Abstract

An efficient method to improve the efficiency of mode-field adaptation between two mismatched fibers with arcs and hydrogen-loading is proposed and demonstrated for the first time. By hydrogen-loading the fiber of a relatively smaller core, the dopant diffusion rate and the mode transition region length were significantly increased. These enhancements contributed to an abrupt diffusion rate difference at the intersection of the fibers and an adiabatic mode transition. For the mode-field adaptation of the two fibers that have a mode-field area ratio of 7.25, the transmission loss was reduced from −3.71 to −0.24 dB by an arc duration of approximately 10 seconds.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-mode optical fiber for high-power, low-loss UV transmission

Yves Colombe, Daniel H. Slichter, Andrew C. Wilson, Dietrich Leibfried, and David J. Wineland
Opt. Express 22(16) 19783-19793 (2014)

Low loss elliptical core D-fiber to PANDA fiber fusion splicing

Joshua M. Kvavle, Stephen M. Schultz, and Richard H. Selfridge
Opt. Express 16(18) 13552-13559 (2008)

Mode-field adaptor between large-mode-area fiber and single-mode fiber based on fiber tapering and thermally expanded core technique

Xuanfeng Zhou, Zilun Chen, Hang Zhou, and Jing Hou
Appl. Opt. 53(22) 5053-5057 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088 (2004).
    [Crossref]
  2. B. Wang, E. Mies, M. Minden, and A. Sanchez, “All-fiber 50 W coherently combined passive laser array,” Opt. Lett. 34(7), 863–865 (2009).
    [Crossref]
  3. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  4. D. Jin, R. Sun, S. Wei, J. Liu, and P. Wang, “Nanosecond Yb-Doped Monolithic Dual-Cavity Laser Oscillator With Large Core Fiber,” IEEE Photonics Technol. Lett. 27(14), 1477–1480 (2015).
    [Crossref]
  5. T.-Y. Tsai, Y.-C. Fang, H.-M. Huang, H.-X. Tsao, and S.-T. Lin, “Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm,” Opt. Express 18(23), 23523 (2010).
    [Crossref]
  6. K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8(8), 1151–1161 (1990).
    [Crossref]
  7. K. Shiraishi, T. Yanagi, and S. Kawakami, “Light-propagation characteristics in thermally diffused expanded core fibers,” J. Lightwave Technol. 11(10), 1584–1591 (1993).
    [Crossref]
  8. M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
    [Crossref]
  9. G. S. Kliros and N. Tsironikos, “Variational analysis of propagation characteristics in thermally diffused expanded core fibers,” Optik 116(8), 365–374 (2005).
    [Crossref]
  10. B. Wang and E. Mies, “Review of fabrication techniques for fused fiber components for fiber lasers,” Proc. SPIE 7195, 71950A (2009).
    [Crossref]
  11. X. Zhou, Z. Chen, H. Chen, J. Li, and J. Hou, “Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique,” Opt. Laser Technol. 47, 72–75 (2013).
    [Crossref]
  12. K. Zhao, X. Chang, Z. Chen, Z. Wang, and H. Jiang, “Fabrication of high-efficiency pump and signal combiner based on a thermally expanded core technique,” Opt. Laser Technol. 75, 1–5 (2015).
    [Crossref]
  13. J. Wu, Y. Sun, Y. Wang, T. Li, Y. Feng, and Y. Ma, “The study of the thermally expanded core technique in end-pumped (N + 1)×1 type combiner,” Proc. SPIE 9255, 92550I (2015).
    [Crossref]
  14. Y. Lin and S. Lin, “Thermally expanded core fiber with high numerical aperture for laser-diode coupling,” Microw. Opt. Technol. Lett. 48(5), 979–981 (2006).
    [Crossref]
  15. Y. Zhao, A. Zhou, X. Ouyang, Y. Ouyang, C. Zhou, and L. Yuan, “A stable twin-core-fiber-based integrated coupler fabricated by thermally diffused core technique,” J. Lightwave Technol. 35(24), 5473–5478 (2017).
    [Crossref]
  16. M. Ratuszek, Z. Zakrzewski, and J. Majewski, “Characteristics of Thermally Diffused Transit Areas of Single-Mode Telecommunication Fibers,” J. Lightwave Technol. 27(15), 3050–3056 (2009).
    [Crossref]
  17. R. M. Atkins, P. J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29(14), 1234 (1993).
    [Crossref]
  18. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
    [Crossref]
  19. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
    [Crossref]
  20. E. G. Neumann, Single-Mode Fibers: Fundamentals (Springer-Verlag, Berlin, 1988).

2017 (1)

2015 (3)

K. Zhao, X. Chang, Z. Chen, Z. Wang, and H. Jiang, “Fabrication of high-efficiency pump and signal combiner based on a thermally expanded core technique,” Opt. Laser Technol. 75, 1–5 (2015).
[Crossref]

J. Wu, Y. Sun, Y. Wang, T. Li, Y. Feng, and Y. Ma, “The study of the thermally expanded core technique in end-pumped (N + 1)×1 type combiner,” Proc. SPIE 9255, 92550I (2015).
[Crossref]

D. Jin, R. Sun, S. Wei, J. Liu, and P. Wang, “Nanosecond Yb-Doped Monolithic Dual-Cavity Laser Oscillator With Large Core Fiber,” IEEE Photonics Technol. Lett. 27(14), 1477–1480 (2015).
[Crossref]

2013 (1)

X. Zhou, Z. Chen, H. Chen, J. Li, and J. Hou, “Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique,” Opt. Laser Technol. 47, 72–75 (2013).
[Crossref]

2010 (2)

2009 (3)

2006 (1)

Y. Lin and S. Lin, “Thermally expanded core fiber with high numerical aperture for laser-diode coupling,” Microw. Opt. Technol. Lett. 48(5), 979–981 (2006).
[Crossref]

2005 (1)

G. S. Kliros and N. Tsironikos, “Variational analysis of propagation characteristics in thermally diffused expanded core fibers,” Optik 116(8), 365–374 (2005).
[Crossref]

2004 (1)

1997 (1)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[Crossref]

1996 (1)

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
[Crossref]

1993 (2)

K. Shiraishi, T. Yanagi, and S. Kawakami, “Light-propagation characteristics in thermally diffused expanded core fibers,” J. Lightwave Technol. 11(10), 1584–1591 (1993).
[Crossref]

R. M. Atkins, P. J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29(14), 1234 (1993).
[Crossref]

1990 (1)

K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8(8), 1151–1161 (1990).
[Crossref]

1977 (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

Aizawa, Y.

K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8(8), 1151–1161 (1990).
[Crossref]

Atkins, R. M.

R. M. Atkins, P. J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29(14), 1234 (1993).
[Crossref]

Chang, X.

K. Zhao, X. Chang, Z. Chen, Z. Wang, and H. Jiang, “Fabrication of high-efficiency pump and signal combiner based on a thermally expanded core technique,” Opt. Laser Technol. 75, 1–5 (2015).
[Crossref]

Chen, H.

X. Zhou, Z. Chen, H. Chen, J. Li, and J. Hou, “Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique,” Opt. Laser Technol. 47, 72–75 (2013).
[Crossref]

Chen, Z.

K. Zhao, X. Chang, Z. Chen, Z. Wang, and H. Jiang, “Fabrication of high-efficiency pump and signal combiner based on a thermally expanded core technique,” Opt. Laser Technol. 75, 1–5 (2015).
[Crossref]

X. Zhou, Z. Chen, H. Chen, J. Li, and J. Hou, “Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique,” Opt. Laser Technol. 47, 72–75 (2013).
[Crossref]

Clarkson, W. A.

Erdogan, T.

R. M. Atkins, P. J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29(14), 1234 (1993).
[Crossref]

Fang, Y.-C.

Feng, Y.

J. Wu, Y. Sun, Y. Wang, T. Li, Y. Feng, and Y. Ma, “The study of the thermally expanded core technique in end-pumped (N + 1)×1 type combiner,” Proc. SPIE 9255, 92550I (2015).
[Crossref]

Haibara, T.

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
[Crossref]

Hou, J.

X. Zhou, Z. Chen, H. Chen, J. Li, and J. Hou, “Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique,” Opt. Laser Technol. 47, 72–75 (2013).
[Crossref]

Huang, H.-M.

Jeong, Y.

Jiang, H.

K. Zhao, X. Chang, Z. Chen, Z. Wang, and H. Jiang, “Fabrication of high-efficiency pump and signal combiner based on a thermally expanded core technique,” Opt. Laser Technol. 75, 1–5 (2015).
[Crossref]

Jin, D.

D. Jin, R. Sun, S. Wei, J. Liu, and P. Wang, “Nanosecond Yb-Doped Monolithic Dual-Cavity Laser Oscillator With Large Core Fiber,” IEEE Photonics Technol. Lett. 27(14), 1477–1480 (2015).
[Crossref]

Kawakami, S.

K. Shiraishi, T. Yanagi, and S. Kawakami, “Light-propagation characteristics in thermally diffused expanded core fibers,” J. Lightwave Technol. 11(10), 1584–1591 (1993).
[Crossref]

K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8(8), 1151–1161 (1990).
[Crossref]

Kihara, M.

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
[Crossref]

Kliros, G. S.

G. S. Kliros and N. Tsironikos, “Variational analysis of propagation characteristics in thermally diffused expanded core fibers,” Optik 116(8), 365–374 (2005).
[Crossref]

Lemaire, P. J.

R. M. Atkins, P. J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29(14), 1234 (1993).
[Crossref]

Li, J.

X. Zhou, Z. Chen, H. Chen, J. Li, and J. Hou, “Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique,” Opt. Laser Technol. 47, 72–75 (2013).
[Crossref]

Li, T.

J. Wu, Y. Sun, Y. Wang, T. Li, Y. Feng, and Y. Ma, “The study of the thermally expanded core technique in end-pumped (N + 1)×1 type combiner,” Proc. SPIE 9255, 92550I (2015).
[Crossref]

Lin, S.

Y. Lin and S. Lin, “Thermally expanded core fiber with high numerical aperture for laser-diode coupling,” Microw. Opt. Technol. Lett. 48(5), 979–981 (2006).
[Crossref]

Lin, S.-T.

Lin, Y.

Y. Lin and S. Lin, “Thermally expanded core fiber with high numerical aperture for laser-diode coupling,” Microw. Opt. Technol. Lett. 48(5), 979–981 (2006).
[Crossref]

Liu, J.

D. Jin, R. Sun, S. Wei, J. Liu, and P. Wang, “Nanosecond Yb-Doped Monolithic Dual-Cavity Laser Oscillator With Large Core Fiber,” IEEE Photonics Technol. Lett. 27(14), 1477–1480 (2015).
[Crossref]

Ma, Y.

J. Wu, Y. Sun, Y. Wang, T. Li, Y. Feng, and Y. Ma, “The study of the thermally expanded core technique in end-pumped (N + 1)×1 type combiner,” Proc. SPIE 9255, 92550I (2015).
[Crossref]

Majewski, J.

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

Matsumoto, M.

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
[Crossref]

Mies, E.

B. Wang and E. Mies, “Review of fabrication techniques for fused fiber components for fiber lasers,” Proc. SPIE 7195, 71950A (2009).
[Crossref]

B. Wang, E. Mies, M. Minden, and A. Sanchez, “All-fiber 50 W coherently combined passive laser array,” Opt. Lett. 34(7), 863–865 (2009).
[Crossref]

Minden, M.

Mizrahi, V.

R. M. Atkins, P. J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29(14), 1234 (1993).
[Crossref]

Neumann, E. G.

E. G. Neumann, Single-Mode Fibers: Fundamentals (Springer-Verlag, Berlin, 1988).

Nilsson, J.

Othonos, A.

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[Crossref]

Ouyang, X.

Ouyang, Y.

Payne, D. N.

Ratuszek, M.

Richardson, D. J.

Sahu, J. K.

Sanchez, A.

Shiraishi, K.

K. Shiraishi, T. Yanagi, and S. Kawakami, “Light-propagation characteristics in thermally diffused expanded core fibers,” J. Lightwave Technol. 11(10), 1584–1591 (1993).
[Crossref]

K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8(8), 1151–1161 (1990).
[Crossref]

Sun, R.

D. Jin, R. Sun, S. Wei, J. Liu, and P. Wang, “Nanosecond Yb-Doped Monolithic Dual-Cavity Laser Oscillator With Large Core Fiber,” IEEE Photonics Technol. Lett. 27(14), 1477–1480 (2015).
[Crossref]

Sun, Y.

J. Wu, Y. Sun, Y. Wang, T. Li, Y. Feng, and Y. Ma, “The study of the thermally expanded core technique in end-pumped (N + 1)×1 type combiner,” Proc. SPIE 9255, 92550I (2015).
[Crossref]

Tomita, S.

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
[Crossref]

Tsai, T.-Y.

Tsao, H.-X.

Tsironikos, N.

G. S. Kliros and N. Tsironikos, “Variational analysis of propagation characteristics in thermally diffused expanded core fibers,” Optik 116(8), 365–374 (2005).
[Crossref]

Wang, B.

B. Wang and E. Mies, “Review of fabrication techniques for fused fiber components for fiber lasers,” Proc. SPIE 7195, 71950A (2009).
[Crossref]

B. Wang, E. Mies, M. Minden, and A. Sanchez, “All-fiber 50 W coherently combined passive laser array,” Opt. Lett. 34(7), 863–865 (2009).
[Crossref]

Wang, P.

D. Jin, R. Sun, S. Wei, J. Liu, and P. Wang, “Nanosecond Yb-Doped Monolithic Dual-Cavity Laser Oscillator With Large Core Fiber,” IEEE Photonics Technol. Lett. 27(14), 1477–1480 (2015).
[Crossref]

Wang, Y.

J. Wu, Y. Sun, Y. Wang, T. Li, Y. Feng, and Y. Ma, “The study of the thermally expanded core technique in end-pumped (N + 1)×1 type combiner,” Proc. SPIE 9255, 92550I (2015).
[Crossref]

Wang, Z.

K. Zhao, X. Chang, Z. Chen, Z. Wang, and H. Jiang, “Fabrication of high-efficiency pump and signal combiner based on a thermally expanded core technique,” Opt. Laser Technol. 75, 1–5 (2015).
[Crossref]

Wei, S.

D. Jin, R. Sun, S. Wei, J. Liu, and P. Wang, “Nanosecond Yb-Doped Monolithic Dual-Cavity Laser Oscillator With Large Core Fiber,” IEEE Photonics Technol. Lett. 27(14), 1477–1480 (2015).
[Crossref]

Wu, J.

J. Wu, Y. Sun, Y. Wang, T. Li, Y. Feng, and Y. Ma, “The study of the thermally expanded core technique in end-pumped (N + 1)×1 type combiner,” Proc. SPIE 9255, 92550I (2015).
[Crossref]

Yanagi, T.

K. Shiraishi, T. Yanagi, and S. Kawakami, “Light-propagation characteristics in thermally diffused expanded core fibers,” J. Lightwave Technol. 11(10), 1584–1591 (1993).
[Crossref]

Yuan, L.

Zakrzewski, Z.

Zhao, K.

K. Zhao, X. Chang, Z. Chen, Z. Wang, and H. Jiang, “Fabrication of high-efficiency pump and signal combiner based on a thermally expanded core technique,” Opt. Laser Technol. 75, 1–5 (2015).
[Crossref]

Zhao, Y.

Zhou, A.

Zhou, C.

Zhou, X.

X. Zhou, Z. Chen, H. Chen, J. Li, and J. Hou, “Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique,” Opt. Laser Technol. 47, 72–75 (2013).
[Crossref]

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

Electron. Lett. (1)

R. M. Atkins, P. J. Lemaire, T. Erdogan, and V. Mizrahi, “Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses,” Electron. Lett. 29(14), 1234 (1993).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Jin, R. Sun, S. Wei, J. Liu, and P. Wang, “Nanosecond Yb-Doped Monolithic Dual-Cavity Laser Oscillator With Large Core Fiber,” IEEE Photonics Technol. Lett. 27(14), 1477–1480 (2015).
[Crossref]

J. Lightwave Technol. (5)

K. Shiraishi, Y. Aizawa, and S. Kawakami, “Beam expanding fiber using thermal diffusion of the dopant,” J. Lightwave Technol. 8(8), 1151–1161 (1990).
[Crossref]

K. Shiraishi, T. Yanagi, and S. Kawakami, “Light-propagation characteristics in thermally diffused expanded core fibers,” J. Lightwave Technol. 11(10), 1584–1591 (1993).
[Crossref]

M. Kihara, M. Matsumoto, T. Haibara, and S. Tomita, “Characteristics of thermally expanded core fiber,” J. Lightwave Technol. 14(10), 2209–2214 (1996).
[Crossref]

Y. Zhao, A. Zhou, X. Ouyang, Y. Ouyang, C. Zhou, and L. Yuan, “A stable twin-core-fiber-based integrated coupler fabricated by thermally diffused core technique,” J. Lightwave Technol. 35(24), 5473–5478 (2017).
[Crossref]

M. Ratuszek, Z. Zakrzewski, and J. Majewski, “Characteristics of Thermally Diffused Transit Areas of Single-Mode Telecommunication Fibers,” J. Lightwave Technol. 27(15), 3050–3056 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Microw. Opt. Technol. Lett. (1)

Y. Lin and S. Lin, “Thermally expanded core fiber with high numerical aperture for laser-diode coupling,” Microw. Opt. Technol. Lett. 48(5), 979–981 (2006).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (2)

X. Zhou, Z. Chen, H. Chen, J. Li, and J. Hou, “Mode field adaptation between single-mode fiber and large mode area fiber by thermally expanded core technique,” Opt. Laser Technol. 47, 72–75 (2013).
[Crossref]

K. Zhao, X. Chang, Z. Chen, Z. Wang, and H. Jiang, “Fabrication of high-efficiency pump and signal combiner based on a thermally expanded core technique,” Opt. Laser Technol. 75, 1–5 (2015).
[Crossref]

Opt. Lett. (1)

Optik (1)

G. S. Kliros and N. Tsironikos, “Variational analysis of propagation characteristics in thermally diffused expanded core fibers,” Optik 116(8), 365–374 (2005).
[Crossref]

Proc. SPIE (2)

B. Wang and E. Mies, “Review of fabrication techniques for fused fiber components for fiber lasers,” Proc. SPIE 7195, 71950A (2009).
[Crossref]

J. Wu, Y. Sun, Y. Wang, T. Li, Y. Feng, and Y. Ma, “The study of the thermally expanded core technique in end-pumped (N + 1)×1 type combiner,” Proc. SPIE 9255, 92550I (2015).
[Crossref]

Rev. Sci. Instrum. (1)

A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68(12), 4309–4341 (1997).
[Crossref]

Other (1)

E. G. Neumann, Single-Mode Fibers: Fundamentals (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. The experiment setup designed for measuring the transmission loss between Fibers A and B and monitoring the improvement with the arc-induced TEC treatment.
Fig. 2.
Fig. 2. The transmission curves for splicing the LMA fiber, P10/125-08, with the small-core fibers, Hi980 and H2-loaded Hi980, improved by a step-by-step arc-induced TEC method.
Fig. 3.
Fig. 3. (a)-(c) The arc-induced core expansions of the spliced fibers, Hi980 (on the left) and H2-loaded Hi980 with various arc durations of 1.5, 3, and 6 seconds. Correspondingly, the core diameters were calculated from the core contours of the photos and are shown in (d)-(f).
Fig. 4.
Fig. 4. The transmission loss, Lslp, degraded by arcs in steps for splicing the same-type fibers (i.e., Fibers A and B in Fig. 1 are the same type). The losses Lslp resulted exclusively from the TEC transition slopes.

Tables (1)

Tables Icon

Table 1. Calculation and estimation of the enhanced arc-induced TEC method by hydrogen loading based on the results in Fig. 2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T M F A = 10 log 10 ( 4 R A  +  R A 1  + 2 ) ,
R A , t e c = A o b + Δ A o A o a + Δ A o .
R A , t e c = A o b + Δ A s A o a + Δ A H L .

Metrics