Abstract

Snapshot imaging polarimeters are used in many different areas. Recently, division of focal plane (DoFP) polarimeters have proved useful as snapshot polarimeters for dynamic applications. For an optimal performance of polarimeters, different works dealing with the error analysis of such devices are proposed in literature. In terms of noise amplification from intensity measurements to the final polarization calculations, well-established quality metrics, as in the condition number or the equally weighted variance criteria, are used. Other studies analyze systematic errors due to deviations in the construction parameters. However, something not considered so far is the effect produced by misalignment between the various pixelated masks over the pixelated structure of the camera sensor, always occurring in experimental implementations of DoFPs. In this work, we study the effect of such misalignments in DoFP polarimeters and demonstrate how they lead to polarimetric systems composed of partially depolarized analyzers. We calculate the combined degree of polarization related to different amounts of misalignment and analyze the corresponding system performance. From this study, we show how an imaging polarimeter based on partially polarized analyzers can still lead to a robust and accurate polarimetric performance, and we also provide the misalignment limits in which an acceptable performance is obtained. We evaluate both the monochromatic and the polychromatic cases with special focus on the latter.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Error analysis of single-snapshot full-Stokes division-of-aperture imaging polarimeters

Tingkui Mu, Chunmin Zhang, Qiwei Li, and Rongguang Liang
Opt. Express 23(8) 10822-10835 (2015)

Optimization, tolerance analysis and implementation of a Stokes polarimeter based on the conical refraction phenomenon

Alba Peinado, Angel Lizana, Alejandro Turpín, Claudio Iemmi, Todor K. Kalkandjiev, Jordi Mompart, and Juan Campos
Opt. Express 23(5) 5636-5652 (2015)

Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters

Robert Perkins and Viktor Gruev
Opt. Express 18(25) 25815-25824 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5(5), 1423–1426 (2008).
    [Crossref]
  2. K. M. Twietmeyer, R. A. Chipman, A. E. Elsner, Y. Zhao, and D. VanNasdale, “Mueller matrix retinal imager with optimized polarization conditions,” Opt. Express 16(26), 21339 (2008).
    [Crossref]
  3. A. Van Eeckhout, A. Lizana, E. Garcia-Caurel, J.J. Gil, A. Sansa, C. Rodríguez, I. Estévez, E. González, J.C. Escalera, I. Moreno, and J Campos, “Polarimetric imaging of biological tissues based on the indices of polarimetric purity,” J. Biophotonics 11(4), e201700189 (2018).
    [Crossref]
  4. L. J. November and L. M. Wilkins, “Liquid Crystal Polarimeter for solid state imaging of solar vector magnetic fields,” in D. H. Goldstein and D. B. Chenault, eds. (International Society for Optics and Photonics, 1994), Vol. 2265, p. 210.
  5. J. Hough, “Polarimetry: a powerful diagnostic tool in astronomy,” Astron. Geophys. 47(3), 3.31–3.35 (2006).
    [Crossref]
  6. A. Márquez, I. Moreno, C. Iemmi, A. Lizana, J. Campos, and M. J. Yzuel, “Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization,” Opt. Express 16(3), 1669 (2008).
    [Crossref]
  7. S. Firdous and M. Ikram, “Stokes Polarimetry for the Characterization of Bio-Materials using Liquid Crystal Variable Retarders,” in Therapeutic Laser Applications and Laser-Tissue Interactions III (OSA, 2007), p. 6632_14.
  8. E. Garcia-Caurel, R. Ossikovski, M. Foldyna, A. Pierangelo, B. Drévillon, and A. De Martino, “Advanced Mueller Ellipsometry Instrumentation and Data Analysis” in M. Losurdo and K. Hingerls, eds., (Springer-Verlag, 2013).
  9. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref]
  10. W.-L. Hsu, G. Myhre, K. Balakrishnan, N. Brock, M. Ibn-Elhaj, and S. Pau, “Full-Stokes imaging polarimeter using an array of elliptical polarizer,” Opt. Express 22(3), 3063 (2014).
    [Crossref]
  11. C. S. L. Chun, D. L. Fleming, and E. J. Torok, “Polarization-sensitive thermal imaging,” Proc. SPIE 2234, 275–286 (1994).
    [Crossref]
  12. J. Guo and D. Brady, “Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry,” Appl. Opt. 39(10), 1486 (2000).
    [Crossref]
  13. V. Gruev, J. Van der Spiegel, and N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18(18), 19292 (2010).
    [Crossref]
  14. H. Kikuta, H. Haccho, K. Iwata, T. Hamamoto, H. Toyota, and T. Yotsuya, “Real-time polarimeter with a form-birefringent micro retarder array,” in K. Iwata, ed. (International Society for Optics and Photonics, 2001), Vol. 4416, p. 19.
  15. X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18(17), 17776 (2010).
    [Crossref]
  16. G. Myhre, W.-L. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, and S. Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20(25), 27393–27409 (2012).
    [Crossref]
  17. N. Gu, B. Yao, L. Huang, and C. Rao, “Design and Analysis of a Novel Compact and Simultaneous Polarimeter for Complete Stokes Polarization Imaging with a Piece of Encoded Birefringent Crystal and a Micropolarizer Array,” IEEE Photonics J. 10(2), 1–12 (2018).
    [Crossref]
  18. A. Peinado, A. Lizana, J. Vidal, C. Iemmi, and J. Campos, “Optimization and performance criteria of a Stokes polarimeter based on two variable retarders,” Opt. Express 18(10), 9815–9830 (2010).
    [Crossref]
  19. D. S. Sabatke, M. R. Descour, E. L. Dereniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipps, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25(11), 802 (2000).
    [Crossref]
  20. A. S. Alenin, I. J. Vaughn, and J. S. Tyo, “Optimal bandwidth and systematic error of full-Stokes micropolarizer arrays,” Appl. Opt. 57(9), 2327 (2018).
    [Crossref]
  21. F. Goudail and J. S. Tyo, “When is polarimetric imaging preferable to intensity imaging for target detection?” J. Opt. Soc. Am. A 28(1), 46–53 (2011).
    [Crossref]
  22. J. J. Gil and R. Ossikovski, “Polarized Light and the Mueller Matrix Approach,” (CRC Press, 2016).
  23. J. Scott Tyo, “Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error,” Appl. Opt. 41(4), 619–630 (2002).
    [Crossref]
  24. M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
    [Crossref]
  25. C. F. LaCasse, T. Ririe, R. A. Chipman, and J. S. Tyo, “Spatio-temporal modulated polarimetry,” Proc. SPIE 8160, 81600K (2011).
    [Crossref]
  26. D. A. LeMaster and K. Hirakawa, “Improved microgrid arrangement for integrated imaging polarimeters,” Opt. Lett. 39(7), 1811–1814 (2014).
    [Crossref]
  27. A. S. Alenin, I. J. Vaughn, and J. S. Tyo, “Optimal bandwidth micropolarizer arrays,” Opt. Lett. 42(3), 458–461 (2017).
    [Crossref]

2018 (3)

A. Van Eeckhout, A. Lizana, E. Garcia-Caurel, J.J. Gil, A. Sansa, C. Rodríguez, I. Estévez, E. González, J.C. Escalera, I. Moreno, and J Campos, “Polarimetric imaging of biological tissues based on the indices of polarimetric purity,” J. Biophotonics 11(4), e201700189 (2018).
[Crossref]

N. Gu, B. Yao, L. Huang, and C. Rao, “Design and Analysis of a Novel Compact and Simultaneous Polarimeter for Complete Stokes Polarization Imaging with a Piece of Encoded Birefringent Crystal and a Micropolarizer Array,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

A. S. Alenin, I. J. Vaughn, and J. S. Tyo, “Optimal bandwidth and systematic error of full-Stokes micropolarizer arrays,” Appl. Opt. 57(9), 2327 (2018).
[Crossref]

2017 (1)

2014 (2)

2012 (1)

2011 (2)

F. Goudail and J. S. Tyo, “When is polarimetric imaging preferable to intensity imaging for target detection?” J. Opt. Soc. Am. A 28(1), 46–53 (2011).
[Crossref]

C. F. LaCasse, T. Ririe, R. A. Chipman, and J. S. Tyo, “Spatio-temporal modulated polarimetry,” Proc. SPIE 8160, 81600K (2011).
[Crossref]

2010 (3)

2009 (1)

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
[Crossref]

2008 (3)

2006 (2)

2002 (1)

2000 (2)

1994 (1)

C. S. L. Chun, D. L. Fleming, and E. J. Torok, “Polarization-sensitive thermal imaging,” Proc. SPIE 2234, 275–286 (1994).
[Crossref]

Alenin, A. S.

Anastasiadou, M.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5(5), 1423–1426 (2008).
[Crossref]

Balakrishnan, K.

Bergmair, M.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
[Crossref]

Bermak, A.

Boussaid, F.

Brady, D.

Brock, N.

Bruno, G.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
[Crossref]

Campos, J

A. Van Eeckhout, A. Lizana, E. Garcia-Caurel, J.J. Gil, A. Sansa, C. Rodríguez, I. Estévez, E. González, J.C. Escalera, I. Moreno, and J Campos, “Polarimetric imaging of biological tissues based on the indices of polarimetric purity,” J. Biophotonics 11(4), e201700189 (2018).
[Crossref]

Campos, J.

Cattelan, D.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
[Crossref]

Chenault, D. B.

Chigrinov, V. G.

Chipman, R. A.

Chun, C. S. L.

C. S. L. Chun, D. L. Fleming, and E. J. Torok, “Polarization-sensitive thermal imaging,” Proc. SPIE 2234, 275–286 (1994).
[Crossref]

Clement, D.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5(5), 1423–1426 (2008).
[Crossref]

Cobet, C.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
[Crossref]

Cohen, H.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5(5), 1423–1426 (2008).
[Crossref]

de Martino, A.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
[Crossref]

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5(5), 1423–1426 (2008).
[Crossref]

E. Garcia-Caurel, R. Ossikovski, M. Foldyna, A. Pierangelo, B. Drévillon, and A. De Martino, “Advanced Mueller Ellipsometry Instrumentation and Data Analysis” in M. Losurdo and K. Hingerls, eds., (Springer-Verlag, 2013).

Dereniak, E. L.

Descour, M. R.

Dohcevic-Mitrovic, Z.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
[Crossref]

Drévillon, B.

E. Garcia-Caurel, R. Ossikovski, M. Foldyna, A. Pierangelo, B. Drévillon, and A. De Martino, “Advanced Mueller Ellipsometry Instrumentation and Data Analysis” in M. Losurdo and K. Hingerls, eds., (Springer-Verlag, 2013).

Dreyfuss, J.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5(5), 1423–1426 (2008).
[Crossref]

Elsner, A. E.

Engheta, N.

Escalera, J.C.

A. Van Eeckhout, A. Lizana, E. Garcia-Caurel, J.J. Gil, A. Sansa, C. Rodríguez, I. Estévez, E. González, J.C. Escalera, I. Moreno, and J Campos, “Polarimetric imaging of biological tissues based on the indices of polarimetric purity,” J. Biophotonics 11(4), e201700189 (2018).
[Crossref]

Esser, N.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
[Crossref]

Estévez, I.

A. Van Eeckhout, A. Lizana, E. Garcia-Caurel, J.J. Gil, A. Sansa, C. Rodríguez, I. Estévez, E. González, J.C. Escalera, I. Moreno, and J Campos, “Polarimetric imaging of biological tissues based on the indices of polarimetric purity,” J. Biophotonics 11(4), e201700189 (2018).
[Crossref]

Firdous, S.

S. Firdous and M. Ikram, “Stokes Polarimetry for the Characterization of Bio-Materials using Liquid Crystal Variable Retarders,” in Therapeutic Laser Applications and Laser-Tissue Interactions III (OSA, 2007), p. 6632_14.

Fleischer, K.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
[Crossref]

Fleming, D. L.

C. S. L. Chun, D. L. Fleming, and E. J. Torok, “Polarization-sensitive thermal imaging,” Proc. SPIE 2234, 275–286 (1994).
[Crossref]

Foldyna, M.

E. Garcia-Caurel, R. Ossikovski, M. Foldyna, A. Pierangelo, B. Drévillon, and A. De Martino, “Advanced Mueller Ellipsometry Instrumentation and Data Analysis” in M. Losurdo and K. Hingerls, eds., (Springer-Verlag, 2013).

Gajic, R.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
[Crossref]

Galliet, M.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
[Crossref]

Garcia-Caurel, E.

A. Van Eeckhout, A. Lizana, E. Garcia-Caurel, J.J. Gil, A. Sansa, C. Rodríguez, I. Estévez, E. González, J.C. Escalera, I. Moreno, and J Campos, “Polarimetric imaging of biological tissues based on the indices of polarimetric purity,” J. Biophotonics 11(4), e201700189 (2018).
[Crossref]

E. Garcia-Caurel, R. Ossikovski, M. Foldyna, A. Pierangelo, B. Drévillon, and A. De Martino, “Advanced Mueller Ellipsometry Instrumentation and Data Analysis” in M. Losurdo and K. Hingerls, eds., (Springer-Verlag, 2013).

Gil, J. J.

J. J. Gil and R. Ossikovski, “Polarized Light and the Mueller Matrix Approach,” (CRC Press, 2016).

Gil, J.J.

A. Van Eeckhout, A. Lizana, E. Garcia-Caurel, J.J. Gil, A. Sansa, C. Rodríguez, I. Estévez, E. González, J.C. Escalera, I. Moreno, and J Campos, “Polarimetric imaging of biological tissues based on the indices of polarimetric purity,” J. Biophotonics 11(4), e201700189 (2018).
[Crossref]

Goldstein, D. L.

González, E.

A. Van Eeckhout, A. Lizana, E. Garcia-Caurel, J.J. Gil, A. Sansa, C. Rodríguez, I. Estévez, E. González, J.C. Escalera, I. Moreno, and J Campos, “Polarimetric imaging of biological tissues based on the indices of polarimetric purity,” J. Biophotonics 11(4), e201700189 (2018).
[Crossref]

Goudail, F.

Gruev, V.

Gu, N.

N. Gu, B. Yao, L. Huang, and C. Rao, “Design and Analysis of a Novel Compact and Simultaneous Polarimeter for Complete Stokes Polarization Imaging with a Piece of Encoded Birefringent Crystal and a Micropolarizer Array,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

Guo, J.

Haccho, H.

H. Kikuta, H. Haccho, K. Iwata, T. Hamamoto, H. Toyota, and T. Yotsuya, “Real-time polarimeter with a form-birefringent micro retarder array,” in K. Iwata, ed. (International Society for Optics and Photonics, 2001), Vol. 4416, p. 19.

Hamamoto, T.

H. Kikuta, H. Haccho, K. Iwata, T. Hamamoto, H. Toyota, and T. Yotsuya, “Real-time polarimeter with a form-birefringent micro retarder array,” in K. Iwata, ed. (International Society for Optics and Photonics, 2001), Vol. 4416, p. 19.

Hemzal, D.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
[Crossref]

Hingerl, K.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
[Crossref]

Hirakawa, K.

Hough, J.

J. Hough, “Polarimetry: a powerful diagnostic tool in astronomy,” Astron. Geophys. 47(3), 3.31–3.35 (2006).
[Crossref]

Hsu, W.-L.

Huang, L.

N. Gu, B. Yao, L. Huang, and C. Rao, “Design and Analysis of a Novel Compact and Simultaneous Polarimeter for Complete Stokes Polarization Imaging with a Piece of Encoded Birefringent Crystal and a Micropolarizer Array,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

Humlicek, J.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
[Crossref]

Huynh, B.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5(5), 1423–1426 (2008).
[Crossref]

Ibn-Elhaj, M.

Iemmi, C.

Ikram, M.

S. Firdous and M. Ikram, “Stokes Polarimetry for the Characterization of Bio-Materials using Liquid Crystal Variable Retarders,” in Therapeutic Laser Applications and Laser-Tissue Interactions III (OSA, 2007), p. 6632_14.

Iwata, K.

H. Kikuta, H. Haccho, K. Iwata, T. Hamamoto, H. Toyota, and T. Yotsuya, “Real-time polarimeter with a form-birefringent micro retarder array,” in K. Iwata, ed. (International Society for Optics and Photonics, 2001), Vol. 4416, p. 19.

Kemme, S. A.

Kikuta, H.

H. Kikuta, H. Haccho, K. Iwata, T. Hamamoto, H. Toyota, and T. Yotsuya, “Real-time polarimeter with a form-birefringent micro retarder array,” in K. Iwata, ed. (International Society for Optics and Photonics, 2001), Vol. 4416, p. 19.

LaCasse, C.

LaCasse, C. F.

C. F. LaCasse, T. Ririe, R. A. Chipman, and J. S. Tyo, “Spatio-temporal modulated polarimetry,” Proc. SPIE 8160, 81600K (2011).
[Crossref]

Laude-Boulesteix, B.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5(5), 1423–1426 (2008).
[Crossref]

LeMaster, D. A.

Liège, F.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5(5), 1423–1426 (2008).
[Crossref]

Lizana, A.

Losurdo, M.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
[Crossref]

Márquez, A.

Moreno, I.

A. Van Eeckhout, A. Lizana, E. Garcia-Caurel, J.J. Gil, A. Sansa, C. Rodríguez, I. Estévez, E. González, J.C. Escalera, I. Moreno, and J Campos, “Polarimetric imaging of biological tissues based on the indices of polarimetric purity,” J. Biophotonics 11(4), e201700189 (2018).
[Crossref]

A. Márquez, I. Moreno, C. Iemmi, A. Lizana, J. Campos, and M. J. Yzuel, “Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization,” Opt. Express 16(3), 1669 (2008).
[Crossref]

Myhre, G.

Nazac, A.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5(5), 1423–1426 (2008).
[Crossref]

November, L. J.

L. J. November and L. M. Wilkins, “Liquid Crystal Polarimeter for solid state imaging of solar vector magnetic fields,” in D. H. Goldstein and D. B. Chenault, eds. (International Society for Optics and Photonics, 1994), Vol. 2265, p. 210.

Ossikovski, R.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
[Crossref]

J. J. Gil and R. Ossikovski, “Polarized Light and the Mueller Matrix Approach,” (CRC Press, 2016).

E. Garcia-Caurel, R. Ossikovski, M. Foldyna, A. Pierangelo, B. Drévillon, and A. De Martino, “Advanced Mueller Ellipsometry Instrumentation and Data Analysis” in M. Losurdo and K. Hingerls, eds., (Springer-Verlag, 2013).

Pau, S.

Peinado, A.

Phipps, G. S.

Pierangelo, A.

E. Garcia-Caurel, R. Ossikovski, M. Foldyna, A. Pierangelo, B. Drévillon, and A. De Martino, “Advanced Mueller Ellipsometry Instrumentation and Data Analysis” in M. Losurdo and K. Hingerls, eds., (Springer-Verlag, 2013).

Popovic, Z.V.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
[Crossref]

Quang, N.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5(5), 1423–1426 (2008).
[Crossref]

Rao, C.

N. Gu, B. Yao, L. Huang, and C. Rao, “Design and Analysis of a Novel Compact and Simultaneous Polarimeter for Complete Stokes Polarization Imaging with a Piece of Encoded Birefringent Crystal and a Micropolarizer Array,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

Ririe, T.

C. F. LaCasse, T. Ririe, R. A. Chipman, and J. S. Tyo, “Spatio-temporal modulated polarimetry,” Proc. SPIE 8160, 81600K (2011).
[Crossref]

Rodríguez, C.

A. Van Eeckhout, A. Lizana, E. Garcia-Caurel, J.J. Gil, A. Sansa, C. Rodríguez, I. Estévez, E. González, J.C. Escalera, I. Moreno, and J Campos, “Polarimetric imaging of biological tissues based on the indices of polarimetric purity,” J. Biophotonics 11(4), e201700189 (2018).
[Crossref]

Sabatke, D. S.

Sansa, A.

A. Van Eeckhout, A. Lizana, E. Garcia-Caurel, J.J. Gil, A. Sansa, C. Rodríguez, I. Estévez, E. González, J.C. Escalera, I. Moreno, and J Campos, “Polarimetric imaging of biological tissues based on the indices of polarimetric purity,” J. Biophotonics 11(4), e201700189 (2018).
[Crossref]

Saxl, O.

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
[Crossref]

Schwartz, L.

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5(5), 1423–1426 (2008).
[Crossref]

Scott Tyo, J.

Shaw, J. A.

Sweatt, W. C.

Torok, E. J.

C. S. L. Chun, D. L. Fleming, and E. J. Torok, “Polarization-sensitive thermal imaging,” Proc. SPIE 2234, 275–286 (1994).
[Crossref]

Toyota, H.

H. Kikuta, H. Haccho, K. Iwata, T. Hamamoto, H. Toyota, and T. Yotsuya, “Real-time polarimeter with a form-birefringent micro retarder array,” in K. Iwata, ed. (International Society for Optics and Photonics, 2001), Vol. 4416, p. 19.

Twietmeyer, K. M.

Tyo, J. S.

Van der Spiegel, J.

Van Eeckhout, A.

A. Van Eeckhout, A. Lizana, E. Garcia-Caurel, J.J. Gil, A. Sansa, C. Rodríguez, I. Estévez, E. González, J.C. Escalera, I. Moreno, and J Campos, “Polarimetric imaging of biological tissues based on the indices of polarimetric purity,” J. Biophotonics 11(4), e201700189 (2018).
[Crossref]

VanNasdale, D.

Vaughn, I. J.

Vidal, J.

Wilkins, L. M.

L. J. November and L. M. Wilkins, “Liquid Crystal Polarimeter for solid state imaging of solar vector magnetic fields,” in D. H. Goldstein and D. B. Chenault, eds. (International Society for Optics and Photonics, 1994), Vol. 2265, p. 210.

Yao, B.

N. Gu, B. Yao, L. Huang, and C. Rao, “Design and Analysis of a Novel Compact and Simultaneous Polarimeter for Complete Stokes Polarization Imaging with a Piece of Encoded Birefringent Crystal and a Micropolarizer Array,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

Yotsuya, T.

H. Kikuta, H. Haccho, K. Iwata, T. Hamamoto, H. Toyota, and T. Yotsuya, “Real-time polarimeter with a form-birefringent micro retarder array,” in K. Iwata, ed. (International Society for Optics and Photonics, 2001), Vol. 4416, p. 19.

Yzuel, M. J.

Zhao, X.

Zhao, Y.

Appl. Opt. (4)

Astron. Geophys. (1)

J. Hough, “Polarimetry: a powerful diagnostic tool in astronomy,” Astron. Geophys. 47(3), 3.31–3.35 (2006).
[Crossref]

IEEE Photonics J. (1)

N. Gu, B. Yao, L. Huang, and C. Rao, “Design and Analysis of a Novel Compact and Simultaneous Polarimeter for Complete Stokes Polarization Imaging with a Piece of Encoded Birefringent Crystal and a Micropolarizer Array,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

J. Biophotonics (1)

A. Van Eeckhout, A. Lizana, E. Garcia-Caurel, J.J. Gil, A. Sansa, C. Rodríguez, I. Estévez, E. González, J.C. Escalera, I. Moreno, and J Campos, “Polarimetric imaging of biological tissues based on the indices of polarimetric purity,” J. Biophotonics 11(4), e201700189 (2018).
[Crossref]

J. Nanopart. Res. (1)

M. Losurdo, M. Bergmair, G. Bruno, D. Cattelan, C. Cobet, A. de Martino, K. Fleischer, Z. Dohcevic-Mitrovic, N. Esser, M. Galliet, R. Gajic, D. Hemzal, K. Hingerl, J. Humlicek, R. Ossikovski, Z.V. Popovic, and O. Saxl, “Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives,” J. Nanopart. Res. 11(7), 1521–1554 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (7)

Opt. Lett. (3)

Phys. Status Solidi C (1)

M. Anastasiadou, A. De Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, and H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi C 5(5), 1423–1426 (2008).
[Crossref]

Proc. SPIE (2)

C. S. L. Chun, D. L. Fleming, and E. J. Torok, “Polarization-sensitive thermal imaging,” Proc. SPIE 2234, 275–286 (1994).
[Crossref]

C. F. LaCasse, T. Ririe, R. A. Chipman, and J. S. Tyo, “Spatio-temporal modulated polarimetry,” Proc. SPIE 8160, 81600K (2011).
[Crossref]

Other (5)

J. J. Gil and R. Ossikovski, “Polarized Light and the Mueller Matrix Approach,” (CRC Press, 2016).

H. Kikuta, H. Haccho, K. Iwata, T. Hamamoto, H. Toyota, and T. Yotsuya, “Real-time polarimeter with a form-birefringent micro retarder array,” in K. Iwata, ed. (International Society for Optics and Photonics, 2001), Vol. 4416, p. 19.

L. J. November and L. M. Wilkins, “Liquid Crystal Polarimeter for solid state imaging of solar vector magnetic fields,” in D. H. Goldstein and D. B. Chenault, eds. (International Society for Optics and Photonics, 1994), Vol. 2265, p. 210.

S. Firdous and M. Ikram, “Stokes Polarimetry for the Characterization of Bio-Materials using Liquid Crystal Variable Retarders,” in Therapeutic Laser Applications and Laser-Tissue Interactions III (OSA, 2007), p. 6632_14.

E. Garcia-Caurel, R. Ossikovski, M. Foldyna, A. Pierangelo, B. Drévillon, and A. De Martino, “Advanced Mueller Ellipsometry Instrumentation and Data Analysis” in M. Losurdo and K. Hingerls, eds., (Springer-Verlag, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Scheme for a DoFP with the MRA. Black arrow shows a detail of four macropixels (labeled by four different colors); (b) Scheme of the misalignment between the pixelation of the microretarder (red) and the pixelation of the camera sensor (black).
Fig. 2.
Fig. 2. (a) CN map obtained as a function of the X and Y misalignments; and (c) CN map for the particular case where $\Delta y = 0$. (b) Average DoP for the 4 analyzers as a function of the X and Y misalignments; and (d) Average DoP for the particular case where $\Delta y = 0$; Monochromatic case.
Fig. 3.
Fig. 3. (a) EWV as a function of the X and Y misalignments; and in (b) for $\Delta y = 0$. Monochromatic case.
Fig. 4.
Fig. 4. Representation on the Poincaré sphere of the 4 optimal analyzers, where the 4 different colors indicates the 4 different wavelengths.
Fig. 5.
Fig. 5. Average DoP for the 4 analyzers as a function of the X and Y misalignment for: (a) 625, (b) 590, (c) 530 and (d) 470 nm.
Fig. 6.
Fig. 6. CN for the 4 analyzers as a function of the X and Y misalignment for: (a) 625, (b) 590, (c) 530 and (d) 470 nm.
Fig. 7.
Fig. 7. EWV for the 4 analyzers as a function of the X and Y misalignment for: (a) 625, (b) 590, (c) 530 and (d) 470 nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

A = p 1 A + p 2 B + p 3 C + p 4 D B = p 2 A + p 1 B + p 4 C + p 3 D C = p 3 A + p 4 B + p 1 C + p 2 D D = p 4 A + p 3 B + p 2 C + p 1 D
p 1 = ( d | Δ x | ) ( d | Δ y | ) p 2 = | Δ x | ( d | Δ y | ) p 3 = ( d | Δ x | ) | Δ y | p 4 = | Δ x | | Δ y |
I = W S
S = W 1 I
Γ ( λ ) = ( 2 π / 2 π λ λ ) Δ n ( λ ) e
Γ ( λ 2 ) = ( λ 1 / λ 1 λ 2 λ 2 ) Γ ( λ 1 ) .

Metrics