Abstract

We report a design, analysis, and numerical modeling of a tapered chalcogenide step-index fiber for broadband high-power mid-infrared supercontinuum extending from the 1.5–14.5 µm molecular ‘fingerprint region’. The reported tapered chalcogenide fiber structure is able to generate a broadband supercontinuum spectrum with output average power of 82 mW (27.7 mW for the wavelengths >5 µm) when it is pumped with 200 fs laser pulses with a repetition rate of 76 MHz and average power of 200 mW at 3.5 µm. Such a bright and broadband mid-infrared supercontinuum light source covering both the 3–5 µm and 8–13 µm atmospheric windows and most of the molecular fingerprint spectral region has practical applications in various fields, including mid-infrared spectroscopy, imaging, and biomedical diagnostics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tapered tellurite step-index optical fiber for coherent near-to-mid-IR supercontinuum generation: experiment and modeling

Than Singh Saini, Nguyen Phuoc Trung Hoa, Tong Hoang Tuan, Xing Luo, Takenobu Suzuki, and Yasutake Ohishi
Appl. Opt. 58(2) 415-421 (2019)

Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 µm

Chen Wei, Xiushan Zhu, Robert A. Norwood, Feng Song, and N. Peyghambarian
Opt. Express 21(24) 29488-29504 (2013)

Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber

D. Jayasuriya, C. R. Petersen, D. Furniss, C. Markos, Z. Tang, MD. S. Habib, O. Bang, T. M Benson, and A. B Seddon
Opt. Mater. Express 9(6) 2617-2629 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, and T. Morioka, “Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source,” Electron. Lett. 41(5), 270–271 (2005).
    [Crossref]
  2. M. Yamanaka, H. Kawagoe, and N. Nishizawa, “High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band,” Appl. Phys. Express 9(2), 022701 (2016).
    [Crossref]
  3. N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschlager, P. T.- Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
    [Crossref]
  4. C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D: Appl. Phys. 37(23), 3296–3303 (2004).
    [Crossref]
  5. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
    [Crossref]
  6. J. Ye, H. Schnatz, and L. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
    [Crossref]
  7. J. Wegener, R. H. Wilson, and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” Trends Anal. Chem. 18(1), 14–25 (1999).
    [Crossref]
  8. S. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B: Lasers Opt. 75(6-7), 799–802 (2002).
    [Crossref]
  9. T. Steinle, F. Neubrech, A. Steinmann, X. Yin, and H. Giessen, “Mid-infrared Fourier-transform spectroscopy with a high-brilliance tunable laser source: investigating sample areas down to 5 µm diameter,” Opt. Express 23(9), 11105–11113 (2015).
    [Crossref]
  10. M. Ere-Tassou, C. Przygodzki, E. Fertein, and H. Delbarre, “Femtosecond laser source for real-time atmospheric gas sensing in the UV - visible,” Opt. Commun. 220(4-6), 215–221 (2003).
    [Crossref]
  11. A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
    [Crossref]
  12. Y. Bonetti and J. Faist, “Quantum cascade lasers: entering the mid-infrared,” Nat. Photonics 3(1), 32–34 (2009).
    [Crossref]
  13. Y. Peng, W. Wang, X. Wei, and D. Li, “High-efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN,” Opt. Lett. 34(19), 2897–2899 (2009).
    [Crossref]
  14. E. Lippert, H. Fonnum, G. Arisholm, and K. Stenersen, “A 22 watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express 18(25), 26475–26483 (2010).
    [Crossref]
  15. S. Dupont, C. Petersen, J. Thogersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
    [Crossref]
  16. S. L. Girard, M. Allard, M. Piche, and F. Babin, “Differential optical absorption spectroscopy lidar for mid-infrared gaseous measurements,” Appl. Opt. 54(7), 1647–1656 (2015).
    [Crossref]
  17. M. N. Islam, M. J. Freeman, L. M. Peterson, K. Ke, A. Ifarraguerri, C. Bailey, F. Baxley, M. Wager, A. Absi, J. Leonard, H. Baker, and M. Rucci, “Field tests for round-trip imaging at a 1.4 km distance with change detection and ranging using a short-wave infrared super-continuum laser,” Appl. Opt. 55(7), 1584–1602 (2016).
    [Crossref]
  18. A. Labruyere, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
    [Crossref]
  19. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, F. L. Terry Jr, M. Neelakandan, and A. Chan, “Supercontinuum generation from ∼1.9–4.5 µm in ZBLAN fiber with high average power generation beyond 3.8 µm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28(10), 2486–2498 (2011).
    [Crossref]
  20. L. Liu, G. Qin, Q. Tian, D. Zhao, and W. Qin, “Numerical investigation of mid-infrared supercontinuum generation up to 5 µm in single mode fluoride fiber,” Opt. Express 19(11), 10041–10048 (2011).
    [Crossref]
  21. J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution towards the mid-infrared,” Opt. Lett. 39(4), 910–913 (2014).
    [Crossref]
  22. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngso, C. L. Thomsen, J. Thogersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29(4), 635–645 (2012).
    [Crossref]
  23. I. Kubat, C. S. Agger, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5 um in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. 30(10), 2743–2757 (2013).
    [Crossref]
  24. F. Theberge, J. F. Daigle, D. Vincent, P. Mathieu, J. Fortin, B. E. Schmidt, N. Thire, and F. Legare, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38(22), 4683–4685 (2013).
    [Crossref]
  25. W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 µm MOPA system,” Opt. Lett. 39(7), 1849–1852 (2014).
    [Crossref]
  26. R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, and P. Fendel, “Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 µm,” Opt. Express 23(24), 30592–30602 (2015).
    [Crossref]
  27. I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
    [Crossref]
  28. T. Cheng, L. Zhang, X. Xue, D. Deng, T. Suzuki, and Y. Ohishi, “Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 µm,” Opt. Express 23(4), 4125–4134 (2015).
    [Crossref]
  29. M. Belal, L. Xu, P. Horak, L. Shen, X. Feng, M. Ettabib, D. J. Richardson, P. Petropoulos, and J. H. V. Price, “Mid-infrared supercontinuum generation in suspended core tellurite microstructured optical fibers,” Opt. Lett. 40(10), 2237–2240 (2015).
    [Crossref]
  30. J. P. Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
    [Crossref]
  31. S. Kedenburg, C. Strutynski, B. Kibler, P. Froidevaux, F. Desevedavy, G. Gadret, J.-C. Jules, T. Steinle, F. Morz, A. Steinmann, H. Giessen, and F. Smektala, “High repetition rate mid-infrared supercontinuum generation from 1.3 to 5.3 µm in robust step-index tellurite fibers,” J. Opt. Soc. Am. B 34(3), 601–607 (2017).
    [Crossref]
  32. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shift in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
    [Crossref]
  33. V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
    [Crossref]
  34. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, and J. Troles, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
    [Crossref]
  35. P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2-5 µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
    [Crossref]
  36. T. S. Saini, A. Kumar, and R. K. Sinha, “Broadband mid-infrared supercontinuum spectra spanning 2–15 µm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber,” J. Lightwave Technol. 33(18), 3914–3920 (2015).
    [Crossref]
  37. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(7), 6722–6739 (2010).
    [Crossref]
  38. T. S. Saini, U. K. Tiwari, and R. K. Sinha, “Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: design and analysis,” J. Appl. Phys. 122(5), 053104 (2017).
    [Crossref]
  39. T. S. Saini, N. P. T. Hoa, K. Nagasaka, X. Luo, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation using rib waveguide pumped with 200 fs laser pulses at 2.8 µm,” Appl. Opt. 57(7), 1689–1693 (2018).
    [Crossref]
  40. I. Kubat, C. S. Agger, U. Moller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5mm,” Opt. Express 22(16), 19169–19182 (2014).
    [Crossref]
  41. I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513–2526 (2016).
    [Crossref]
  42. C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Besson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  43. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0–15.1 µm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
    [Crossref]
  44. B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. L. Davies, “High brightness 2.2.- 12 mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
    [Crossref]
  45. C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Troles, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25(13), 15336–15347 (2017).
    [Crossref]
  46. U. Moller, S. T. Sorensen, C. Larsen, P. M. Moselund, C. Jacobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18(5), 304–314 (2012).
    [Crossref]
  47. S. T. Sorensenet, A. Judge, C. L. Thomsen, and O. Bang, “Optimum tapers for increasing the power in the blue-edge of a supercontinuum-group acceleration matching,” Opt. Lett. 36(6), 816 (2011).
    [Crossref]
  48. S. T. Sorensen, U. Moller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles-verification of GAM,” Opt. Express 20(10), 10635–10645 (2012).
    [Crossref]
  49. U. Moller, S. T. Sorensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20(3), 2851–2857 (2012).
    [Crossref]
  50. C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
    [Crossref]
  51. M. R. Lotz, C. R. Petersen, C. Markos, O. Bang, M. H. Jakobsen, and R. Taboryski, “Direct nanoimprinting of moth-eye structures in chalcogenide glass for broadband antireflection in the mid-infrared,” Optica 5(5), 557–563 (2018).
    [Crossref]
  52. K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Numerical investigation of highly coherent midinfrared supercontinuum generation in chalcogenide double-clad fiber,” Opt. Fiber Technol. 36, 82–91 (2017).
    [Crossref]
  53. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Elsevier Academic Press, 2013).
  54. J. Dudley and R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010), pp. 32–51.
  55. L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41(2), 392–395 (2016).
    [Crossref]
  56. T. Kohoutek, J. Orava, A. L. Greer, and H. Fudouzi, “Sub-micrometer soft lithography of a bulk chalcogenide glass,” Opt. Express 21(8), 9584–9591 (2013).
    [Crossref]

2019 (1)

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschlager, P. T.- Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

2018 (4)

2017 (4)

S. Kedenburg, C. Strutynski, B. Kibler, P. Froidevaux, F. Desevedavy, G. Gadret, J.-C. Jules, T. Steinle, F. Morz, A. Steinmann, H. Giessen, and F. Smektala, “High repetition rate mid-infrared supercontinuum generation from 1.3 to 5.3 µm in robust step-index tellurite fibers,” J. Opt. Soc. Am. B 34(3), 601–607 (2017).
[Crossref]

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Troles, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25(13), 15336–15347 (2017).
[Crossref]

K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Numerical investigation of highly coherent midinfrared supercontinuum generation in chalcogenide double-clad fiber,” Opt. Fiber Technol. 36, 82–91 (2017).
[Crossref]

T. S. Saini, U. K. Tiwari, and R. K. Sinha, “Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: design and analysis,” J. Appl. Phys. 122(5), 053104 (2017).
[Crossref]

2016 (6)

M. Yamanaka, H. Kawagoe, and N. Nishizawa, “High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band,” Appl. Phys. Express 9(2), 022701 (2016).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. L. Davies, “High brightness 2.2.- 12 mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41(2), 392–395 (2016).
[Crossref]

I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513–2526 (2016).
[Crossref]

M. N. Islam, M. J. Freeman, L. M. Peterson, K. Ke, A. Ifarraguerri, C. Bailey, F. Baxley, M. Wager, A. Absi, J. Leonard, H. Baker, and M. Rucci, “Field tests for round-trip imaging at a 1.4 km distance with change detection and ranging using a short-wave infrared super-continuum laser,” Appl. Opt. 55(7), 1584–1602 (2016).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0–15.1 µm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref]

2015 (7)

T. Cheng, L. Zhang, X. Xue, D. Deng, T. Suzuki, and Y. Ohishi, “Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 µm,” Opt. Express 23(4), 4125–4134 (2015).
[Crossref]

S. L. Girard, M. Allard, M. Piche, and F. Babin, “Differential optical absorption spectroscopy lidar for mid-infrared gaseous measurements,” Appl. Opt. 54(7), 1647–1656 (2015).
[Crossref]

T. Steinle, F. Neubrech, A. Steinmann, X. Yin, and H. Giessen, “Mid-infrared Fourier-transform spectroscopy with a high-brilliance tunable laser source: investigating sample areas down to 5 µm diameter,” Opt. Express 23(9), 11105–11113 (2015).
[Crossref]

M. Belal, L. Xu, P. Horak, L. Shen, X. Feng, M. Ettabib, D. J. Richardson, P. Petropoulos, and J. H. V. Price, “Mid-infrared supercontinuum generation in suspended core tellurite microstructured optical fibers,” Opt. Lett. 40(10), 2237–2240 (2015).
[Crossref]

T. S. Saini, A. Kumar, and R. K. Sinha, “Broadband mid-infrared supercontinuum spectra spanning 2–15 µm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber,” J. Lightwave Technol. 33(18), 3914–3920 (2015).
[Crossref]

R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, and P. Fendel, “Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 µm,” Opt. Express 23(24), 30592–30602 (2015).
[Crossref]

J. P. Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

2014 (4)

2013 (5)

T. Kohoutek, J. Orava, A. L. Greer, and H. Fudouzi, “Sub-micrometer soft lithography of a bulk chalcogenide glass,” Opt. Express 21(8), 9584–9591 (2013).
[Crossref]

F. Theberge, J. F. Daigle, D. Vincent, P. Mathieu, J. Fortin, B. E. Schmidt, N. Thire, and F. Legare, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38(22), 4683–4685 (2013).
[Crossref]

V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2-5 µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

I. Kubat, C. S. Agger, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5 um in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. 30(10), 2743–2757 (2013).
[Crossref]

2012 (7)

A. Labruyere, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

U. Moller, S. T. Sorensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20(3), 2851–2857 (2012).
[Crossref]

S. Dupont, C. Petersen, J. Thogersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngso, C. L. Thomsen, J. Thogersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29(4), 635–645 (2012).
[Crossref]

S. T. Sorensen, U. Moller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles-verification of GAM,” Opt. Express 20(10), 10635–10645 (2012).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref]

U. Moller, S. T. Sorensen, C. Larsen, P. M. Moselund, C. Jacobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18(5), 304–314 (2012).
[Crossref]

2011 (4)

2010 (3)

2009 (2)

Y. Bonetti and J. Faist, “Quantum cascade lasers: entering the mid-infrared,” Nat. Photonics 3(1), 32–34 (2009).
[Crossref]

Y. Peng, W. Wang, X. Wei, and D. Li, “High-efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN,” Opt. Lett. 34(19), 2897–2899 (2009).
[Crossref]

2005 (1)

H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, and T. Morioka, “Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source,” Electron. Lett. 41(5), 270–271 (2005).
[Crossref]

2004 (2)

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D: Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Large Raman gain and nonlinear phase shift in high-purity As2Se3 chalcogenide fibers,” J. Opt. Soc. Am. B 21(6), 1146–1155 (2004).
[Crossref]

2003 (2)

J. Ye, H. Schnatz, and L. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

M. Ere-Tassou, C. Przygodzki, E. Fertein, and H. Delbarre, “Femtosecond laser source for real-time atmospheric gas sensing in the UV - visible,” Opt. Commun. 220(4-6), 215–221 (2003).
[Crossref]

2002 (1)

S. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B: Lasers Opt. 75(6-7), 799–802 (2002).
[Crossref]

1999 (1)

J. Wegener, R. H. Wilson, and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” Trends Anal. Chem. 18(1), 14–25 (1999).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Besson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Abe, M.

H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, and T. Morioka, “Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source,” Electron. Lett. 41(5), 270–271 (2005).
[Crossref]

Absi, A.

Aggarwal, I. D.

Agger, C.

Agger, C. S.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Elsevier Academic Press, 2013).

Alexander, V. V.

Allard, M.

Amrani, F.

J. P. Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

Andersen, T. V.

Arisholm, G.

Babin, F.

Bailey, C.

Baker, H.

Bang, O.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschlager, P. T.- Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

M. R. Lotz, C. R. Petersen, C. Markos, O. Bang, M. H. Jakobsen, and R. Taboryski, “Direct nanoimprinting of moth-eye structures in chalcogenide glass for broadband antireflection in the mid-infrared,” Optica 5(5), 557–563 (2018).
[Crossref]

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Troles, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25(13), 15336–15347 (2017).
[Crossref]

I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513–2526 (2016).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Besson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Moller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5mm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

I. Kubat, C. S. Agger, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5 um in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. 30(10), 2743–2757 (2013).
[Crossref]

U. Moller, S. T. Sorensen, C. Larsen, P. M. Moselund, C. Jacobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18(5), 304–314 (2012).
[Crossref]

S. T. Sorensen, U. Moller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles-verification of GAM,” Opt. Express 20(10), 10635–10645 (2012).
[Crossref]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngso, C. L. Thomsen, J. Thogersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29(4), 635–645 (2012).
[Crossref]

S. Dupont, C. Petersen, J. Thogersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref]

U. Moller, S. T. Sorensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20(3), 2851–2857 (2012).
[Crossref]

S. T. Sorensenet, A. Judge, C. L. Thomsen, and O. Bang, “Optimum tapers for increasing the power in the blue-edge of a supercontinuum-group acceleration matching,” Opt. Lett. 36(6), 816 (2011).
[Crossref]

Barh, A.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschlager, P. T.- Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Baxley, F.

Belal, M.

Benson, T. M.

Besson, T.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Besson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bonetti, Y.

Y. Bonetti and J. Faist, “Quantum cascade lasers: entering the mid-infrared,” Nat. Photonics 3(1), 32–34 (2009).
[Crossref]

Bony, P. Y.

Brilland, L.

Cable, A.

Caillaud, C.

Chan, A.

Cheng, T.

K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Numerical investigation of highly coherent midinfrared supercontinuum generation in chalcogenide double-clad fiber,” Opt. Fiber Technol. 36, 82–91 (2017).
[Crossref]

L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41(2), 392–395 (2016).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0–15.1 µm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref]

T. Cheng, L. Zhang, X. Xue, D. Deng, T. Suzuki, and Y. Ohishi, “Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 µm,” Opt. Express 23(4), 4125–4134 (2015).
[Crossref]

J. P. Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

Churbanov, M.

V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

Clemente, J. P.

J. P. Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

Couderc, V.

A. Labruyere, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Daigle, J. F.

Davies, B. L.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. L. Davies, “High brightness 2.2.- 12 mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Davis, D. M.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D: Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Delbarre, H.

M. Ere-Tassou, C. Przygodzki, E. Fertein, and H. Delbarre, “Femtosecond laser source for real-time atmospheric gas sensing in the UV - visible,” Opt. Commun. 220(4-6), 215–221 (2003).
[Crossref]

Deng, D.

J. P. Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

T. Cheng, L. Zhang, X. Xue, D. Deng, T. Suzuki, and Y. Ohishi, “Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 µm,” Opt. Express 23(4), 4125–4134 (2015).
[Crossref]

Desevedavy, F.

Dong, R.

P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2-5 µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

Dudley, J.

J. Dudley and R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010), pp. 32–51.

Dunsby, C.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D: Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Dupont, S.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Besson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngso, C. L. Thomsen, J. Thogersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29(4), 635–645 (2012).
[Crossref]

S. Dupont, C. Petersen, J. Thogersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref]

El-Amraoui, M.

Elson, D. S.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D: Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Engelsholm, R. D.

Ere-Tassou, M.

M. Ere-Tassou, C. Przygodzki, E. Fertein, and H. Delbarre, “Femtosecond laser source for real-time atmospheric gas sensing in the UV - visible,” Opt. Commun. 220(4-6), 215–221 (2003).
[Crossref]

Ettabib, M.

Faist, J.

Y. Bonetti and J. Faist, “Quantum cascade lasers: entering the mid-infrared,” Nat. Photonics 3(1), 32–34 (2009).
[Crossref]

Farries, M.

Fatome, J.

Fendel, P.

Feng, X.

Fertein, E.

M. Ere-Tassou, C. Przygodzki, E. Fertein, and H. Delbarre, “Femtosecond laser source for real-time atmospheric gas sensing in the UV - visible,” Opt. Commun. 220(4-6), 215–221 (2003).
[Crossref]

Fonnum, H.

Fortier, C.

Fortin, J.

Foy, P.

Freeman, M. J.

French, P. M. W.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D: Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Froidevaux, P.

Fudouzi, H.

Fuhrberg, P.

Furniss, D.

I. Kubat, C. S. Agger, U. Moller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5mm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Besson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gadret, G.

Gai, X.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. L. Davies, “High brightness 2.2.- 12 mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Galletly, N.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D: Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Gao, W.

Gardner, D.

Giessen, H.

Girard, S. L.

Greer, A. L.

Hannesschlager, G.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschlager, P. T.- Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Hoa, N. P. T.

Hodelin, J.

Hollberg, L.

J. Ye, H. Schnatz, and L. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

Hooper, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Horak, P.

Hou, J.

Hu, J.

Huot, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Huss, G.

A. Labruyere, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Ifarraguerri, A.

Islam, M. N.

Israelsen, N. M.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschlager, P. T.- Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Jacobsen, C.

U. Moller, S. T. Sorensen, C. Larsen, P. M. Moselund, C. Jacobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18(5), 304–314 (2012).
[Crossref]

Jain, D.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschlager, P. T.- Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Jakobsen, C.

Jakobsen, M. H.

Jenkins, D.

Jensen, M.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschlager, P. T.- Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Jiang, Z.

Johansen, J.

Judge, A.

Jules, J. C.

Jules, J.-C.

S. Kedenburg, C. Strutynski, B. Kibler, P. Froidevaux, F. Desevedavy, G. Gadret, J.-C. Jules, T. Steinle, F. Morz, A. Steinmann, H. Giessen, and F. Smektala, “High repetition rate mid-infrared supercontinuum generation from 1.3 to 5.3 µm in robust step-index tellurite fibers,” J. Opt. Soc. Am. B 34(3), 601–607 (2017).
[Crossref]

J. P. Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

Kawagoe, H.

M. Yamanaka, H. Kawagoe, and N. Nishizawa, “High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band,” Appl. Phys. Express 9(2), 022701 (2016).
[Crossref]

Kawashima, H.

Ke, K.

Kedenburg, S.

Keiding, S. R.

Kibler, B.

Kohoutek, T.

Kubat, I.

I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513–2526 (2016).
[Crossref]

I. Kubat, C. S. Agger, U. Moller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5mm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Besson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5 um in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. 30(10), 2743–2757 (2013).
[Crossref]

Kulkarni, O. P.

Kumar, A.

Kumar, M.

Labruyere, A.

A. Labruyere, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Lamrini, S.

Lanigan, P. M. P.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D: Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Larsen, C.

U. Moller, S. T. Sorensen, C. Larsen, P. M. Moselund, C. Jacobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18(5), 304–314 (2012).
[Crossref]

S. T. Sorensen, U. Moller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles-verification of GAM,” Opt. Express 20(10), 10635–10645 (2012).
[Crossref]

Legare, F.

Lenz, G.

Leonard, J.

Leproux, P.

A. Labruyere, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Li, D.

Li, H.

P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2-5 µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

Lichtenberg, P. T.-

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschlager, P. T.- Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Lippert, E.

Liu, D.

Liu, L.

Lloyd, G. R.

Lotz, M. R.

Luo, J.

P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2-5 µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

Luo, X.

Lyngso, J. K.

Markos, C.

Masuda, H.

H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, and T. Morioka, “Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source,” Electron. Lett. 41(5), 270–271 (2005).
[Crossref]

Mathieu, P.

Matsumoto, M.

K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Numerical investigation of highly coherent midinfrared supercontinuum generation in chalcogenide double-clad fiber,” Opt. Fiber Technol. 36, 82–91 (2017).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0–15.1 µm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref]

McCann, F.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D: Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

McGinty, J.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D: Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Menyuk, C. R.

Michalska, M.

Moller, U.

Morioka, T.

H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, and T. Morioka, “Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source,” Electron. Lett. 41(5), 270–271 (2005).
[Crossref]

Morz, F.

Moselund, P. M.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

I. Kubat, C. S. Agger, U. Moller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5mm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

I. Kubat, C. S. Agger, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5 um in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. 30(10), 2743–2757 (2013).
[Crossref]

U. Moller, S. T. Sorensen, C. Larsen, P. M. Moselund, C. Jacobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18(5), 304–314 (2012).
[Crossref]

U. Moller, S. T. Sorensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20(3), 2851–2857 (2012).
[Crossref]

S. T. Sorensen, U. Moller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles-verification of GAM,” Opt. Express 20(10), 10635–10645 (2012).
[Crossref]

Mouawad, O.

Munro, I.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D: Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Nagasaka, K.

T. S. Saini, N. P. T. Hoa, K. Nagasaka, X. Luo, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation using rib waveguide pumped with 200 fs laser pulses at 2.8 µm,” Appl. Opt. 57(7), 1689–1693 (2018).
[Crossref]

K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Numerical investigation of highly coherent midinfrared supercontinuum generation in chalcogenide double-clad fiber,” Opt. Fiber Technol. 36, 82–91 (2017).
[Crossref]

L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41(2), 392–395 (2016).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0–15.1 µm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref]

J. P. Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

Nallala, J.

Napier, B.

Neelakandan, M.

Neil, M. A. A.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D: Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Neubrech, F.

Nishizawa, N.

M. Yamanaka, H. Kawagoe, and N. Nishizawa, “High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band,” Appl. Phys. Express 9(2), 022701 (2016).
[Crossref]

Ohara, T.

H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, and T. Morioka, “Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source,” Electron. Lett. 41(5), 270–271 (2005).
[Crossref]

Ohishi, Y.

T. S. Saini, N. P. T. Hoa, K. Nagasaka, X. Luo, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation using rib waveguide pumped with 200 fs laser pulses at 2.8 µm,” Appl. Opt. 57(7), 1689–1693 (2018).
[Crossref]

K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Numerical investigation of highly coherent midinfrared supercontinuum generation in chalcogenide double-clad fiber,” Opt. Fiber Technol. 36, 82–91 (2017).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0–15.1 µm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref]

L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41(2), 392–395 (2016).
[Crossref]

J. P. Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

T. Cheng, L. Zhang, X. Xue, D. Deng, T. Suzuki, and Y. Ohishi, “Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 µm,” Opt. Express 23(4), 4125–4134 (2015).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref]

Onfelt, B.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D: Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Orava, J.

Pafchek, R.

Pedersen, C.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschlager, P. T.- Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Peng, Y.

Petersen, C.

Petersen, C. R.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschlager, P. T.- Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

M. R. Lotz, C. R. Petersen, C. Markos, O. Bang, M. H. Jakobsen, and R. Taboryski, “Direct nanoimprinting of moth-eye structures in chalcogenide glass for broadband antireflection in the mid-infrared,” Optica 5(5), 557–563 (2018).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Troles, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25(13), 15336–15347 (2017).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Besson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Peterson, L. M.

Petropoulos, P.

Piche, M.

Podoleanu, A.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschlager, P. T.- Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Price, J. H. V.

Prtljaga, N.

Przygodzki, C.

M. Ere-Tassou, C. Przygodzki, E. Fertein, and H. Delbarre, “Femtosecond laser source for real-time atmospheric gas sensing in the UV - visible,” Opt. Commun. 220(4-6), 215–221 (2003).
[Crossref]

Qi, S.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. L. Davies, “High brightness 2.2.- 12 mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Qin, G.

Qin, W.

Ramsay, J.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Besson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Requejo-Isidro, J.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D: Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Richardson, D. J.

Ruan, S.

P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2-5 µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

Rucci, M.

Saad, M.

Saini, T. S.

Salem, R.

Sanders, S.

S. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B: Lasers Opt. 75(6-7), 799–802 (2002).
[Crossref]

Sanghera, J.

Sanghera, J. S.

Savelii, I.

Schmidt, B. E.

Schnatz, H.

J. Ye, H. Schnatz, and L. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

Scholle, K.

Seddon, A.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Besson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Seddon, A. B.

Shaw, L. B.

Shen, L.

Shiryaev, V.

V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

Sinha, R. K.

T. S. Saini, U. K. Tiwari, and R. K. Sinha, “Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: design and analysis,” J. Appl. Phys. 122(5), 053104 (2017).
[Crossref]

T. S. Saini, A. Kumar, and R. K. Sinha, “Broadband mid-infrared supercontinuum spectra spanning 2–15 µm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal fiber,” J. Lightwave Technol. 33(18), 3914–3920 (2015).
[Crossref]

Slusher, R. E.

Smektala, F.

Sorensen, S. T.

Sorensenet, S. T.

Steffensen, H.

Steinle, T.

Steinmann, A.

Stenersen, K.

Stone, N.

Strutynski, C.

S. Kedenburg, C. Strutynski, B. Kibler, P. Froidevaux, F. Desevedavy, G. Gadret, J.-C. Jules, T. Steinle, F. Morz, A. Steinmann, H. Giessen, and F. Smektala, “High repetition rate mid-infrared supercontinuum generation from 1.3 to 5.3 µm in robust step-index tellurite fibers,” J. Opt. Soc. Am. B 34(3), 601–607 (2017).
[Crossref]

J. P. Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

Sujecki, S.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Besson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Moller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5mm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

Suzuki, T.

T. S. Saini, N. P. T. Hoa, K. Nagasaka, X. Luo, T. H. Tuan, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation using rib waveguide pumped with 200 fs laser pulses at 2.8 µm,” Appl. Opt. 57(7), 1689–1693 (2018).
[Crossref]

K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Numerical investigation of highly coherent midinfrared supercontinuum generation in chalcogenide double-clad fiber,” Opt. Fiber Technol. 36, 82–91 (2017).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0–15.1 µm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref]

L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41(2), 392–395 (2016).
[Crossref]

T. Cheng, L. Zhang, X. Xue, D. Deng, T. Suzuki, and Y. Ohishi, “Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 µm,” Opt. Express 23(4), 4125–4134 (2015).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref]

Swiderski, J.

Taboryski, R.

Takahashi, H.

H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, and T. Morioka, “Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source,” Electron. Lett. 41(5), 270–271 (2005).
[Crossref]

Takara, H.

H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, and T. Morioka, “Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source,” Electron. Lett. 41(5), 270–271 (2005).
[Crossref]

Tang, Z.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Besson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

I. Kubat, C. S. Agger, U. Moller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5mm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

Tapp, H. S.

J. Wegener, R. H. Wilson, and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” Trends Anal. Chem. 18(1), 14–25 (1999).
[Crossref]

Taylor, R.

J. Dudley and R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010), pp. 32–51.

Terry Jr, F. L.

Tezuka, H.

K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Numerical investigation of highly coherent midinfrared supercontinuum generation in chalcogenide double-clad fiber,” Opt. Fiber Technol. 36, 82–91 (2017).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0–15.1 µm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref]

Theberge, F.

Thire, N.

Thogersen, J.

Thomsen, C. L.

Tian, Q.

Tiwari, U. K.

T. S. Saini, U. K. Tiwari, and R. K. Sinha, “Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: design and analysis,” J. Appl. Phys. 122(5), 053104 (2017).
[Crossref]

Tonello, A.

A. Labruyere, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Tong, H.

Treanor, B.

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D: Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Troles, J.

Tuan, T. H.

Vincent, D.

Wager, M.

Wang, R.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. L. Davies, “High brightness 2.2.- 12 mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Wang, W.

Wang, Y.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. L. Davies, “High brightness 2.2.- 12 mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Ward, J.

Wegener, J.

J. Wegener, R. H. Wilson, and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” Trends Anal. Chem. 18(1), 14–25 (1999).
[Crossref]

Wei, H.

P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2-5 µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

Wei, X.

Wilson, R. H.

J. Wegener, R. H. Wilson, and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” Trends Anal. Chem. 18(1), 14–25 (1999).
[Crossref]

Xu, L.

Xue, G.

Xue, X.

Yamamoto, T.

H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, and T. Morioka, “Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source,” Electron. Lett. 41(5), 270–271 (2005).
[Crossref]

Yamanaka, M.

M. Yamanaka, H. Kawagoe, and N. Nishizawa, “High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band,” Appl. Phys. Express 9(2), 022701 (2016).
[Crossref]

Yan, P.

P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2-5 µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

Yang, A.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. L. Davies, “High brightness 2.2.- 12 mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Yang, W.

Yang, Z.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. L. Davies, “High brightness 2.2.- 12 mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Ye, J.

J. Ye, H. Schnatz, and L. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

Yin, K.

Yin, X.

Yu, Y.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. L. Davies, “High brightness 2.2.- 12 mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Zhai, C.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. L. Davies, “High brightness 2.2.- 12 mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Zhang, B.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. L. Davies, “High brightness 2.2.- 12 mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 µm MOPA system,” Opt. Lett. 39(7), 1849–1852 (2014).
[Crossref]

Zhang, G.

P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2-5 µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

Zhang, L.

Zhao, D.

Zhou, B.

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Besson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B: Lasers Opt. (1)

S. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B: Lasers Opt. 75(6-7), 799–802 (2002).
[Crossref]

Appl. Phys. Express (1)

M. Yamanaka, H. Kawagoe, and N. Nishizawa, “High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band,” Appl. Phys. Express 9(2), 022701 (2016).
[Crossref]

Electron. Lett. (1)

H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, and T. Morioka, “Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source,” Electron. Lett. 41(5), 270–271 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Ye, H. Schnatz, and L. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

Infrared Phys. Technol. (1)

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Int. J. Appl. Glass Sci. (1)

A. B. Seddon, “A prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

J. Am. Ceram. Soc. (1)

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. L. Davies, “High brightness 2.2.- 12 mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

J. Appl. Phys. (1)

T. S. Saini, U. K. Tiwari, and R. K. Sinha, “Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: design and analysis,” J. Appl. Phys. 122(5), 053104 (2017).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

V. Shiryaev and M. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

I. Kubat, C. S. Agger, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5 um in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. 30(10), 2743–2757 (2013).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. D: Appl. Phys. (1)

C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D: Appl. Phys. 37(23), 3296–3303 (2004).
[Crossref]

Light: Sci. Appl. (1)

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschlager, P. T.- Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Nat. Photonics (2)

Y. Bonetti and J. Faist, “Quantum cascade lasers: entering the mid-infrared,” Nat. Photonics 3(1), 32–34 (2009).
[Crossref]

C. R. Petersen, U. Moller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Besson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Commun. (3)

P. Yan, R. Dong, G. Zhang, H. Li, S. Ruan, H. Wei, and J. Luo, “Numerical simulation on the coherent time-critical 2-5 µm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile,” Opt. Commun. 293, 133–138 (2013).
[Crossref]

M. Ere-Tassou, C. Przygodzki, E. Fertein, and H. Delbarre, “Femtosecond laser source for real-time atmospheric gas sensing in the UV - visible,” Opt. Commun. 220(4-6), 215–221 (2003).
[Crossref]

J. P. Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

Opt. Express (15)

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, and J. Troles, “Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref]

J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers,” Opt. Express 18(7), 6722–6739 (2010).
[Crossref]

L. Liu, G. Qin, Q. Tian, D. Zhao, and W. Qin, “Numerical investigation of mid-infrared supercontinuum generation up to 5 µm in single mode fluoride fiber,” Opt. Express 19(11), 10041–10048 (2011).
[Crossref]

R. Salem, Z. Jiang, D. Liu, R. Pafchek, D. Gardner, P. Foy, M. Saad, D. Jenkins, A. Cable, and P. Fendel, “Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 µm,” Opt. Express 23(24), 30592–30602 (2015).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref]

T. Cheng, L. Zhang, X. Xue, D. Deng, T. Suzuki, and Y. Ohishi, “Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 µm,” Opt. Express 23(4), 4125–4134 (2015).
[Crossref]

E. Lippert, H. Fonnum, G. Arisholm, and K. Stenersen, “A 22 watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express 18(25), 26475–26483 (2010).
[Crossref]

S. Dupont, C. Petersen, J. Thogersen, C. Agger, O. Bang, and S. R. Keiding, “IR microscopy utilizing intense supercontinuum light source,” Opt. Express 20(5), 4887–4892 (2012).
[Crossref]

T. Steinle, F. Neubrech, A. Steinmann, X. Yin, and H. Giessen, “Mid-infrared Fourier-transform spectroscopy with a high-brilliance tunable laser source: investigating sample areas down to 5 µm diameter,” Opt. Express 23(9), 11105–11113 (2015).
[Crossref]

I. Kubat, C. S. Agger, U. Moller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 12.5 µm in large NA chalcogenide step-index fibres pumped at 4.5mm,” Opt. Express 22(16), 19169–19182 (2014).
[Crossref]

I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513–2526 (2016).
[Crossref]

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Troles, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25(13), 15336–15347 (2017).
[Crossref]

S. T. Sorensen, U. Moller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles-verification of GAM,” Opt. Express 20(10), 10635–10645 (2012).
[Crossref]

U. Moller, S. T. Sorensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20(3), 2851–2857 (2012).
[Crossref]

T. Kohoutek, J. Orava, A. L. Greer, and H. Fudouzi, “Sub-micrometer soft lithography of a bulk chalcogenide glass,” Opt. Express 21(8), 9584–9591 (2013).
[Crossref]

Opt. Fiber Technol. (3)

K. Nagasaka, L. Liu, T. H. Tuan, T. Cheng, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Numerical investigation of highly coherent midinfrared supercontinuum generation in chalcogenide double-clad fiber,” Opt. Fiber Technol. 36, 82–91 (2017).
[Crossref]

U. Moller, S. T. Sorensen, C. Larsen, P. M. Moselund, C. Jacobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18(5), 304–314 (2012).
[Crossref]

A. Labruyere, A. Tonello, V. Couderc, G. Huss, and P. Leproux, “Compact supercontinuum sources and their biomedical applications,” Opt. Fiber Technol. 18(5), 375–378 (2012).
[Crossref]

Opt. Lett. (9)

Y. Peng, W. Wang, X. Wei, and D. Li, “High-efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN,” Opt. Lett. 34(19), 2897–2899 (2009).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

M. Belal, L. Xu, P. Horak, L. Shen, X. Feng, M. Ettabib, D. J. Richardson, P. Petropoulos, and J. H. V. Price, “Mid-infrared supercontinuum generation in suspended core tellurite microstructured optical fibers,” Opt. Lett. 40(10), 2237–2240 (2015).
[Crossref]

J. Swiderski and M. Michalska, “High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution towards the mid-infrared,” Opt. Lett. 39(4), 910–913 (2014).
[Crossref]

F. Theberge, J. F. Daigle, D. Vincent, P. Mathieu, J. Fortin, B. E. Schmidt, N. Thire, and F. Legare, “Mid-infrared supercontinuum generation in fluoroindate fiber,” Opt. Lett. 38(22), 4683–4685 (2013).
[Crossref]

W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 µm MOPA system,” Opt. Lett. 39(7), 1849–1852 (2014).
[Crossref]

S. T. Sorensenet, A. Judge, C. L. Thomsen, and O. Bang, “Optimum tapers for increasing the power in the blue-edge of a supercontinuum-group acceleration matching,” Opt. Lett. 36(6), 816 (2011).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation spanning 2.0–15.1 µm in a chalcogenide step-index fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref]

L. Liu, T. Cheng, K. Nagasaka, H. Tong, G. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41(2), 392–395 (2016).
[Crossref]

Optica (1)

Trends Anal. Chem. (1)

J. Wegener, R. H. Wilson, and H. S. Tapp, “Mid-infrared spectroscopy for food analysis: recent new applications and relevant developments in sample presentation methods,” Trends Anal. Chem. 18(1), 14–25 (1999).
[Crossref]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Elsevier Academic Press, 2013).

J. Dudley and R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010), pp. 32–51.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. The schematic of the longitudinal cross-section of the designed tapered chalcogenide optical fiber with AsSe2 glass as a core and As2S5 glass as a cladding materials.
Fig. 2.
Fig. 2. The refractive index dispersions of AsSe2 and As2S5 chalcogenide glasses.
Fig. 3.
Fig. 3. The wavelength dependence of the numerical aperture (NA) of the fiber and the refractive index difference (Δn) of AsSe2 and As2S5 chalcogenide glasses.
Fig. 4.
Fig. 4. The material loss of AsSe2 chalcogenide glass.
Fig. 5.
Fig. 5. The confinement loss of fundamental mode of the fiber with core diameter of (a) 3 µm; and (b) 15 µm.
Fig. 6.
Fig. 6. The chromatic dispersion profile of the chalcogenide fiber for the core diameters from 3 µm to 15 µm.
Fig. 7.
Fig. 7. The variation in the zero dispersion wavelengths with the core diameters of the fiber.
Fig. 8.
Fig. 8. The variations of the effective-mode-area of the fundamental modes with various core diameters of the fiber varying from 3 µm to 15 µm.
Fig. 9.
Fig. 9. The variations in the nonlinear coefficient of the fibers with core diameters varying from 3 µm to 15 µm.
Fig. 10.
Fig. 10. The evolution of the SC spectrum along the 4cm long tapered fiber with d1=15µm, d2=3µm, L1=1cm, and L2=2cm.
Fig. 11.
Fig. 11. The spectral broadening of the SC spectrum at the output of 4 cm long tapered fiber with d1=15 µm, d2=3 µm, L1=1 cm, and L2=2 cm.
Fig. 12.
Fig. 12. The spectrograms at the various lengths of the chalcogenide tapered fiber with d1=15 µm, d2=3 µm, L1=1 cm, and L2=2 cm. white dotted lines indicates the zero dispersion wavelengths.
Fig. 13.
Fig. 13. The effect of input average power on the spectral broadening of the generated SC spectrum from the tapered fiber.
Fig. 14.
Fig. 14. The comparison of the average output power of the tapered fiber with d1=9, 12, & 15 µm; (a) the total average output power along the fiber length; (b) Average output power at the wavelengths >5 µm along the fiber length.

Tables (3)

Tables Icon

Table 1. The geometrical parameters of the proposed tapered chalcogenide optical fiber

Tables Icon

Table 2. Input pulse parameters

Tables Icon

Table 3. The Sellmeier coefficients

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n2=1+n=15Anλ2λ2an2
D(λ)=λc2Re(neff)λ2
Aeff=(|E|2dxdy)2(|E|4dxdy)
A(0, T)=P0 sechTT0
A~z=iγ¯(ω)exp(L^(ω)z)F{A¯(z,T)R(T)|A¯(z,TT)|2dT}
A¯(z,T)=F1{A~(z,ω)Aeff14(ω)}
γ¯(ω)=n2n0ωcneff(ω)Aeff1/4(ω)
A~(z,ω)=A~(z,ω)exp(L^(ω)z)
L^(w)=i(β(ω)β(ω0)β1(ω0)[ωω0])α(ω)2
R(t)=(1fR)δ(t)+fRτ12+τ22τ1τ22exp(tτ2) sin(tτ1)H(t)

Metrics