D. F. James, and M. Mojahedi, “A low-loss, compact, broadband, polarization insensitive edge coupler for silicon photonics,” In Photonics Conference (IPC), 2014IEEE (2014, October).

Caverley, M.

Chang, S.

J. Zhang, J. Yang, H. Lu, W. Wu, J. Huang, and S. Chang, “Polarization-independent grating coupler based on silicon-on-insulator,” Chin. Opt. Lett. 13(9), 91301–91305 (2015).
[Crossref]

Cheben, P.

Chen, R. T.

Chen, X.

Cheng, Z.

Chrostowski, L.

Covey, J.

Dai, D.

Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photon. Technol. Lett. 21(4), 242–244 (2009).
[Crossref]

De Gyves, A. V.

B. B. Bakir, A. V. De Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Dewanjee, A.

A. Dewanjee, J. N. Caspers, D. F. James, and M. Mojahedi, “A low-loss, compact, broadband, polarization insensitive edge coupler for silicon photonics,” In Photonics Conference (IPC), 2014IEEE (2014, October).

Fedeli, J. M.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, and et al., “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

B. B. Bakir, A. V. De Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Fung, C. K. Y.

Gerace, D.

L. C. Andreani, D. Gerace, M. Passoni, A. Bozzola, and L. Carroll, “Optimizing grating couplers for silicon photonics,” In Transparent Optical Networks (ICTON), 2016 18th International Conference on (pp. 1–4). IEEE (2016, July).

Ghosh, S.

Guerber, S.

Halir, R.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, and et al., “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9(1), 25–49 (2015).
[Crossref]

He, S.

Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photon. Technol. Lett. 21(4), 242–244 (2009).
[Crossref]

Hochberg, M.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University Press, 2015).

Hornsteiner, A.

A. Hornsteiner, “Fiber Optic Technology Trends in Data Transmission: Digitalization of data advance the need for constant upgrading of data networks,” Opt. Photonik 12(4), 20–24 (2017).
[Crossref]

Hosseini, A.

Huang, J.

J. Zhang, J. Yang, H. Lu, W. Wu, J. Huang, and S. Chang, “Polarization-independent grating coupler based on silicon-on-insulator,” Chin. Opt. Lett. 13(9), 91301–91305 (2015).
[Crossref]

Jaeger, N. A. F.

James, D. F.

A. Dewanjee, J. N. Caspers, D. F. James, and M. Mojahedi, “A low-loss, compact, broadband, polarization insensitive edge coupler for silicon photonics,” In Photonics Conference (IPC), 2014IEEE (2014, October).

Janta-Polczynski, A.

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, and et al., “An O-band metamaterial converter interfacing standard optical fibers to silicon nanophotonic waveguides,” In Optical Fiber Communication Conference (pp. Th3F-3). Optical Society of America (2015, March).

Janz, S.

Kartalopoulos, S. V.

S. V. Kartalopoulos, Introduction to DWDM technology: data in a rainbow (SPIE Optical Engineering Press, 2000), pp. 56–57.

Khater, M.

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, and et al., “An O-band metamaterial converter interfacing standard optical fibers to silicon nanophotonic waveguides,” In Optical Fiber Communication Conference (pp. Th3F-3). Optical Society of America (2015, March).

Kopp, C.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, and et al., “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Kwong, D.

Lee, C.

J. Wang, Y. Xuan, C. Lee, B. Niu, L. Liu, G. N. Liu, and M Qi, ”Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers,” In Optical Fiber Communications Conference and Exhibition (OFC), 2016 (pp. 1–3). IEEE (2016, March).

Leidy, R.

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, and et al., “An O-band metamaterial converter interfacing standard optical fibers to silicon nanophotonic waveguides,” In Optical Fiber Communication Conference (pp. Th3F-3). Optical Society of America (2015, March).

Lipson, M.

J. Cardenas, C. B. Poitras, K. Luke, L. W. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photon. Technol. Lett. 26(23), 2380–2382 (2014).
[Crossref]

Liu, G. N.

J. Wang, Y. Xuan, C. Lee, B. Niu, L. Liu, G. N. Liu, and M Qi, ”Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers,” In Optical Fiber Communications Conference and Exhibition (OFC), 2016 (pp. 1–3). IEEE (2016, March).

Liu, L.

J. Wang, Y. Xuan, C. Lee, B. Niu, L. Liu, G. N. Liu, and M Qi, ”Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers,” In Optical Fiber Communications Conference and Exhibition (OFC), 2016 (pp. 1–3). IEEE (2016, March).

Lu, H.

J. Zhang, J. Yang, H. Lu, W. Wu, J. Huang, and S. Chang, “Polarization-independent grating coupler based on silicon-on-insulator,” Chin. Opt. Lett. 13(9), 91301–91305 (2015).
[Crossref]

Lu, Z.

Luke, K.

J. Cardenas, C. B. Poitras, K. Luke, L. W. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photon. Technol. Lett. 26(23), 2380–2382 (2014).
[Crossref]

Luo, L. W.

J. Cardenas, C. B. Poitras, K. Luke, L. W. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photon. Technol. Lett. 26(23), 2380–2382 (2014).
[Crossref]

Luque-González, J. M.

Lyan, P.

B. B. Bakir, A. V. De Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Maling, J.

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, and et al., “An O-band metamaterial converter interfacing standard optical fibers to silicon nanophotonic waveguides,” In Optical Fiber Communication Conference (pp. Th3F-3). Optical Society of America (2015, March).

Marcaud, G.

Mojahedi, M.

A. Dewanjee, J. N. Caspers, D. F. James, and M. Mojahedi, “A low-loss, compact, broadband, polarization insensitive edge coupler for silicon photonics,” In Photonics Conference (IPC), 2014IEEE (2014, October).

Molina-Fernández, Í.

Morton, P. A.

J. Cardenas, C. B. Poitras, K. Luke, L. W. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photon. Technol. Lett. 26(23), 2380–2382 (2014).
[Crossref]

Niu, B.

J. Wang, Y. Xuan, C. Lee, B. Niu, L. Liu, G. N. Liu, and M Qi, ”Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers,” In Optical Fiber Communications Conference and Exhibition (OFC), 2016 (pp. 1–3). IEEE (2016, March).

Orobtchouk, R.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, and et al., “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

B. B. Bakir, A. V. De Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Ortega-Moñux, A.

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, and et al., “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9(1), 25–49 (2015).
[Crossref]

Passoni, M.

L. C. Andreani, D. Gerace, M. Passoni, A. Bozzola, and L. Carroll, “Optimizing grating couplers for silicon photonics,” In Transparent Optical Networks (ICTON), 2016 18th International Conference on (pp. 1–4). IEEE (2016, July).

Patel, D.

Pérez-Galacho, D.

Plant, D. V.

Poitras, C. B.

J. Cardenas, C. B. Poitras, K. Luke, L. W. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photon. Technol. Lett. 26(23), 2380–2382 (2014).
[Crossref]

Porzier, C.

B. B. Bakir, A. V. De Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Qi, M

J. Wang, Y. Xuan, C. Lee, B. Niu, L. Liu, G. N. Liu, and M Qi, ”Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers,” In Optical Fiber Communications Conference and Exhibition (OFC), 2016 (pp. 1–3). IEEE (2016, March).

Roman, A.

B. B. Bakir, A. V. De Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

Samani, A.

Sánchez-Postigo, A.

Schmid, J. H.

P. Cheben, J. H. Schmid, S. Wang, D. X. Xu, M. Vachon, S. Janz, and et al., “Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency,” Opt. Express 23(17), 22553 (2015).
[Crossref]

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, and et al., “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9(1), 25–49 (2015).
[Crossref]

Schrank, F.

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, and et al., “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

Shi, W.

Subbaraman, H.

Tang, Y.

Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photon. Technol. Lett. 21(4), 242–244 (2009).
[Crossref]

Thibodeau, Y.

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, and et al., “An O-band metamaterial converter interfacing standard optical fibers to silicon nanophotonic waveguides,” In Optical Fiber Communication Conference (pp. Th3F-3). Optical Society of America (2015, March).

Tsang, H. K.

Vachon, M.

Vakarin, V.

Veerasubramanian, V.

Wang, J.

J. Wang, Y. Xuan, C. Lee, B. Niu, L. Liu, G. N. Liu, and M Qi, ”Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers,” In Optical Fiber Communications Conference and Exhibition (OFC), 2016 (pp. 1–3). IEEE (2016, March).

Wang, S.

Wang, X.

Wang, Y.

Wangüemert-Pérez, J. G.

Wu, W.

J. Zhang, J. Yang, H. Lu, W. Wu, J. Huang, and S. Chang, “Polarization-independent grating coupler based on silicon-on-insulator,” Chin. Opt. Lett. 13(9), 91301–91305 (2015).
[Crossref]

Xu, D. X.

Xu, K.

Xu, X.

Xuan, Y.

J. Wang, Y. Xuan, C. Lee, B. Niu, L. Liu, G. N. Liu, and M Qi, ”Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers,” In Optical Fiber Communications Conference and Exhibition (OFC), 2016 (pp. 1–3). IEEE (2016, March).

Yang, J.

J. Zhang, J. Yang, H. Lu, W. Wu, J. Huang, and S. Chang, “Polarization-independent grating coupler based on silicon-on-insulator,” Chin. Opt. Lett. 13(9), 91301–91305 (2015).
[Crossref]

Zhang, J.

J. Zhang, J. Yang, H. Lu, W. Wu, J. Huang, and S. Chang, “Polarization-independent grating coupler based on silicon-on-insulator,” Chin. Opt. Lett. 13(9), 91301–91305 (2015).
[Crossref]

Zhong, Q.

Chin. Opt. Lett. (1)

J. Zhang, J. Yang, H. Lu, W. Wu, J. Huang, and S. Chang, “Polarization-independent grating coupler based on silicon-on-insulator,” Chin. Opt. Lett. 13(9), 91301–91305 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Kopp, S. Bernabe, B. B. Bakir, J. M. Fedeli, R. Orobtchouk, F. Schrank, and et al., “Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging,” IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (3)

B. B. Bakir, A. V. De Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J. M. Fedeli, “Low-Loss (< 1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers,” IEEE Photon. Technol. Lett. 22(11), 739–741 (2010).
[Crossref]

J. Cardenas, C. B. Poitras, K. Luke, L. W. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photon. Technol. Lett. 26(23), 2380–2382 (2014).
[Crossref]

Y. Tang, D. Dai, and S. He, “Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits,” IEEE Photon. Technol. Lett. 21(4), 242–244 (2009).
[Crossref]

Laser Photon. Rev. (1)

R. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, and et al., “Waveguide sub-wavelength structures: a review of principles and applications,” Laser Photon. Rev. 9(1), 25–49 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Opt. Photonik (1)

A. Hornsteiner, “Fiber Optic Technology Trends in Data Transmission: Digitalization of data advance the need for constant upgrading of data networks,” Opt. Photonik 12(4), 20–24 (2017).
[Crossref]

Other (6)

A. Dewanjee, J. N. Caspers, D. F. James, and M. Mojahedi, “A low-loss, compact, broadband, polarization insensitive edge coupler for silicon photonics,” In Photonics Conference (IPC), 2014IEEE (2014, October).

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University Press, 2015).

S. V. Kartalopoulos, Introduction to DWDM technology: data in a rainbow (SPIE Optical Engineering Press, 2000), pp. 56–57.

L. C. Andreani, D. Gerace, M. Passoni, A. Bozzola, and L. Carroll, “Optimizing grating couplers for silicon photonics,” In Transparent Optical Networks (ICTON), 2016 18th International Conference on (pp. 1–4). IEEE (2016, July).

T. Barwicz, A. Janta-Polczynski, M. Khater, Y. Thibodeau, R. Leidy, J. Maling, and et al., “An O-band metamaterial converter interfacing standard optical fibers to silicon nanophotonic waveguides,” In Optical Fiber Communication Conference (pp. Th3F-3). Optical Society of America (2015, March).

J. Wang, Y. Xuan, C. Lee, B. Niu, L. Liu, G. N. Liu, and M Qi, ”Low-loss and misalignment-tolerant fiber-to-chip edge coupler based on double-tip inverse tapers,” In Optical Fiber Communications Conference and Exhibition (OFC), 2016 (pp. 1–3). IEEE (2016, March).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1. Schematic diagrams for the sub-wavelength grating coupler (SWGC) (a) Top View (b) Cross-section view with effective index approximation (c) 3D representation.
Fig. 2.
Fig. 2. Coupling efficiency (dB) of the optimized SWGC as a function of wavelength for (a) TE polarization (b) TM polarization for both 2D and 3D-FDTD.

Tables (2)

Tables Icon

Table 1. Optimized device parameters for broadband & polarization flexible grating coupler

Tables Icon

Table 2. Simulation results

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k0neff=k0ncsinθ+m2πΛ
neff(λ)λ=nc.sinθλ+1Λ
Δλ1dB=2η1dB|dλdθ|
Δλ1dB=2η1dB|(Λnccosθ)(1Λdneff(λ)dλ)|
n||2=aΛn12+(1aΛ)n22
1n2=aΛ1n12+(1aΛ)1n22

Metrics