Abstract

A Tb3+:KYW crystal was grown by the modified Czochralski technique. Polarized ground state absorption and fluorescence spectra, as well as a fluorescence decay curve, were recorded at room temperature. Radiative properties such as emission probabilities, branching ratios, and radiative lifetime were investigated within the theory of 4f–4f transition intensity in the case of a strong configuration interaction. The limitations of visible laser operation of Tb3+-doped double tungstate crystals are discussed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effect of annealing treatment on spectroscopic properties of a Nd3+-doped PbWO4 single crystal

Yujin Chen, Yanfu Lin, Zundu Luo, and Yidong Huang
J. Opt. Soc. Am. B 22(4) 898-904 (2005)

Spectroscopic properties and Judd–Ofelt analysis of BaY2F8:Sm3+

Devin Pugh-Thomas
J. Opt. Soc. Am. B 31(8) 1777-1785 (2014)

Infrared emission and ion–ion interactions in thulium- and terbium-doped gallium lanthanum sulfide glass

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne
J. Opt. Soc. Am. B 16(2) 308-316 (1999)

References

  • View by:
  • |
  • |
  • |

  1. M. Nazarov and D. Y. Noh, New Generation of Terbium- and Europium-Activated Phosphors: From Syntheses to Applications (Pan Stanford Publishing, 2011).
  2. K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, “Promising Materials for High Power Laser Isolators,” Laser Tech. J. 13(3), 18–21 (2016).
    [Crossref]
  3. P. W. Metz, D.-T. Marzahl, A. Majid, C. Kränkel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photon. Rev. 10(2), 335–344 (2016).
    [Crossref]
  4. M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
    [Crossref]
  5. P. Klopp, U. Griebner, V. Petrov, X. Mateos, M. A. Bursukova, M. C. Pujol, R. Sole, J. Gavalda, M. Aguilo, F. Güell, J. Massons, T. Kirilov, and F. Diaz, “Laser operation of the new stoichiometric crystal KYb(WO4)2,” Appl. Phys. B 74(2), 185–189 (2002).
    [Crossref]
  6. S. Schwung, D. Rytz, B. Heying, U. C. Rodewald, O. Niehaus, D. Enseling, T. Jüstel, and R. Pöttgen, “The crystal structure and luminescence quenching of poly-and singlecrystalline KYW2O8:Tb3+,” J. Lumin. 166, 289–294 (2015).
    [Crossref]
  7. P. Loiko, A. Volokitina, X. Mateos, E. Dunina, A. Kornienko, E. Vilejshikova, M. Aguilo, and F. Díaz, “Spectroscopy of Tb3+ ions in monoclinic KLu(WO4)2 crystal application of an intermediate configuration interaction theory,” Opt. Mater. 78, 495–501 (2018).
    [Crossref]
  8. L. Jing, W. Jiyang, H. Shujuan, G. Yongjie, and W. Yongzheng, “Growth, structural, thermal properties and spectroscopic characteristics of KTb(WO4)2 single crystal,” J. Rare Earths 30(10), 967–971 (2012).
    [Crossref]
  9. P. Loiko, X. Mateos, E. Dunina, A. Kornienko, A. Volokitina, E. Vilejshikova, J. M. Serres, A. Baranov, K. Yumashev, M. Aguiló, and F. Díaz, “Judd-Ofelt modeling and stimulated emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal,” J. Lumin. 190, 37–44 (2017).
    [Crossref]
  10. A. A. Kornienko, E. B. Dunina, and V. L. Yankevich, “Theory of intensities of the intermultiplet electric-dipole transitions in the approximation of strong configuration interaction,” Opt. Spectrosc. 81, 871–874 (1996).
  11. A. A. Pavlyuk, Ya. V. Vasiliev, L. Yu. Kharchenko, and F. A. Kuznetsov, “Low thermal gradient technique and method for large oxide crystals growth from melt and flux, Proceedings of the Asia Pacific Society for Advanced Materials,” APSAM-92, Shanghai, China, 1993, p. 164–171.
  12. A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
    [Crossref]
  13. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A 32(5), 751–767 (1976).
    [Crossref]
  14. P. Boutinad, M. Bettinelli, and F. Diaz, “Intervalence charge transfer in Pr3+-and Tb3+-doped tungstate crystals KRE(WO4)2 (RE = Y, Gd, Yb, Lu),” Opt. Mater. 32(12), 1659–1663 (2010).
    [Crossref]
  15. P. Dorenbos, “The 5d level positions of the trivalent lanthanides in inorganic compounds,” J. Lumin. 91(3-4), 155–176 (2000).
    [Crossref]
  16. C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
    [Crossref]
  17. X. Mateos, R. Sole, J. Gavalda, M. Aguilo, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterization of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
    [Crossref]
  18. W.T. Carnall, H. Crosswhite, and H.M. Crosswhite, Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF3 – Annual Report, Argonne National Laboratory, 1975.
  19. D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
    [Crossref]
  20. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er/sup 3+/, Tm/sup 3+/, and Ho/sup 3+/,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
    [Crossref]
  21. A. S. Yasukevich, V. G. Shcherbitskii, V. E. Kisel, A. V. Mandrik, and N. V. Kuleshov, “Integral Method of Reciprocity in the Spectroscopy of Laser Crystals with Impurity Centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
    [Crossref]
  22. N. V. Kuleshov, A. S. Shinkevich, V. G. Shcherbitsky, V. P. Mikhailov, T. Danger, T. Sandrock, and G. Huber, “Luminescence and time-resolved excited state absorption measurements in Pr3+-doped La2Be2O5 and KGd(WO4)2 crystals,” Opt. Mater. 5(1-2), 111–118 (1996).
    [Crossref]

2018 (1)

P. Loiko, A. Volokitina, X. Mateos, E. Dunina, A. Kornienko, E. Vilejshikova, M. Aguilo, and F. Díaz, “Spectroscopy of Tb3+ ions in monoclinic KLu(WO4)2 crystal application of an intermediate configuration interaction theory,” Opt. Mater. 78, 495–501 (2018).
[Crossref]

2017 (1)

P. Loiko, X. Mateos, E. Dunina, A. Kornienko, A. Volokitina, E. Vilejshikova, J. M. Serres, A. Baranov, K. Yumashev, M. Aguiló, and F. Díaz, “Judd-Ofelt modeling and stimulated emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal,” J. Lumin. 190, 37–44 (2017).
[Crossref]

2016 (3)

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, “Promising Materials for High Power Laser Isolators,” Laser Tech. J. 13(3), 18–21 (2016).
[Crossref]

P. W. Metz, D.-T. Marzahl, A. Majid, C. Kränkel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photon. Rev. 10(2), 335–344 (2016).
[Crossref]

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

2015 (1)

S. Schwung, D. Rytz, B. Heying, U. C. Rodewald, O. Niehaus, D. Enseling, T. Jüstel, and R. Pöttgen, “The crystal structure and luminescence quenching of poly-and singlecrystalline KYW2O8:Tb3+,” J. Lumin. 166, 289–294 (2015).
[Crossref]

2012 (1)

L. Jing, W. Jiyang, H. Shujuan, G. Yongjie, and W. Yongzheng, “Growth, structural, thermal properties and spectroscopic characteristics of KTb(WO4)2 single crystal,” J. Rare Earths 30(10), 967–971 (2012).
[Crossref]

2010 (1)

P. Boutinad, M. Bettinelli, and F. Diaz, “Intervalence charge transfer in Pr3+-and Tb3+-doped tungstate crystals KRE(WO4)2 (RE = Y, Gd, Yb, Lu),” Opt. Mater. 32(12), 1659–1663 (2010).
[Crossref]

2007 (1)

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

2006 (1)

X. Mateos, R. Sole, J. Gavalda, M. Aguilo, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterization of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

2004 (1)

A. S. Yasukevich, V. G. Shcherbitskii, V. E. Kisel, A. V. Mandrik, and N. V. Kuleshov, “Integral Method of Reciprocity in the Spectroscopy of Laser Crystals with Impurity Centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

2002 (1)

P. Klopp, U. Griebner, V. Petrov, X. Mateos, M. A. Bursukova, M. C. Pujol, R. Sole, J. Gavalda, M. Aguilo, F. Güell, J. Massons, T. Kirilov, and F. Diaz, “Laser operation of the new stoichiometric crystal KYb(WO4)2,” Appl. Phys. B 74(2), 185–189 (2002).
[Crossref]

2001 (1)

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

2000 (1)

P. Dorenbos, “The 5d level positions of the trivalent lanthanides in inorganic compounds,” J. Lumin. 91(3-4), 155–176 (2000).
[Crossref]

1996 (2)

A. A. Kornienko, E. B. Dunina, and V. L. Yankevich, “Theory of intensities of the intermultiplet electric-dipole transitions in the approximation of strong configuration interaction,” Opt. Spectrosc. 81, 871–874 (1996).

N. V. Kuleshov, A. S. Shinkevich, V. G. Shcherbitsky, V. P. Mikhailov, T. Danger, T. Sandrock, and G. Huber, “Luminescence and time-resolved excited state absorption measurements in Pr3+-doped La2Be2O5 and KGd(WO4)2 crystals,” Opt. Mater. 5(1-2), 111–118 (1996).
[Crossref]

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er/sup 3+/, Tm/sup 3+/, and Ho/sup 3+/,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

1976 (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A 32(5), 751–767 (1976).
[Crossref]

1953 (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Aguilo, M.

P. Loiko, A. Volokitina, X. Mateos, E. Dunina, A. Kornienko, E. Vilejshikova, M. Aguilo, and F. Díaz, “Spectroscopy of Tb3+ ions in monoclinic KLu(WO4)2 crystal application of an intermediate configuration interaction theory,” Opt. Mater. 78, 495–501 (2018).
[Crossref]

X. Mateos, R. Sole, J. Gavalda, M. Aguilo, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterization of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

P. Klopp, U. Griebner, V. Petrov, X. Mateos, M. A. Bursukova, M. C. Pujol, R. Sole, J. Gavalda, M. Aguilo, F. Güell, J. Massons, T. Kirilov, and F. Diaz, “Laser operation of the new stoichiometric crystal KYb(WO4)2,” Appl. Phys. B 74(2), 185–189 (2002).
[Crossref]

Aguiló, M.

P. Loiko, X. Mateos, E. Dunina, A. Kornienko, A. Volokitina, E. Vilejshikova, J. M. Serres, A. Baranov, K. Yumashev, M. Aguiló, and F. Díaz, “Judd-Ofelt modeling and stimulated emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal,” J. Lumin. 190, 37–44 (2017).
[Crossref]

Baranov, A.

P. Loiko, X. Mateos, E. Dunina, A. Kornienko, A. Volokitina, E. Vilejshikova, J. M. Serres, A. Baranov, K. Yumashev, M. Aguiló, and F. Díaz, “Judd-Ofelt modeling and stimulated emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal,” J. Lumin. 190, 37–44 (2017).
[Crossref]

Bettinelli, M.

P. Boutinad, M. Bettinelli, and F. Diaz, “Intervalence charge transfer in Pr3+-and Tb3+-doped tungstate crystals KRE(WO4)2 (RE = Y, Gd, Yb, Lu),” Opt. Mater. 32(12), 1659–1663 (2010).
[Crossref]

Borca, C. N.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

Boutinad, P.

P. Boutinad, M. Bettinelli, and F. Diaz, “Intervalence charge transfer in Pr3+-and Tb3+-doped tungstate crystals KRE(WO4)2 (RE = Y, Gd, Yb, Lu),” Opt. Mater. 32(12), 1659–1663 (2010).
[Crossref]

Bursukova, M. A.

P. Klopp, U. Griebner, V. Petrov, X. Mateos, M. A. Bursukova, M. C. Pujol, R. Sole, J. Gavalda, M. Aguilo, F. Güell, J. Massons, T. Kirilov, and F. Diaz, “Laser operation of the new stoichiometric crystal KYb(WO4)2,” Appl. Phys. B 74(2), 185–189 (2002).
[Crossref]

Butashin, A. V.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Carnall, W.T.

W.T. Carnall, H. Crosswhite, and H.M. Crosswhite, Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF3 – Annual Report, Argonne National Laboratory, 1975.

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er/sup 3+/, Tm/sup 3+/, and Ho/sup 3+/,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Crosswhite, H.

W.T. Carnall, H. Crosswhite, and H.M. Crosswhite, Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF3 – Annual Report, Argonne National Laboratory, 1975.

Crosswhite, H.M.

W.T. Carnall, H. Crosswhite, and H.M. Crosswhite, Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF3 – Annual Report, Argonne National Laboratory, 1975.

Danger, T.

N. V. Kuleshov, A. S. Shinkevich, V. G. Shcherbitsky, V. P. Mikhailov, T. Danger, T. Sandrock, and G. Huber, “Luminescence and time-resolved excited state absorption measurements in Pr3+-doped La2Be2O5 and KGd(WO4)2 crystals,” Opt. Mater. 5(1-2), 111–118 (1996).
[Crossref]

Dexter, D. L.

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

Diaz, F.

P. Boutinad, M. Bettinelli, and F. Diaz, “Intervalence charge transfer in Pr3+-and Tb3+-doped tungstate crystals KRE(WO4)2 (RE = Y, Gd, Yb, Lu),” Opt. Mater. 32(12), 1659–1663 (2010).
[Crossref]

P. Klopp, U. Griebner, V. Petrov, X. Mateos, M. A. Bursukova, M. C. Pujol, R. Sole, J. Gavalda, M. Aguilo, F. Güell, J. Massons, T. Kirilov, and F. Diaz, “Laser operation of the new stoichiometric crystal KYb(WO4)2,” Appl. Phys. B 74(2), 185–189 (2002).
[Crossref]

Díaz, F.

P. Loiko, A. Volokitina, X. Mateos, E. Dunina, A. Kornienko, E. Vilejshikova, M. Aguilo, and F. Díaz, “Spectroscopy of Tb3+ ions in monoclinic KLu(WO4)2 crystal application of an intermediate configuration interaction theory,” Opt. Mater. 78, 495–501 (2018).
[Crossref]

P. Loiko, X. Mateos, E. Dunina, A. Kornienko, A. Volokitina, E. Vilejshikova, J. M. Serres, A. Baranov, K. Yumashev, M. Aguiló, and F. Díaz, “Judd-Ofelt modeling and stimulated emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal,” J. Lumin. 190, 37–44 (2017).
[Crossref]

X. Mateos, R. Sole, J. Gavalda, M. Aguilo, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterization of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

Dorenbos, P.

P. Dorenbos, “The 5d level positions of the trivalent lanthanides in inorganic compounds,” J. Lumin. 91(3-4), 155–176 (2000).
[Crossref]

Dunina, E.

P. Loiko, A. Volokitina, X. Mateos, E. Dunina, A. Kornienko, E. Vilejshikova, M. Aguilo, and F. Díaz, “Spectroscopy of Tb3+ ions in monoclinic KLu(WO4)2 crystal application of an intermediate configuration interaction theory,” Opt. Mater. 78, 495–501 (2018).
[Crossref]

P. Loiko, X. Mateos, E. Dunina, A. Kornienko, A. Volokitina, E. Vilejshikova, J. M. Serres, A. Baranov, K. Yumashev, M. Aguiló, and F. Díaz, “Judd-Ofelt modeling and stimulated emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal,” J. Lumin. 190, 37–44 (2017).
[Crossref]

Dunina, E. B.

A. A. Kornienko, E. B. Dunina, and V. L. Yankevich, “Theory of intensities of the intermultiplet electric-dipole transitions in the approximation of strong configuration interaction,” Opt. Spectrosc. 81, 871–874 (1996).

Enseling, D.

S. Schwung, D. Rytz, B. Heying, U. C. Rodewald, O. Niehaus, D. Enseling, T. Jüstel, and R. Pöttgen, “The crystal structure and luminescence quenching of poly-and singlecrystalline KYW2O8:Tb3+,” J. Lumin. 166, 289–294 (2015).
[Crossref]

Foundos, G.

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, “Promising Materials for High Power Laser Isolators,” Laser Tech. J. 13(3), 18–21 (2016).
[Crossref]

Gardillou, F.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

Gavalda, J.

X. Mateos, R. Sole, J. Gavalda, M. Aguilo, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterization of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

P. Klopp, U. Griebner, V. Petrov, X. Mateos, M. A. Bursukova, M. C. Pujol, R. Sole, J. Gavalda, M. Aguilo, F. Güell, J. Massons, T. Kirilov, and F. Diaz, “Laser operation of the new stoichiometric crystal KYb(WO4)2,” Appl. Phys. B 74(2), 185–189 (2002).
[Crossref]

Griebner, U.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

P. Klopp, U. Griebner, V. Petrov, X. Mateos, M. A. Bursukova, M. C. Pujol, R. Sole, J. Gavalda, M. Aguilo, F. Güell, J. Massons, T. Kirilov, and F. Diaz, “Laser operation of the new stoichiometric crystal KYb(WO4)2,” Appl. Phys. B 74(2), 185–189 (2002).
[Crossref]

Güell, F.

P. Klopp, U. Griebner, V. Petrov, X. Mateos, M. A. Bursukova, M. C. Pujol, R. Sole, J. Gavalda, M. Aguilo, F. Güell, J. Massons, T. Kirilov, and F. Diaz, “Laser operation of the new stoichiometric crystal KYb(WO4)2,” Appl. Phys. B 74(2), 185–189 (2002).
[Crossref]

Heying, B.

S. Schwung, D. Rytz, B. Heying, U. C. Rodewald, O. Niehaus, D. Enseling, T. Jüstel, and R. Pöttgen, “The crystal structure and luminescence quenching of poly-and singlecrystalline KYW2O8:Tb3+,” J. Lumin. 166, 289–294 (2015).
[Crossref]

Huber, G.

P. W. Metz, D.-T. Marzahl, A. Majid, C. Kränkel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photon. Rev. 10(2), 335–344 (2016).
[Crossref]

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

N. V. Kuleshov, A. S. Shinkevich, V. G. Shcherbitsky, V. P. Mikhailov, T. Danger, T. Sandrock, and G. Huber, “Luminescence and time-resolved excited state absorption measurements in Pr3+-doped La2Be2O5 and KGd(WO4)2 crystals,” Opt. Mater. 5(1-2), 111–118 (1996).
[Crossref]

Jing, L.

L. Jing, W. Jiyang, H. Shujuan, G. Yongjie, and W. Yongzheng, “Growth, structural, thermal properties and spectroscopic characteristics of KTb(WO4)2 single crystal,” J. Rare Earths 30(10), 967–971 (2012).
[Crossref]

Jiyang, W.

L. Jing, W. Jiyang, H. Shujuan, G. Yongjie, and W. Yongzheng, “Growth, structural, thermal properties and spectroscopic characteristics of KTb(WO4)2 single crystal,” J. Rare Earths 30(10), 967–971 (2012).
[Crossref]

Jüstel, T.

S. Schwung, D. Rytz, B. Heying, U. C. Rodewald, O. Niehaus, D. Enseling, T. Jüstel, and R. Pöttgen, “The crystal structure and luminescence quenching of poly-and singlecrystalline KYW2O8:Tb3+,” J. Lumin. 166, 289–294 (2015).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Kharchenko, L. Yu.

A. A. Pavlyuk, Ya. V. Vasiliev, L. Yu. Kharchenko, and F. A. Kuznetsov, “Low thermal gradient technique and method for large oxide crystals growth from melt and flux, Proceedings of the Asia Pacific Society for Advanced Materials,” APSAM-92, Shanghai, China, 1993, p. 164–171.

Kirilov, T.

P. Klopp, U. Griebner, V. Petrov, X. Mateos, M. A. Bursukova, M. C. Pujol, R. Sole, J. Gavalda, M. Aguilo, F. Güell, J. Massons, T. Kirilov, and F. Diaz, “Laser operation of the new stoichiometric crystal KYb(WO4)2,” Appl. Phys. B 74(2), 185–189 (2002).
[Crossref]

Kisel, V. E.

A. S. Yasukevich, V. G. Shcherbitskii, V. E. Kisel, A. V. Mandrik, and N. V. Kuleshov, “Integral Method of Reciprocity in the Spectroscopy of Laser Crystals with Impurity Centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Klevtsova, R. F.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Klopp, P.

P. Klopp, U. Griebner, V. Petrov, X. Mateos, M. A. Bursukova, M. C. Pujol, R. Sole, J. Gavalda, M. Aguilo, F. Güell, J. Massons, T. Kirilov, and F. Diaz, “Laser operation of the new stoichiometric crystal KYb(WO4)2,” Appl. Phys. B 74(2), 185–189 (2002).
[Crossref]

Konstantinova, A. F.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Kornienko, A.

P. Loiko, A. Volokitina, X. Mateos, E. Dunina, A. Kornienko, E. Vilejshikova, M. Aguilo, and F. Díaz, “Spectroscopy of Tb3+ ions in monoclinic KLu(WO4)2 crystal application of an intermediate configuration interaction theory,” Opt. Mater. 78, 495–501 (2018).
[Crossref]

P. Loiko, X. Mateos, E. Dunina, A. Kornienko, A. Volokitina, E. Vilejshikova, J. M. Serres, A. Baranov, K. Yumashev, M. Aguiló, and F. Díaz, “Judd-Ofelt modeling and stimulated emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal,” J. Lumin. 190, 37–44 (2017).
[Crossref]

Kornienko, A. A.

A. A. Kornienko, E. B. Dunina, and V. L. Yankevich, “Theory of intensities of the intermultiplet electric-dipole transitions in the approximation of strong configuration interaction,” Opt. Spectrosc. 81, 871–874 (1996).

Kränkel, C.

P. W. Metz, D.-T. Marzahl, A. Majid, C. Kränkel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photon. Rev. 10(2), 335–344 (2016).
[Crossref]

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er/sup 3+/, Tm/sup 3+/, and Ho/sup 3+/,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Kuleshov, N. V.

A. S. Yasukevich, V. G. Shcherbitskii, V. E. Kisel, A. V. Mandrik, and N. V. Kuleshov, “Integral Method of Reciprocity in the Spectroscopy of Laser Crystals with Impurity Centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

N. V. Kuleshov, A. S. Shinkevich, V. G. Shcherbitsky, V. P. Mikhailov, T. Danger, T. Sandrock, and G. Huber, “Luminescence and time-resolved excited state absorption measurements in Pr3+-doped La2Be2O5 and KGd(WO4)2 crystals,” Opt. Mater. 5(1-2), 111–118 (1996).
[Crossref]

Kuznetsov, F. A.

A. A. Pavlyuk, Ya. V. Vasiliev, L. Yu. Kharchenko, and F. A. Kuznetsov, “Low thermal gradient technique and method for large oxide crystals growth from melt and flux, Proceedings of the Asia Pacific Society for Advanced Materials,” APSAM-92, Shanghai, China, 1993, p. 164–171.

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er/sup 3+/, Tm/sup 3+/, and Ho/sup 3+/,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Loiko, P.

P. Loiko, A. Volokitina, X. Mateos, E. Dunina, A. Kornienko, E. Vilejshikova, M. Aguilo, and F. Díaz, “Spectroscopy of Tb3+ ions in monoclinic KLu(WO4)2 crystal application of an intermediate configuration interaction theory,” Opt. Mater. 78, 495–501 (2018).
[Crossref]

P. Loiko, X. Mateos, E. Dunina, A. Kornienko, A. Volokitina, E. Vilejshikova, J. M. Serres, A. Baranov, K. Yumashev, M. Aguiló, and F. Díaz, “Judd-Ofelt modeling and stimulated emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal,” J. Lumin. 190, 37–44 (2017).
[Crossref]

Majid, A.

P. W. Metz, D.-T. Marzahl, A. Majid, C. Kränkel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photon. Rev. 10(2), 335–344 (2016).
[Crossref]

Mandrik, A. V.

A. S. Yasukevich, V. G. Shcherbitskii, V. E. Kisel, A. V. Mandrik, and N. V. Kuleshov, “Integral Method of Reciprocity in the Spectroscopy of Laser Crystals with Impurity Centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Marzahl, D.-T.

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

P. W. Metz, D.-T. Marzahl, A. Majid, C. Kränkel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photon. Rev. 10(2), 335–344 (2016).
[Crossref]

Massons, J.

X. Mateos, R. Sole, J. Gavalda, M. Aguilo, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterization of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

P. Klopp, U. Griebner, V. Petrov, X. Mateos, M. A. Bursukova, M. C. Pujol, R. Sole, J. Gavalda, M. Aguilo, F. Güell, J. Massons, T. Kirilov, and F. Diaz, “Laser operation of the new stoichiometric crystal KYb(WO4)2,” Appl. Phys. B 74(2), 185–189 (2002).
[Crossref]

Mateos, X.

P. Loiko, A. Volokitina, X. Mateos, E. Dunina, A. Kornienko, E. Vilejshikova, M. Aguilo, and F. Díaz, “Spectroscopy of Tb3+ ions in monoclinic KLu(WO4)2 crystal application of an intermediate configuration interaction theory,” Opt. Mater. 78, 495–501 (2018).
[Crossref]

P. Loiko, X. Mateos, E. Dunina, A. Kornienko, A. Volokitina, E. Vilejshikova, J. M. Serres, A. Baranov, K. Yumashev, M. Aguiló, and F. Díaz, “Judd-Ofelt modeling and stimulated emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal,” J. Lumin. 190, 37–44 (2017).
[Crossref]

X. Mateos, R. Sole, J. Gavalda, M. Aguilo, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterization of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

P. Klopp, U. Griebner, V. Petrov, X. Mateos, M. A. Bursukova, M. C. Pujol, R. Sole, J. Gavalda, M. Aguilo, F. Güell, J. Massons, T. Kirilov, and F. Diaz, “Laser operation of the new stoichiometric crystal KYb(WO4)2,” Appl. Phys. B 74(2), 185–189 (2002).
[Crossref]

Metz, P. W.

P. W. Metz, D.-T. Marzahl, A. Majid, C. Kränkel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photon. Rev. 10(2), 335–344 (2016).
[Crossref]

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

Mikhailov, V. P.

N. V. Kuleshov, A. S. Shinkevich, V. G. Shcherbitsky, V. P. Mikhailov, T. Danger, T. Sandrock, and G. Huber, “Luminescence and time-resolved excited state absorption measurements in Pr3+-doped La2Be2O5 and KGd(WO4)2 crystals,” Opt. Mater. 5(1-2), 111–118 (1996).
[Crossref]

Moglia, F.

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

Nazarov, M.

M. Nazarov and D. Y. Noh, New Generation of Terbium- and Europium-Activated Phosphors: From Syntheses to Applications (Pan Stanford Publishing, 2011).

Niehaus, O.

S. Schwung, D. Rytz, B. Heying, U. C. Rodewald, O. Niehaus, D. Enseling, T. Jüstel, and R. Pöttgen, “The crystal structure and luminescence quenching of poly-and singlecrystalline KYW2O8:Tb3+,” J. Lumin. 166, 289–294 (2015).
[Crossref]

Noh, D. Y.

M. Nazarov and D. Y. Noh, New Generation of Terbium- and Europium-Activated Phosphors: From Syntheses to Applications (Pan Stanford Publishing, 2011).

Orekhova, V. P.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

Pavlyuk, A. A.

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

A. A. Pavlyuk, Ya. V. Vasiliev, L. Yu. Kharchenko, and F. A. Kuznetsov, “Low thermal gradient technique and method for large oxide crystals growth from melt and flux, Proceedings of the Asia Pacific Society for Advanced Materials,” APSAM-92, Shanghai, China, 1993, p. 164–171.

Payne, A.

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, “Promising Materials for High Power Laser Isolators,” Laser Tech. J. 13(3), 18–21 (2016).
[Crossref]

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er/sup 3+/, Tm/sup 3+/, and Ho/sup 3+/,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Petrov, V.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

P. Klopp, U. Griebner, V. Petrov, X. Mateos, M. A. Bursukova, M. C. Pujol, R. Sole, J. Gavalda, M. Aguilo, F. Güell, J. Massons, T. Kirilov, and F. Diaz, “Laser operation of the new stoichiometric crystal KYb(WO4)2,” Appl. Phys. B 74(2), 185–189 (2002).
[Crossref]

Pollnau, M.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

Pöttgen, R.

S. Schwung, D. Rytz, B. Heying, U. C. Rodewald, O. Niehaus, D. Enseling, T. Jüstel, and R. Pöttgen, “The crystal structure and luminescence quenching of poly-and singlecrystalline KYW2O8:Tb3+,” J. Lumin. 166, 289–294 (2015).
[Crossref]

Pujol, M. C.

P. Klopp, U. Griebner, V. Petrov, X. Mateos, M. A. Bursukova, M. C. Pujol, R. Sole, J. Gavalda, M. Aguilo, F. Güell, J. Massons, T. Kirilov, and F. Diaz, “Laser operation of the new stoichiometric crystal KYb(WO4)2,” Appl. Phys. B 74(2), 185–189 (2002).
[Crossref]

Rivier, S.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

Rodewald, U. C.

S. Schwung, D. Rytz, B. Heying, U. C. Rodewald, O. Niehaus, D. Enseling, T. Jüstel, and R. Pöttgen, “The crystal structure and luminescence quenching of poly-and singlecrystalline KYW2O8:Tb3+,” J. Lumin. 166, 289–294 (2015).
[Crossref]

Rogers, E.

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, “Promising Materials for High Power Laser Isolators,” Laser Tech. J. 13(3), 18–21 (2016).
[Crossref]

Romanyuk, Y. E.

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

Rytz, D.

S. Schwung, D. Rytz, B. Heying, U. C. Rodewald, O. Niehaus, D. Enseling, T. Jüstel, and R. Pöttgen, “The crystal structure and luminescence quenching of poly-and singlecrystalline KYW2O8:Tb3+,” J. Lumin. 166, 289–294 (2015).
[Crossref]

Sandrock, T.

N. V. Kuleshov, A. S. Shinkevich, V. G. Shcherbitsky, V. P. Mikhailov, T. Danger, T. Sandrock, and G. Huber, “Luminescence and time-resolved excited state absorption measurements in Pr3+-doped La2Be2O5 and KGd(WO4)2 crystals,” Opt. Mater. 5(1-2), 111–118 (1996).
[Crossref]

Schlichting, W.

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, “Promising Materials for High Power Laser Isolators,” Laser Tech. J. 13(3), 18–21 (2016).
[Crossref]

Schwung, S.

S. Schwung, D. Rytz, B. Heying, U. C. Rodewald, O. Niehaus, D. Enseling, T. Jüstel, and R. Pöttgen, “The crystal structure and luminescence quenching of poly-and singlecrystalline KYW2O8:Tb3+,” J. Lumin. 166, 289–294 (2015).
[Crossref]

Serres, J. M.

P. Loiko, X. Mateos, E. Dunina, A. Kornienko, A. Volokitina, E. Vilejshikova, J. M. Serres, A. Baranov, K. Yumashev, M. Aguiló, and F. Díaz, “Judd-Ofelt modeling and stimulated emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal,” J. Lumin. 190, 37–44 (2017).
[Crossref]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A 32(5), 751–767 (1976).
[Crossref]

Shcherbitskii, V. G.

A. S. Yasukevich, V. G. Shcherbitskii, V. E. Kisel, A. V. Mandrik, and N. V. Kuleshov, “Integral Method of Reciprocity in the Spectroscopy of Laser Crystals with Impurity Centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Shcherbitsky, V. G.

N. V. Kuleshov, A. S. Shinkevich, V. G. Shcherbitsky, V. P. Mikhailov, T. Danger, T. Sandrock, and G. Huber, “Luminescence and time-resolved excited state absorption measurements in Pr3+-doped La2Be2O5 and KGd(WO4)2 crystals,” Opt. Mater. 5(1-2), 111–118 (1996).
[Crossref]

Shinkevich, A. S.

N. V. Kuleshov, A. S. Shinkevich, V. G. Shcherbitsky, V. P. Mikhailov, T. Danger, T. Sandrock, and G. Huber, “Luminescence and time-resolved excited state absorption measurements in Pr3+-doped La2Be2O5 and KGd(WO4)2 crystals,” Opt. Mater. 5(1-2), 111–118 (1996).
[Crossref]

Shujuan, H.

L. Jing, W. Jiyang, H. Shujuan, G. Yongjie, and W. Yongzheng, “Growth, structural, thermal properties and spectroscopic characteristics of KTb(WO4)2 single crystal,” J. Rare Earths 30(10), 967–971 (2012).
[Crossref]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er/sup 3+/, Tm/sup 3+/, and Ho/sup 3+/,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Sole, R.

X. Mateos, R. Sole, J. Gavalda, M. Aguilo, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterization of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

P. Klopp, U. Griebner, V. Petrov, X. Mateos, M. A. Bursukova, M. C. Pujol, R. Sole, J. Gavalda, M. Aguilo, F. Güell, J. Massons, T. Kirilov, and F. Diaz, “Laser operation of the new stoichiometric crystal KYb(WO4)2,” Appl. Phys. B 74(2), 185–189 (2002).
[Crossref]

Stevens, K. T.

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, “Promising Materials for High Power Laser Isolators,” Laser Tech. J. 13(3), 18–21 (2016).
[Crossref]

Vasiliev, Ya. V.

A. A. Pavlyuk, Ya. V. Vasiliev, L. Yu. Kharchenko, and F. A. Kuznetsov, “Low thermal gradient technique and method for large oxide crystals growth from melt and flux, Proceedings of the Asia Pacific Society for Advanced Materials,” APSAM-92, Shanghai, China, 1993, p. 164–171.

Vilejshikova, E.

P. Loiko, A. Volokitina, X. Mateos, E. Dunina, A. Kornienko, E. Vilejshikova, M. Aguilo, and F. Díaz, “Spectroscopy of Tb3+ ions in monoclinic KLu(WO4)2 crystal application of an intermediate configuration interaction theory,” Opt. Mater. 78, 495–501 (2018).
[Crossref]

P. Loiko, X. Mateos, E. Dunina, A. Kornienko, A. Volokitina, E. Vilejshikova, J. M. Serres, A. Baranov, K. Yumashev, M. Aguiló, and F. Díaz, “Judd-Ofelt modeling and stimulated emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal,” J. Lumin. 190, 37–44 (2017).
[Crossref]

Volokitina, A.

P. Loiko, A. Volokitina, X. Mateos, E. Dunina, A. Kornienko, E. Vilejshikova, M. Aguilo, and F. Díaz, “Spectroscopy of Tb3+ ions in monoclinic KLu(WO4)2 crystal application of an intermediate configuration interaction theory,” Opt. Mater. 78, 495–501 (2018).
[Crossref]

P. Loiko, X. Mateos, E. Dunina, A. Kornienko, A. Volokitina, E. Vilejshikova, J. M. Serres, A. Baranov, K. Yumashev, M. Aguiló, and F. Díaz, “Judd-Ofelt modeling and stimulated emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal,” J. Lumin. 190, 37–44 (2017).
[Crossref]

Yankevich, V. L.

A. A. Kornienko, E. B. Dunina, and V. L. Yankevich, “Theory of intensities of the intermultiplet electric-dipole transitions in the approximation of strong configuration interaction,” Opt. Spectrosc. 81, 871–874 (1996).

Yasukevich, A. S.

A. S. Yasukevich, V. G. Shcherbitskii, V. E. Kisel, A. V. Mandrik, and N. V. Kuleshov, “Integral Method of Reciprocity in the Spectroscopy of Laser Crystals with Impurity Centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Yongjie, G.

L. Jing, W. Jiyang, H. Shujuan, G. Yongjie, and W. Yongzheng, “Growth, structural, thermal properties and spectroscopic characteristics of KTb(WO4)2 single crystal,” J. Rare Earths 30(10), 967–971 (2012).
[Crossref]

Yongzheng, W.

L. Jing, W. Jiyang, H. Shujuan, G. Yongjie, and W. Yongzheng, “Growth, structural, thermal properties and spectroscopic characteristics of KTb(WO4)2 single crystal,” J. Rare Earths 30(10), 967–971 (2012).
[Crossref]

Yumashev, K.

P. Loiko, X. Mateos, E. Dunina, A. Kornienko, A. Volokitina, E. Vilejshikova, J. M. Serres, A. Baranov, K. Yumashev, M. Aguiló, and F. Díaz, “Judd-Ofelt modeling and stimulated emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal,” J. Lumin. 190, 37–44 (2017).
[Crossref]

Acta Crystallogr. Sect. A (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. Sect. A 32(5), 751–767 (1976).
[Crossref]

Appl. Phys. B (1)

P. Klopp, U. Griebner, V. Petrov, X. Mateos, M. A. Bursukova, M. C. Pujol, R. Sole, J. Gavalda, M. Aguilo, F. Güell, J. Massons, T. Kirilov, and F. Diaz, “Laser operation of the new stoichiometric crystal KYb(WO4)2,” Appl. Phys. B 74(2), 185–189 (2002).
[Crossref]

Crystallogr. Rep. (1)

A. A. Kaminskii, A. F. Konstantinova, V. P. Orekhova, A. V. Butashin, R. F. Klevtsova, and A. A. Pavlyuk, “Optical and nonlinear laser properties of the χ(3)-active monoclinic α-KY(WO4)2 crystals,” Crystallogr. Rep. 46(4), 665–672 (2001).
[Crossref]

IEEE J. Quantum Electron. (1)

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er/sup 3+/, Tm/sup 3+/, and Ho/sup 3+/,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Pollnau, Y. E. Romanyuk, F. Gardillou, C. N. Borca, U. Griebner, S. Rivier, and V. Petrov, “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Sel. Top. Quantum Electron. 13(3), 661–671 (2007).
[Crossref]

J. Appl. Spectrosc. (1)

A. S. Yasukevich, V. G. Shcherbitskii, V. E. Kisel, A. V. Mandrik, and N. V. Kuleshov, “Integral Method of Reciprocity in the Spectroscopy of Laser Crystals with Impurity Centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

J. Chem. Phys. (1)

D. L. Dexter, “A Theory of Sensitized Luminescence in Solids,” J. Chem. Phys. 21(5), 836–850 (1953).
[Crossref]

J. Lumin. (3)

S. Schwung, D. Rytz, B. Heying, U. C. Rodewald, O. Niehaus, D. Enseling, T. Jüstel, and R. Pöttgen, “The crystal structure and luminescence quenching of poly-and singlecrystalline KYW2O8:Tb3+,” J. Lumin. 166, 289–294 (2015).
[Crossref]

P. Loiko, X. Mateos, E. Dunina, A. Kornienko, A. Volokitina, E. Vilejshikova, J. M. Serres, A. Baranov, K. Yumashev, M. Aguiló, and F. Díaz, “Judd-Ofelt modeling and stimulated emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal,” J. Lumin. 190, 37–44 (2017).
[Crossref]

P. Dorenbos, “The 5d level positions of the trivalent lanthanides in inorganic compounds,” J. Lumin. 91(3-4), 155–176 (2000).
[Crossref]

J. Rare Earths (1)

L. Jing, W. Jiyang, H. Shujuan, G. Yongjie, and W. Yongzheng, “Growth, structural, thermal properties and spectroscopic characteristics of KTb(WO4)2 single crystal,” J. Rare Earths 30(10), 967–971 (2012).
[Crossref]

Laser Photon. Rev. (1)

P. W. Metz, D.-T. Marzahl, A. Majid, C. Kränkel, and G. Huber, “Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions,” Laser Photon. Rev. 10(2), 335–344 (2016).
[Crossref]

Laser Photonics Rev. (1)

C. Kränkel, D.-T. Marzahl, F. Moglia, G. Huber, and P. W. Metz, “Out of blue: semiconductor laser pumped visible rare-earth doped lasers,” Laser Photonics Rev. 10(4), 548–568 (2016).
[Crossref]

Laser Tech. J. (1)

K. T. Stevens, W. Schlichting, G. Foundos, A. Payne, and E. Rogers, “Promising Materials for High Power Laser Isolators,” Laser Tech. J. 13(3), 18–21 (2016).
[Crossref]

Opt. Mater. (4)

P. Loiko, A. Volokitina, X. Mateos, E. Dunina, A. Kornienko, E. Vilejshikova, M. Aguilo, and F. Díaz, “Spectroscopy of Tb3+ ions in monoclinic KLu(WO4)2 crystal application of an intermediate configuration interaction theory,” Opt. Mater. 78, 495–501 (2018).
[Crossref]

X. Mateos, R. Sole, J. Gavalda, M. Aguilo, J. Massons, and F. Díaz, “Crystal growth, optical and spectroscopic characterization of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+,” Opt. Mater. 28(4), 423–431 (2006).
[Crossref]

P. Boutinad, M. Bettinelli, and F. Diaz, “Intervalence charge transfer in Pr3+-and Tb3+-doped tungstate crystals KRE(WO4)2 (RE = Y, Gd, Yb, Lu),” Opt. Mater. 32(12), 1659–1663 (2010).
[Crossref]

N. V. Kuleshov, A. S. Shinkevich, V. G. Shcherbitsky, V. P. Mikhailov, T. Danger, T. Sandrock, and G. Huber, “Luminescence and time-resolved excited state absorption measurements in Pr3+-doped La2Be2O5 and KGd(WO4)2 crystals,” Opt. Mater. 5(1-2), 111–118 (1996).
[Crossref]

Opt. Spectrosc. (1)

A. A. Kornienko, E. B. Dunina, and V. L. Yankevich, “Theory of intensities of the intermultiplet electric-dipole transitions in the approximation of strong configuration interaction,” Opt. Spectrosc. 81, 871–874 (1996).

Other (3)

A. A. Pavlyuk, Ya. V. Vasiliev, L. Yu. Kharchenko, and F. A. Kuznetsov, “Low thermal gradient technique and method for large oxide crystals growth from melt and flux, Proceedings of the Asia Pacific Society for Advanced Materials,” APSAM-92, Shanghai, China, 1993, p. 164–171.

M. Nazarov and D. Y. Noh, New Generation of Terbium- and Europium-Activated Phosphors: From Syntheses to Applications (Pan Stanford Publishing, 2011).

W.T. Carnall, H. Crosswhite, and H.M. Crosswhite, Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF3 – Annual Report, Argonne National Laboratory, 1975.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Tb3+(53 at.%):KYW crystal boule (a); crystallographic and optical indicatrix axes (I2/c setting) (b).
Fig. 2.
Fig. 2. Absorption spectra of Tb:KYW.
Fig. 3.
Fig. 3. Energy level scheme of the Tb3+ ion. Dashed vertical lines represent possible ESA transitions, dashed area – the energetic position of the IVCT band of KYW host, black and purple lines – levels of 4f8 and 4f75d1 configurations, respectively.
Fig. 4.
Fig. 4. Polarized averaged fluorescence spectra of Tb:KYW.
Fig. 5.
Fig. 5. Fluorescence decay curve of the 5D4 level of Tb:KYW. The solid line represents a single-exponential fit curve.
Fig. 6.
Fig. 6. Stimulated emission cross sections of Tb:KYW.

Tables (2)

Tables Icon

Table 1. Experimental (fed, exp) and calculated (fed, SCI) oscillator strength

Tables Icon

Table 2. Measured (βJ′J) and calculated (βcalc) branching ratios for the 5D4 level in Tb:KYW crystal

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S E D , c a l c ( J J ) = 1 4 k = 2 , 4 , 6 Ω k | 4 f n [ S L ] J | | U ( k ) | | 4 f n [ S L ] J | 2 ( Δ Δ E J + Δ Δ E J ) 2 .
f exp ( J J ) = m e c 2 π e 2 N 0 λ ¯ 2 α J J N p ( λ ) + α J J N m ( λ ) + α J J N g ( λ ) 3 d λ
β J J = λ I J J ( λ ) d λ J λ I J J ( λ ) d λ
σ S E α ( λ ) = β S C I λ 5 8 π c n 2 τ r a d 3 I α ( λ ) [ I N p ( λ ) + I N m ( λ ) + I N g ( λ ) ] λ d λ
σ S E α ( λ ) = 3 exp ( h c / k T λ ) 8 π c n 2 τ r a d i λ 4 σ a b s i ( λ ) exp ( h c / k T λ ) d λ σ G S A α ( λ )

Metrics