Abstract

This work demonstrates a Q-switched ytterbium-doped fiber laser (YDFL) by using an organic material as a saturable absorber (SA). The organic material is FIrpic and it was embedded into polyvinyl alcohol (PVA) to form a thin film. The SA thin film was incorporated into the cavity to act as a Q-switcher. The Q-switching operation has a minimum pulse width of 2.4 µs at a central wavelength of 1067 nm. The maximum peak power and pulse energy were 193.9 mW and 465 nJ, respectively. The Q-switch operation was stable and showed a high signal to noise ratio of 66.4 dB. To the best of authors’ knowledge, this the first time that FIrpic has been used as a SA in the 1 µm region.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-energy Q-switched ytterbium-doped all-fiber laser with tris-(8-hydroxyquinoline) aluminum as saturable absorber

Sameer Salam, Wei Ru Wong, A. H. H. Al-Masoodi, and S. W. Harun
Opt. Mater. Express 9(8) 3215-3225 (2019)

1.06μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Se3 as a saturable absorber

Zhengqian Luo, Yizhong Huang, Jian Weng, Huihui Cheng, Zhiqing Lin, Bin Xu, Zhiping Cai, and Huiying Xu
Opt. Express 21(24) 29516-29522 (2013)

Q-switched ytterbium-doped fiber laser via a thulium-doped fiber saturable absorber

Mohd F. A. Rahman, Anas A. Latiff, Muhammad F. M. Rusdi, Kaharudin Dimyati, and Sulaiman W. Harun
Appl. Opt. 57(22) 6510-6515 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-µm fiber lasers Q-switched by a broadband few-layer MoS 2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
    [Crossref]
  2. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
    [Crossref]
  3. M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 µm,” Opt. Lett. 32(8), 897–899 (2007).
    [Crossref]
  4. Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, and H. Xu, “1.06 µm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi 2 Se 3 as a saturable absorber,” Opt. Express 21(24), 29516–29522 (2013).
    [Crossref]
  5. R. Zhao, J. He, X. Su, Y. Wang, X. Sun, H. Nie, B. Zhang, and K. Yang, “Tunable High-Power Q-Switched Fiber Laser Based on BP-PVA Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–5 (2018).
    [Crossref]
  6. X. Shi-Xiang, L. Wen-Xue, H. Qiang, Z. Hui, and Z. He-Ping, “Efficient laser-diode end-pumped passively Q-switched mode-locked Yb: LYSO laser based on SESAM,” Chin. Phys. Lett. 25(2), 548–551 (2008).
    [Crossref]
  7. Y. Gao, T. Zhao, C. Li, W. Ge, Q. Wu, Z. Shi, G. Niu, J. Yu, Z. Fan, and Y. J. O. C. Wang, “Diode-side-pumped passively Q-switched Nd: YAG laser at 1123 nm with reflective single walled carbon nanotube saturable absorber,” Opt. Commun. 286(1), 261–264 (2013).
    [Crossref]
  8. A. Schmidt, S. Rivier, G. Steinmeyer, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, X. Mateos, and M. Aguiló, “Passive mode locking of Yb: KLuW using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33(7), 729–731 (2008).
    [Crossref]
  9. J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Opt. Lett. 36(20), 4008–4010 (2011).
    [Crossref]
  10. L. Wei, D.-P. Zhou, H. Y. Fan, and W.-K. Liu, “Graphene-based $ Q $-switched erbium-doped fiber laser with wide pulse-repetition-rate range,” IEEE Photonics Technol. Lett. 24(4), 309–311 (2012).
    [Crossref]
  11. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” IEEE Photonics Technol. Lett. 19(19), 3077–3083 (2009).
    [Crossref]
  12. P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS 2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
    [Crossref]
  13. Y. Shi, H. Long, S. Liu, Y. H. Tsang, and Q. Wen, “Ultrasmall 2D NbSe 2 based quantum dots used for low threshold ultrafast lasers,” J. Mater. Chem. C 6(46), 12638–12642 (2018).
    [Crossref]
  14. B. Huang, L. Du, Q. Yi, L. Yang, J. Li, L. Miao, C. Zhao, and S. Wen, “Bulk-structured PtSe 2 for femtosecond fiber laser mode-locking,” Sci. Rep. 27(3), 2604–2611 (2019).
    [Crossref]
  15. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
    [Crossref]
  16. A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
    [Crossref]
  17. S. Wadi Harun, S. Salam, A. Al-Masoodi, m. hazaa, A. H. H. Al-Masoodi, W. Haliza Abdul Majid, M. Yasin, W. Ru Wong, and I. Alani, Tris-(8-Hydroxyquinoline) Aluminum Thin Film as Saturable Absorber for Passively Q-Switched Erbium-Doped Fiber Laser (2019).
  18. J. Boulet, A. Mohammadpour, and K. Shankar, “Insights into the solution crystallization of oriented Alq3 and Znq2 microprisms and nanorods,” J. Nanosci. Nanotechnol. 15(9), 6680–6689 (2015).
    [Crossref]
  19. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
    [Crossref]
  20. D. J. Williams, “Nonlinear optical properties of organic and polymeric materials,” in ACS Symposium series 233 (ACS1983).
  21. R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
    [Crossref]
  22. P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” Nature 425(6954), 158–162 (2003).
    [Crossref]
  23. P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, 2011), pp. 94–98.
  24. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
    [Crossref]
  25. R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
    [Crossref]
  26. O. Y. Kim and J. Y. Lee, “High efficiency deep blue phosphorescent organic light-emitting diodes using a tetraphenylsilane based phosphine oxide host material,” J. Ind. Eng. Chem. 18(3), 1029–1032 (2012).
    [Crossref]
  27. M.-J. Jung, E. Jeong, Y. Kim, and Y.-S. Lee, “Influence of the textual properties of activated carbon nanofibers on the performance of electric double-layer capacitors,” J. Ind. Eng. Chem. 19(4), 1315–1319 (2013).
    [Crossref]
  28. A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
    [Crossref]
  29. H.-K. Choi, S.-H. Jin, J.-W. Park, S. Y. Kim, and Y.-S. Gal, “Electro-optical and electrochemical properties of poly(2-ethynylthiophene),” J. Ind. Eng. Chem. 18(2), 814–817 (2012).
    [Crossref]
  30. J.-M. Kim, S. K. Jha, D.-H. Lee, R. Chand, J.-H. Jeun, and Y.-S. Kim, “A flexible pentacene thin film transistors as disposable DNA hybridization sensor,” J. Ind. Eng. Chem. 18(5), 1642–1646 (2012).
    [Crossref]
  31. E. Baranoff and B. F. Curchod, “FIrpic: archetypal blue phosphorescent emitter for electroluminescence,” Dalton Trans. 44(18), 8318–8329 (2015).
    [Crossref]
  32. T. A. Hamdalla and T. A. Hanafy, “Optical properties studies for PVA/Gd, La, Er or Y chlorides based on structural modification,” Optik 127(2), 878–882 (2016).
    [Crossref]
  33. A. Singhal, M. Kaur, K. Dubey, Y. Bhardwaj, D. Jain, C. Pillai, and A. Tyagi, “Polyvinyl alcohol–In 2 O 3 nanocomposite films: synthesis, characterization and gas sensing properties,” RSC Adv. 2(18), 7180–7189 (2012).
    [Crossref]
  34. O. G. Abdullah, S. B. Aziz, and M. A. Rasheed, “Structural and optical characterization of PVA: KMnO4 based solid polymer electrolyte,” Results Phys. 6, 1103–1108 (2016).
    [Crossref]
  35. I. Omkaram, R. S. Chakradhar, and J. L. Rao, “EPR, optical, infrared and Raman studies of VO2+ ions in polyvinylalcohol films,” Phys. B 388(1-2), 318–325 (2007).
    [Crossref]
  36. K. Lei, F. Li, C. Mu, J. Wang, Q. Zhao, C. Chen, and J. Chen, “High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes,” Energy Environ. Sci. 10(2), 552–557 (2017).
    [Crossref]
  37. W. L. Li, Y. C. Kong, G. W. Chen, and H. R. Yang, “Coexistence of conventional solitons and stretched pulses in a fiber laser mode-locked by carbon nanotubes,” Laser Phys. 25(4), 045103 (2015).
    [Crossref]
  38. P. Hammer, M. Baker, C. Lenardi, and W. Gissler, “Synthesis of carbon nitride films at low temperatures,” J. Vac. Sci. Technol., A 15(1), 107–112 (1997).
    [Crossref]
  39. J. Mehta, P. Vinayak, S. K. Tuteja, V. A. Chhabra, N. Bhardwaj, A. Paul, K.-H. Kim, and A. Deep, “Graphene modified screen printed immunosensor for highly sensitive detection of parathion,” Biosens. Bioelectron. 83, 339–346 (2016).
    [Crossref]
  40. Y. Yap, S. Kida, T. Aoyama, Y. Mori, and T. Sasaki, “Influence of negative dc bias voltage on structural transformation of carbon nitride at 600 C,” Appl. Phys. Lett. 73(7), 915–917 (1998).
    [Crossref]
  41. J. B. DeCoste and G. W. Peterson, “Preparation of hydrophobic metal-organic frameworks via plasma enhanced chemical vapor deposition of perfluoroalkanes for the removal of ammonia,” J. Visualized Exp. 80, 51175 (2013).
    [Crossref]
  42. O. G. Abdullah, S. B. Aziz, K. M. Omer, and Y. M. Salih, “Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite,” J. Mater. Sci.: Mater. Electron. 26(7), 5303–5309 (2015).
    [Crossref]
  43. R. Herda, S. Kivistö, and O. G. Okhotnikov, “Dynamic gain induced pulse shortening in Q-switched lasers,” Opt. Lett. 33(9), 1011–1013 (2008).
    [Crossref]
  44. C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi 2 Se 3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
    [Crossref]

2019 (1)

B. Huang, L. Du, Q. Yi, L. Yang, J. Li, L. Miao, C. Zhao, and S. Wen, “Bulk-structured PtSe 2 for femtosecond fiber laser mode-locking,” Sci. Rep. 27(3), 2604–2611 (2019).
[Crossref]

2018 (2)

R. Zhao, J. He, X. Su, Y. Wang, X. Sun, H. Nie, B. Zhang, and K. Yang, “Tunable High-Power Q-Switched Fiber Laser Based on BP-PVA Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–5 (2018).
[Crossref]

Y. Shi, H. Long, S. Liu, Y. H. Tsang, and Q. Wen, “Ultrasmall 2D NbSe 2 based quantum dots used for low threshold ultrafast lasers,” J. Mater. Chem. C 6(46), 12638–12642 (2018).
[Crossref]

2017 (2)

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

K. Lei, F. Li, C. Mu, J. Wang, Q. Zhao, C. Chen, and J. Chen, “High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes,” Energy Environ. Sci. 10(2), 552–557 (2017).
[Crossref]

2016 (3)

O. G. Abdullah, S. B. Aziz, and M. A. Rasheed, “Structural and optical characterization of PVA: KMnO4 based solid polymer electrolyte,” Results Phys. 6, 1103–1108 (2016).
[Crossref]

T. A. Hamdalla and T. A. Hanafy, “Optical properties studies for PVA/Gd, La, Er or Y chlorides based on structural modification,” Optik 127(2), 878–882 (2016).
[Crossref]

J. Mehta, P. Vinayak, S. K. Tuteja, V. A. Chhabra, N. Bhardwaj, A. Paul, K.-H. Kim, and A. Deep, “Graphene modified screen printed immunosensor for highly sensitive detection of parathion,” Biosens. Bioelectron. 83, 339–346 (2016).
[Crossref]

2015 (5)

E. Baranoff and B. F. Curchod, “FIrpic: archetypal blue phosphorescent emitter for electroluminescence,” Dalton Trans. 44(18), 8318–8329 (2015).
[Crossref]

O. G. Abdullah, S. B. Aziz, K. M. Omer, and Y. M. Salih, “Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite,” J. Mater. Sci.: Mater. Electron. 26(7), 5303–5309 (2015).
[Crossref]

W. L. Li, Y. C. Kong, G. W. Chen, and H. R. Yang, “Coexistence of conventional solitons and stretched pulses in a fiber laser mode-locked by carbon nanotubes,” Laser Phys. 25(4), 045103 (2015).
[Crossref]

J. Boulet, A. Mohammadpour, and K. Shankar, “Insights into the solution crystallization of oriented Alq3 and Znq2 microprisms and nanorods,” J. Nanosci. Nanotechnol. 15(9), 6680–6689 (2015).
[Crossref]

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS 2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref]

2014 (1)

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-µm fiber lasers Q-switched by a broadband few-layer MoS 2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

2013 (4)

Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, and H. Xu, “1.06 µm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi 2 Se 3 as a saturable absorber,” Opt. Express 21(24), 29516–29522 (2013).
[Crossref]

Y. Gao, T. Zhao, C. Li, W. Ge, Q. Wu, Z. Shi, G. Niu, J. Yu, Z. Fan, and Y. J. O. C. Wang, “Diode-side-pumped passively Q-switched Nd: YAG laser at 1123 nm with reflective single walled carbon nanotube saturable absorber,” Opt. Commun. 286(1), 261–264 (2013).
[Crossref]

M.-J. Jung, E. Jeong, Y. Kim, and Y.-S. Lee, “Influence of the textual properties of activated carbon nanofibers on the performance of electric double-layer capacitors,” J. Ind. Eng. Chem. 19(4), 1315–1319 (2013).
[Crossref]

J. B. DeCoste and G. W. Peterson, “Preparation of hydrophobic metal-organic frameworks via plasma enhanced chemical vapor deposition of perfluoroalkanes for the removal of ammonia,” J. Visualized Exp. 80, 51175 (2013).
[Crossref]

2012 (7)

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi 2 Se 3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref]

O. Y. Kim and J. Y. Lee, “High efficiency deep blue phosphorescent organic light-emitting diodes using a tetraphenylsilane based phosphine oxide host material,” J. Ind. Eng. Chem. 18(3), 1029–1032 (2012).
[Crossref]

A. Singhal, M. Kaur, K. Dubey, Y. Bhardwaj, D. Jain, C. Pillai, and A. Tyagi, “Polyvinyl alcohol–In 2 O 3 nanocomposite films: synthesis, characterization and gas sensing properties,” RSC Adv. 2(18), 7180–7189 (2012).
[Crossref]

H.-K. Choi, S.-H. Jin, J.-W. Park, S. Y. Kim, and Y.-S. Gal, “Electro-optical and electrochemical properties of poly(2-ethynylthiophene),” J. Ind. Eng. Chem. 18(2), 814–817 (2012).
[Crossref]

J.-M. Kim, S. K. Jha, D.-H. Lee, R. Chand, J.-H. Jeun, and Y.-S. Kim, “A flexible pentacene thin film transistors as disposable DNA hybridization sensor,” J. Ind. Eng. Chem. 18(5), 1642–1646 (2012).
[Crossref]

L. Wei, D.-P. Zhou, H. Y. Fan, and W.-K. Liu, “Graphene-based $ Q $-switched erbium-doped fiber laser with wide pulse-repetition-rate range,” IEEE Photonics Technol. Lett. 24(4), 309–311 (2012).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

2011 (1)

2010 (1)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

2009 (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” IEEE Photonics Technol. Lett. 19(19), 3077–3083 (2009).
[Crossref]

2008 (3)

2007 (3)

M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 µm,” Opt. Lett. 32(8), 897–899 (2007).
[Crossref]

I. Omkaram, R. S. Chakradhar, and J. L. Rao, “EPR, optical, infrared and Raman studies of VO2+ ions in polyvinylalcohol films,” Phys. B 388(1-2), 318–325 (2007).
[Crossref]

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref]

2006 (2)

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
[Crossref]

2003 (2)

R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
[Crossref]

P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” Nature 425(6954), 158–162 (2003).
[Crossref]

1998 (1)

Y. Yap, S. Kida, T. Aoyama, Y. Mori, and T. Sasaki, “Influence of negative dc bias voltage on structural transformation of carbon nitride at 600 C,” Appl. Phys. Lett. 73(7), 915–917 (1998).
[Crossref]

1997 (2)

P. Hammer, M. Baker, C. Lenardi, and W. Gissler, “Synthesis of carbon nitride films at low temperatures,” J. Vac. Sci. Technol., A 15(1), 107–112 (1997).
[Crossref]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Abdullah, O. G.

O. G. Abdullah, S. B. Aziz, and M. A. Rasheed, “Structural and optical characterization of PVA: KMnO4 based solid polymer electrolyte,” Results Phys. 6, 1103–1108 (2016).
[Crossref]

O. G. Abdullah, S. B. Aziz, K. M. Omer, and Y. M. Salih, “Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite,” J. Mater. Sci.: Mater. Electron. 26(7), 5303–5309 (2015).
[Crossref]

Aguiló, M.

Alani, I.

S. Wadi Harun, S. Salam, A. Al-Masoodi, m. hazaa, A. H. H. Al-Masoodi, W. Haliza Abdul Majid, M. Yasin, W. Ru Wong, and I. Alani, Tris-(8-Hydroxyquinoline) Aluminum Thin Film as Saturable Absorber for Passively Q-Switched Erbium-Doped Fiber Laser (2019).

Al-Masoodi, A.

S. Wadi Harun, S. Salam, A. Al-Masoodi, m. hazaa, A. H. H. Al-Masoodi, W. Haliza Abdul Majid, M. Yasin, W. Ru Wong, and I. Alani, Tris-(8-Hydroxyquinoline) Aluminum Thin Film as Saturable Absorber for Passively Q-Switched Erbium-Doped Fiber Laser (2019).

Al-Masoodi, A. H. H.

S. Wadi Harun, S. Salam, A. Al-Masoodi, m. hazaa, A. H. H. Al-Masoodi, W. Haliza Abdul Majid, M. Yasin, W. Ru Wong, and I. Alani, Tris-(8-Hydroxyquinoline) Aluminum Thin Film as Saturable Absorber for Passively Q-Switched Erbium-Doped Fiber Laser (2019).

Aoyama, T.

Y. Yap, S. Kida, T. Aoyama, Y. Mori, and T. Sasaki, “Influence of negative dc bias voltage on structural transformation of carbon nitride at 600 C,” Appl. Phys. Lett. 73(7), 915–917 (1998).
[Crossref]

Aziz, S. B.

O. G. Abdullah, S. B. Aziz, and M. A. Rasheed, “Structural and optical characterization of PVA: KMnO4 based solid polymer electrolyte,” Results Phys. 6, 1103–1108 (2016).
[Crossref]

O. G. Abdullah, S. B. Aziz, K. M. Omer, and Y. M. Salih, “Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite,” J. Mater. Sci.: Mater. Electron. 26(7), 5303–5309 (2015).
[Crossref]

Baker, M.

P. Hammer, M. Baker, C. Lenardi, and W. Gissler, “Synthesis of carbon nitride films at low temperatures,” J. Vac. Sci. Technol., A 15(1), 107–112 (1997).
[Crossref]

Bao, Q.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” IEEE Photonics Technol. Lett. 19(19), 3077–3083 (2009).
[Crossref]

Bao, Z.

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Baranoff, E.

E. Baranoff and B. F. Curchod, “FIrpic: archetypal blue phosphorescent emitter for electroluminescence,” Dalton Trans. 44(18), 8318–8329 (2015).
[Crossref]

Bhardwaj, N.

J. Mehta, P. Vinayak, S. K. Tuteja, V. A. Chhabra, N. Bhardwaj, A. Paul, K.-H. Kim, and A. Deep, “Graphene modified screen printed immunosensor for highly sensitive detection of parathion,” Biosens. Bioelectron. 83, 339–346 (2016).
[Crossref]

Bhardwaj, Y.

A. Singhal, M. Kaur, K. Dubey, Y. Bhardwaj, D. Jain, C. Pillai, and A. Tyagi, “Polyvinyl alcohol–In 2 O 3 nanocomposite films: synthesis, characterization and gas sensing properties,” RSC Adv. 2(18), 7180–7189 (2012).
[Crossref]

Boulet, J.

J. Boulet, A. Mohammadpour, and K. Shankar, “Insights into the solution crystallization of oriented Alq3 and Znq2 microprisms and nanorods,” J. Nanosci. Nanotechnol. 15(9), 6680–6689 (2015).
[Crossref]

Briseno, A. L.

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Brown, J.

R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
[Crossref]

Cai, Z.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-µm fiber lasers Q-switched by a broadband few-layer MoS 2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, and H. Xu, “1.06 µm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi 2 Se 3 as a saturable absorber,” Opt. Express 21(24), 29516–29522 (2013).
[Crossref]

Chakradhar, R. S.

I. Omkaram, R. S. Chakradhar, and J. L. Rao, “EPR, optical, infrared and Raman studies of VO2+ ions in polyvinylalcohol films,” Phys. B 388(1-2), 318–325 (2007).
[Crossref]

Chand, R.

J.-M. Kim, S. K. Jha, D.-H. Lee, R. Chand, J.-H. Jeun, and Y.-S. Kim, “A flexible pentacene thin film transistors as disposable DNA hybridization sensor,” J. Ind. Eng. Chem. 18(5), 1642–1646 (2012).
[Crossref]

Chen, C.

K. Lei, F. Li, C. Mu, J. Wang, Q. Zhao, C. Chen, and J. Chen, “High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes,” Energy Environ. Sci. 10(2), 552–557 (2017).
[Crossref]

Chen, G. W.

W. L. Li, Y. C. Kong, G. W. Chen, and H. R. Yang, “Coexistence of conventional solitons and stretched pulses in a fiber laser mode-locked by carbon nanotubes,” Laser Phys. 25(4), 045103 (2015).
[Crossref]

Chen, H.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS 2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref]

Chen, J.

K. Lei, F. Li, C. Mu, J. Wang, Q. Zhao, C. Chen, and J. Chen, “High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes,” Energy Environ. Sci. 10(2), 552–557 (2017).
[Crossref]

Chen, Y.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS 2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi 2 Se 3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref]

Cheng, H.

Chhabra, V. A.

J. Mehta, P. Vinayak, S. K. Tuteja, V. A. Chhabra, N. Bhardwaj, A. Paul, K.-H. Kim, and A. Deep, “Graphene modified screen printed immunosensor for highly sensitive detection of parathion,” Biosens. Bioelectron. 83, 339–346 (2016).
[Crossref]

Cho, W. B.

Choi, H.-K.

H.-K. Choi, S.-H. Jin, J.-W. Park, S. Y. Kim, and Y.-S. Gal, “Electro-optical and electrochemical properties of poly(2-ethynylthiophene),” J. Ind. Eng. Chem. 18(2), 814–817 (2012).
[Crossref]

Clark, J.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Coates, N. E.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref]

Curchod, B. F.

E. Baranoff and B. F. Curchod, “FIrpic: archetypal blue phosphorescent emitter for electroluminescence,” Dalton Trans. 44(18), 8318–8329 (2015).
[Crossref]

Dante, M.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref]

DeCoste, J. B.

J. B. DeCoste and G. W. Peterson, “Preparation of hydrophobic metal-organic frameworks via plasma enhanced chemical vapor deposition of perfluoroalkanes for the removal of ammonia,” J. Visualized Exp. 80, 51175 (2013).
[Crossref]

Deep, A.

J. Mehta, P. Vinayak, S. K. Tuteja, V. A. Chhabra, N. Bhardwaj, A. Paul, K.-H. Kim, and A. Deep, “Graphene modified screen printed immunosensor for highly sensitive detection of parathion,” Biosens. Bioelectron. 83, 339–346 (2016).
[Crossref]

Ding, J.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS 2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref]

Du, L.

B. Huang, L. Du, Q. Yi, L. Yang, J. Li, L. Miao, C. Zhao, and S. Wen, “Bulk-structured PtSe 2 for femtosecond fiber laser mode-locking,” Sci. Rep. 27(3), 2604–2611 (2019).
[Crossref]

Dubey, K.

A. Singhal, M. Kaur, K. Dubey, Y. Bhardwaj, D. Jain, C. Pillai, and A. Tyagi, “Polyvinyl alcohol–In 2 O 3 nanocomposite films: synthesis, characterization and gas sensing properties,” RSC Adv. 2(18), 7180–7189 (2012).
[Crossref]

Fan, H. Y.

L. Wei, D.-P. Zhou, H. Y. Fan, and W.-K. Liu, “Graphene-based $ Q $-switched erbium-doped fiber laser with wide pulse-repetition-rate range,” IEEE Photonics Technol. Lett. 24(4), 309–311 (2012).
[Crossref]

Fan, Z.

Y. Gao, T. Zhao, C. Li, W. Ge, Q. Wu, Z. Shi, G. Niu, J. Yu, Z. Fan, and Y. J. O. C. Wang, “Diode-side-pumped passively Q-switched Nd: YAG laser at 1123 nm with reflective single walled carbon nanotube saturable absorber,” Opt. Commun. 286(1), 261–264 (2013).
[Crossref]

Forrest, S.

R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
[Crossref]

Forrest, S. R.

P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” Nature 425(6954), 158–162 (2003).
[Crossref]

P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, 2011), pp. 94–98.

Gal, Y.-S.

H.-K. Choi, S.-H. Jin, J.-W. Park, S. Y. Kim, and Y.-S. Gal, “Electro-optical and electrochemical properties of poly(2-ethynylthiophene),” J. Ind. Eng. Chem. 18(2), 814–817 (2012).
[Crossref]

Gao, Y.

Y. Gao, T. Zhao, C. Li, W. Ge, Q. Wu, Z. Shi, G. Niu, J. Yu, Z. Fan, and Y. J. O. C. Wang, “Diode-side-pumped passively Q-switched Nd: YAG laser at 1123 nm with reflective single walled carbon nanotube saturable absorber,” Opt. Commun. 286(1), 261–264 (2013).
[Crossref]

Garon, S.

R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
[Crossref]

Ge, W.

Y. Gao, T. Zhao, C. Li, W. Ge, Q. Wu, Z. Shi, G. Niu, J. Yu, Z. Fan, and Y. J. O. C. Wang, “Diode-side-pumped passively Q-switched Nd: YAG laser at 1123 nm with reflective single walled carbon nanotube saturable absorber,” Opt. Commun. 286(1), 261–264 (2013).
[Crossref]

Gissler, W.

P. Hammer, M. Baker, C. Lenardi, and W. Gissler, “Synthesis of carbon nitride films at low temperatures,” J. Vac. Sci. Technol., A 15(1), 107–112 (1997).
[Crossref]

Gwak, J.

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Haliza Abdul Majid, W.

S. Wadi Harun, S. Salam, A. Al-Masoodi, m. hazaa, A. H. H. Al-Masoodi, W. Haliza Abdul Majid, M. Yasin, W. Ru Wong, and I. Alani, Tris-(8-Hydroxyquinoline) Aluminum Thin Film as Saturable Absorber for Passively Q-Switched Erbium-Doped Fiber Laser (2019).

Hamdalla, T. A.

T. A. Hamdalla and T. A. Hanafy, “Optical properties studies for PVA/Gd, La, Er or Y chlorides based on structural modification,” Optik 127(2), 878–882 (2016).
[Crossref]

Hammer, P.

P. Hammer, M. Baker, C. Lenardi, and W. Gissler, “Synthesis of carbon nitride films at low temperatures,” J. Vac. Sci. Technol., A 15(1), 107–112 (1997).
[Crossref]

Hanafy, T. A.

T. A. Hamdalla and T. A. Hanafy, “Optical properties studies for PVA/Gd, La, Er or Y chlorides based on structural modification,” Optik 127(2), 878–882 (2016).
[Crossref]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

hazaa, m.

S. Wadi Harun, S. Salam, A. Al-Masoodi, m. hazaa, A. H. H. Al-Masoodi, W. Haliza Abdul Majid, M. Yasin, W. Ru Wong, and I. Alani, Tris-(8-Hydroxyquinoline) Aluminum Thin Film as Saturable Absorber for Passively Q-Switched Erbium-Doped Fiber Laser (2019).

He, J.

R. Zhao, J. He, X. Su, Y. Wang, X. Sun, H. Nie, B. Zhang, and K. Yang, “Tunable High-Power Q-Switched Fiber Laser Based on BP-PVA Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–5 (2018).
[Crossref]

Heeger, A. J.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref]

He-Ping, Z.

X. Shi-Xiang, L. Wen-Xue, H. Qiang, Z. Hui, and Z. He-Ping, “Efficient laser-diode end-pumped passively Q-switched mode-locked Yb: LYSO laser based on SESAM,” Chin. Phys. Lett. 25(2), 548–551 (2008).
[Crossref]

Herda, R.

Holmes, R.

R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
[Crossref]

Hosseinzadeh Kassani, S.

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Huang, B.

B. Huang, L. Du, Q. Yi, L. Yang, J. Li, L. Miao, C. Zhao, and S. Wen, “Bulk-structured PtSe 2 for femtosecond fiber laser mode-locking,” Sci. Rep. 27(3), 2604–2611 (2019).
[Crossref]

Huang, Y.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-µm fiber lasers Q-switched by a broadband few-layer MoS 2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, and H. Xu, “1.06 µm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi 2 Se 3 as a saturable absorber,” Opt. Express 21(24), 29516–29522 (2013).
[Crossref]

Hui, Z.

X. Shi-Xiang, L. Wen-Xue, H. Qiang, Z. Hui, and Z. He-Ping, “Efficient laser-diode end-pumped passively Q-switched mode-locked Yb: LYSO laser based on SESAM,” Chin. Phys. Lett. 25(2), 548–551 (2008).
[Crossref]

Jain, D.

A. Singhal, M. Kaur, K. Dubey, Y. Bhardwaj, D. Jain, C. Pillai, and A. Tyagi, “Polyvinyl alcohol–In 2 O 3 nanocomposite films: synthesis, characterization and gas sensing properties,” RSC Adv. 2(18), 7180–7189 (2012).
[Crossref]

Jeong, E.

M.-J. Jung, E. Jeong, Y. Kim, and Y.-S. Lee, “Influence of the textual properties of activated carbon nanofibers on the performance of electric double-layer capacitors,” J. Ind. Eng. Chem. 19(4), 1315–1319 (2013).
[Crossref]

Jeong, H.

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Jeun, J.-H.

J.-M. Kim, S. K. Jha, D.-H. Lee, R. Chand, J.-H. Jeun, and Y.-S. Kim, “A flexible pentacene thin film transistors as disposable DNA hybridization sensor,” J. Ind. Eng. Chem. 18(5), 1642–1646 (2012).
[Crossref]

Jha, S. K.

J.-M. Kim, S. K. Jha, D.-H. Lee, R. Chand, J.-H. Jeun, and Y.-S. Kim, “A flexible pentacene thin film transistors as disposable DNA hybridization sensor,” J. Ind. Eng. Chem. 18(5), 1642–1646 (2012).
[Crossref]

Jiang, S.

Jin, S.-H.

H.-K. Choi, S.-H. Jin, J.-W. Park, S. Y. Kim, and Y.-S. Gal, “Electro-optical and electrochemical properties of poly(2-ethynylthiophene),” J. Ind. Eng. Chem. 18(2), 814–817 (2012).
[Crossref]

Jung, M.-J.

M.-J. Jung, E. Jeong, Y. Kim, and Y.-S. Lee, “Influence of the textual properties of activated carbon nanofibers on the performance of electric double-layer capacitors,” J. Ind. Eng. Chem. 19(4), 1315–1319 (2013).
[Crossref]

Kaur, M.

A. Singhal, M. Kaur, K. Dubey, Y. Bhardwaj, D. Jain, C. Pillai, and A. Tyagi, “Polyvinyl alcohol–In 2 O 3 nanocomposite films: synthesis, characterization and gas sensing properties,” RSC Adv. 2(18), 7180–7189 (2012).
[Crossref]

Khazaeinezhad, R.

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Kida, S.

Y. Yap, S. Kida, T. Aoyama, Y. Mori, and T. Sasaki, “Influence of negative dc bias voltage on structural transformation of carbon nitride at 600 C,” Appl. Phys. Lett. 73(7), 915–917 (1998).
[Crossref]

Kim, J. Y.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref]

Kim, J.-M.

J.-M. Kim, S. K. Jha, D.-H. Lee, R. Chand, J.-H. Jeun, and Y.-S. Kim, “A flexible pentacene thin film transistors as disposable DNA hybridization sensor,” J. Ind. Eng. Chem. 18(5), 1642–1646 (2012).
[Crossref]

Kim, K.-H.

J. Mehta, P. Vinayak, S. K. Tuteja, V. A. Chhabra, N. Bhardwaj, A. Paul, K.-H. Kim, and A. Deep, “Graphene modified screen printed immunosensor for highly sensitive detection of parathion,” Biosens. Bioelectron. 83, 339–346 (2016).
[Crossref]

Kim, O. Y.

O. Y. Kim and J. Y. Lee, “High efficiency deep blue phosphorescent organic light-emitting diodes using a tetraphenylsilane based phosphine oxide host material,” J. Ind. Eng. Chem. 18(3), 1029–1032 (2012).
[Crossref]

Kim, S. Y.

H.-K. Choi, S.-H. Jin, J.-W. Park, S. Y. Kim, and Y.-S. Gal, “Electro-optical and electrochemical properties of poly(2-ethynylthiophene),” J. Ind. Eng. Chem. 18(2), 814–817 (2012).
[Crossref]

Kim, Y.

M.-J. Jung, E. Jeong, Y. Kim, and Y.-S. Lee, “Influence of the textual properties of activated carbon nanofibers on the performance of electric double-layer capacitors,” J. Ind. Eng. Chem. 19(4), 1315–1319 (2013).
[Crossref]

Kim, Y.-S.

J.-M. Kim, S. K. Jha, D.-H. Lee, R. Chand, J.-H. Jeun, and Y.-S. Kim, “A flexible pentacene thin film transistors as disposable DNA hybridization sensor,” J. Ind. Eng. Chem. 18(5), 1642–1646 (2012).
[Crossref]

Kivistö, S.

Kong, Y. C.

W. L. Li, Y. C. Kong, G. W. Chen, and H. R. Yang, “Coexistence of conventional solitons and stretched pulses in a fiber laser mode-locked by carbon nanotubes,” Laser Phys. 25(4), 045103 (2015).
[Crossref]

Kwong, R.

R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
[Crossref]

Lanzani, G.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Lee, D.-H.

J.-M. Kim, S. K. Jha, D.-H. Lee, R. Chand, J.-H. Jeun, and Y.-S. Kim, “A flexible pentacene thin film transistors as disposable DNA hybridization sensor,” J. Ind. Eng. Chem. 18(5), 1642–1646 (2012).
[Crossref]

Lee, J. Y.

O. Y. Kim and J. Y. Lee, “High efficiency deep blue phosphorescent organic light-emitting diodes using a tetraphenylsilane based phosphine oxide host material,” J. Ind. Eng. Chem. 18(3), 1029–1032 (2012).
[Crossref]

Lee, K.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref]

Lee, S.

Lee, Y.-S.

M.-J. Jung, E. Jeong, Y. Kim, and Y.-S. Lee, “Influence of the textual properties of activated carbon nanofibers on the performance of electric double-layer capacitors,” J. Ind. Eng. Chem. 19(4), 1315–1319 (2013).
[Crossref]

Lei, K.

K. Lei, F. Li, C. Mu, J. Wang, Q. Zhao, C. Chen, and J. Chen, “High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes,” Energy Environ. Sci. 10(2), 552–557 (2017).
[Crossref]

Leigh, M.

Lenardi, C.

P. Hammer, M. Baker, C. Lenardi, and W. Gissler, “Synthesis of carbon nitride films at low temperatures,” J. Vac. Sci. Technol., A 15(1), 107–112 (1997).
[Crossref]

Li, C.

Y. Gao, T. Zhao, C. Li, W. Ge, Q. Wu, Z. Shi, G. Niu, J. Yu, Z. Fan, and Y. J. O. C. Wang, “Diode-side-pumped passively Q-switched Nd: YAG laser at 1123 nm with reflective single walled carbon nanotube saturable absorber,” Opt. Commun. 286(1), 261–264 (2013).
[Crossref]

Li, F.

K. Lei, F. Li, C. Mu, J. Wang, Q. Zhao, C. Chen, and J. Chen, “High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes,” Energy Environ. Sci. 10(2), 552–557 (2017).
[Crossref]

Li, J.

B. Huang, L. Du, Q. Yi, L. Yang, J. Li, L. Miao, C. Zhao, and S. Wen, “Bulk-structured PtSe 2 for femtosecond fiber laser mode-locking,” Sci. Rep. 27(3), 2604–2611 (2019).
[Crossref]

Li, N.

A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
[Crossref]

Li, W. L.

W. L. Li, Y. C. Kong, G. W. Chen, and H. R. Yang, “Coexistence of conventional solitons and stretched pulses in a fiber laser mode-locked by carbon nanotubes,” Laser Phys. 25(4), 045103 (2015).
[Crossref]

Li, Y.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-µm fiber lasers Q-switched by a broadband few-layer MoS 2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Lin, Z.

Ling, M. M.

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Liu, A.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS 2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref]

Liu, J.

Liu, S.

Y. Shi, H. Long, S. Liu, Y. H. Tsang, and Q. Wen, “Ultrasmall 2D NbSe 2 based quantum dots used for low threshold ultrafast lasers,” J. Mater. Chem. C 6(46), 12638–12642 (2018).
[Crossref]

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Liu, W.-K.

L. Wei, D.-P. Zhou, H. Y. Fan, and W.-K. Liu, “Graphene-based $ Q $-switched erbium-doped fiber laser with wide pulse-repetition-rate range,” IEEE Photonics Technol. Lett. 24(4), 309–311 (2012).
[Crossref]

Loh, K. P.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” IEEE Photonics Technol. Lett. 19(19), 3077–3083 (2009).
[Crossref]

Long, H.

Y. Shi, H. Long, S. Liu, Y. H. Tsang, and Q. Wen, “Ultrasmall 2D NbSe 2 based quantum dots used for low threshold ultrafast lasers,” J. Mater. Chem. C 6(46), 12638–12642 (2018).
[Crossref]

Lu, S.

Luo, Z.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-µm fiber lasers Q-switched by a broadband few-layer MoS 2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, and H. Xu, “1.06 µm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi 2 Se 3 as a saturable absorber,” Opt. Express 21(24), 29516–29522 (2013).
[Crossref]

Mädler, L.

A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
[Crossref]

Mannsfeld, S. C.

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Mateos, X.

Mehta, J.

J. Mehta, P. Vinayak, S. K. Tuteja, V. A. Chhabra, N. Bhardwaj, A. Paul, K.-H. Kim, and A. Deep, “Graphene modified screen printed immunosensor for highly sensitive detection of parathion,” Biosens. Bioelectron. 83, 339–346 (2016).
[Crossref]

Miao, L.

B. Huang, L. Du, Q. Yi, L. Yang, J. Li, L. Miao, C. Zhao, and S. Wen, “Bulk-structured PtSe 2 for femtosecond fiber laser mode-locking,” Sci. Rep. 27(3), 2604–2611 (2019).
[Crossref]

Mohammadpour, A.

J. Boulet, A. Mohammadpour, and K. Shankar, “Insights into the solution crystallization of oriented Alq3 and Znq2 microprisms and nanorods,” J. Nanosci. Nanotechnol. 15(9), 6680–6689 (2015).
[Crossref]

Mori, Y.

Y. Yap, S. Kida, T. Aoyama, Y. Mori, and T. Sasaki, “Influence of negative dc bias voltage on structural transformation of carbon nitride at 600 C,” Appl. Phys. Lett. 73(7), 915–917 (1998).
[Crossref]

Moses, D.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref]

Mu, C.

K. Lei, F. Li, C. Mu, J. Wang, Q. Zhao, C. Chen, and J. Chen, “High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes,” Energy Environ. Sci. 10(2), 552–557 (2017).
[Crossref]

Nel, A.

A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
[Crossref]

Nguyen, T.-Q.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref]

Ni, Z.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” IEEE Photonics Technol. Lett. 19(19), 3077–3083 (2009).
[Crossref]

Nie, H.

R. Zhao, J. He, X. Su, Y. Wang, X. Sun, H. Nie, B. Zhang, and K. Yang, “Tunable High-Power Q-Switched Fiber Laser Based on BP-PVA Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–5 (2018).
[Crossref]

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Niu, G.

Y. Gao, T. Zhao, C. Li, W. Ge, Q. Wu, Z. Shi, G. Niu, J. Yu, Z. Fan, and Y. J. O. C. Wang, “Diode-side-pumped passively Q-switched Nd: YAG laser at 1123 nm with reflective single walled carbon nanotube saturable absorber,” Opt. Commun. 286(1), 261–264 (2013).
[Crossref]

Oh, K.

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Okhotnikov, O. G.

Omer, K. M.

O. G. Abdullah, S. B. Aziz, K. M. Omer, and Y. M. Salih, “Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite,” J. Mater. Sci.: Mater. Electron. 26(7), 5303–5309 (2015).
[Crossref]

Omkaram, I.

I. Omkaram, R. S. Chakradhar, and J. L. Rao, “EPR, optical, infrared and Raman studies of VO2+ ions in polyvinylalcohol films,” Phys. B 388(1-2), 318–325 (2007).
[Crossref]

Park, J.-W.

H.-K. Choi, S.-H. Jin, J.-W. Park, S. Y. Kim, and Y.-S. Gal, “Electro-optical and electrochemical properties of poly(2-ethynylthiophene),” J. Ind. Eng. Chem. 18(2), 814–817 (2012).
[Crossref]

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Paul, A.

J. Mehta, P. Vinayak, S. K. Tuteja, V. A. Chhabra, N. Bhardwaj, A. Paul, K.-H. Kim, and A. Deep, “Graphene modified screen printed immunosensor for highly sensitive detection of parathion,” Biosens. Bioelectron. 83, 339–346 (2016).
[Crossref]

Paulson, B.

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Peng, J.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-µm fiber lasers Q-switched by a broadband few-layer MoS 2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Peterson, G. W.

J. B. DeCoste and G. W. Peterson, “Preparation of hydrophobic metal-organic frameworks via plasma enhanced chemical vapor deposition of perfluoroalkanes for the removal of ammonia,” J. Visualized Exp. 80, 51175 (2013).
[Crossref]

Peumans, P.

P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” Nature 425(6954), 158–162 (2003).
[Crossref]

P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, 2011), pp. 94–98.

Peyghambarian, N.

Pillai, C.

A. Singhal, M. Kaur, K. Dubey, Y. Bhardwaj, D. Jain, C. Pillai, and A. Tyagi, “Polyvinyl alcohol–In 2 O 3 nanocomposite films: synthesis, characterization and gas sensing properties,” RSC Adv. 2(18), 7180–7189 (2012).
[Crossref]

Pujol, M. C.

Qi, X.

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Qiang, H.

X. Shi-Xiang, L. Wen-Xue, H. Qiang, Z. Hui, and Z. He-Ping, “Efficient laser-diode end-pumped passively Q-switched mode-locked Yb: LYSO laser based on SESAM,” Chin. Phys. Lett. 25(2), 548–551 (2008).
[Crossref]

Rao, J. L.

I. Omkaram, R. S. Chakradhar, and J. L. Rao, “EPR, optical, infrared and Raman studies of VO2+ ions in polyvinylalcohol films,” Phys. B 388(1-2), 318–325 (2007).
[Crossref]

Rasheed, M. A.

O. G. Abdullah, S. B. Aziz, and M. A. Rasheed, “Structural and optical characterization of PVA: KMnO4 based solid polymer electrolyte,” Results Phys. 6, 1103–1108 (2016).
[Crossref]

Reese, C.

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Rivier, S.

Roberts, M. E.

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Rotermund, F.

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

A. Schmidt, S. Rivier, G. Steinmeyer, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, X. Mateos, and M. Aguiló, “Passive mode locking of Yb: KLuW using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33(7), 729–731 (2008).
[Crossref]

Ru Wong, W.

S. Wadi Harun, S. Salam, A. Al-Masoodi, m. hazaa, A. H. H. Al-Masoodi, W. Haliza Abdul Majid, M. Yasin, W. Ru Wong, and I. Alani, Tris-(8-Hydroxyquinoline) Aluminum Thin Film as Saturable Absorber for Passively Q-Switched Erbium-Doped Fiber Laser (2019).

Ruan, S.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS 2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref]

Salam, S.

S. Wadi Harun, S. Salam, A. Al-Masoodi, m. hazaa, A. H. H. Al-Masoodi, W. Haliza Abdul Majid, M. Yasin, W. Ru Wong, and I. Alani, Tris-(8-Hydroxyquinoline) Aluminum Thin Film as Saturable Absorber for Passively Q-Switched Erbium-Doped Fiber Laser (2019).

Salih, Y. M.

O. G. Abdullah, S. B. Aziz, K. M. Omer, and Y. M. Salih, “Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite,” J. Mater. Sci.: Mater. Electron. 26(7), 5303–5309 (2015).
[Crossref]

Sasaki, T.

Y. Yap, S. Kida, T. Aoyama, Y. Mori, and T. Sasaki, “Influence of negative dc bias voltage on structural transformation of carbon nitride at 600 C,” Appl. Phys. Lett. 73(7), 915–917 (1998).
[Crossref]

Schmidt, A.

Shankar, K.

J. Boulet, A. Mohammadpour, and K. Shankar, “Insights into the solution crystallization of oriented Alq3 and Znq2 microprisms and nanorods,” J. Nanosci. Nanotechnol. 15(9), 6680–6689 (2015).
[Crossref]

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” IEEE Photonics Technol. Lett. 19(19), 3077–3083 (2009).
[Crossref]

Shi, W.

Shi, Y.

Y. Shi, H. Long, S. Liu, Y. H. Tsang, and Q. Wen, “Ultrasmall 2D NbSe 2 based quantum dots used for low threshold ultrafast lasers,” J. Mater. Chem. C 6(46), 12638–12642 (2018).
[Crossref]

Shi, Z.

Y. Gao, T. Zhao, C. Li, W. Ge, Q. Wu, Z. Shi, G. Niu, J. Yu, Z. Fan, and Y. J. O. C. Wang, “Diode-side-pumped passively Q-switched Nd: YAG laser at 1123 nm with reflective single walled carbon nanotube saturable absorber,” Opt. Commun. 286(1), 261–264 (2013).
[Crossref]

Shi-Xiang, X.

X. Shi-Xiang, L. Wen-Xue, H. Qiang, Z. Hui, and Z. He-Ping, “Efficient laser-diode end-pumped passively Q-switched mode-locked Yb: LYSO laser based on SESAM,” Chin. Phys. Lett. 25(2), 548–551 (2008).
[Crossref]

Singhal, A.

A. Singhal, M. Kaur, K. Dubey, Y. Bhardwaj, D. Jain, C. Pillai, and A. Tyagi, “Polyvinyl alcohol–In 2 O 3 nanocomposite films: synthesis, characterization and gas sensing properties,” RSC Adv. 2(18), 7180–7189 (2012).
[Crossref]

Steinmeyer, G.

Su, X.

R. Zhao, J. He, X. Su, Y. Wang, X. Sun, H. Nie, B. Zhang, and K. Yang, “Tunable High-Power Q-Switched Fiber Laser Based on BP-PVA Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–5 (2018).
[Crossref]

Sun, X.

R. Zhao, J. He, X. Su, Y. Wang, X. Sun, H. Nie, B. Zhang, and K. Yang, “Tunable High-Power Q-Switched Fiber Laser Based on BP-PVA Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–5 (2018).
[Crossref]

Tang, D.

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi 2 Se 3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Tang, D. Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” IEEE Photonics Technol. Lett. 19(19), 3077–3083 (2009).
[Crossref]

Thompson, M.

R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
[Crossref]

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Tsang, Y. H.

Y. Shi, H. Long, S. Liu, Y. H. Tsang, and Q. Wen, “Ultrasmall 2D NbSe 2 based quantum dots used for low threshold ultrafast lasers,” J. Mater. Chem. C 6(46), 12638–12642 (2018).
[Crossref]

Tseng, R. J.

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Tung, Y.-J.

R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
[Crossref]

Tuteja, S. K.

J. Mehta, P. Vinayak, S. K. Tuteja, V. A. Chhabra, N. Bhardwaj, A. Paul, K.-H. Kim, and A. Deep, “Graphene modified screen printed immunosensor for highly sensitive detection of parathion,” Biosens. Bioelectron. 83, 339–346 (2016).
[Crossref]

Tyagi, A.

A. Singhal, M. Kaur, K. Dubey, Y. Bhardwaj, D. Jain, C. Pillai, and A. Tyagi, “Polyvinyl alcohol–In 2 O 3 nanocomposite films: synthesis, characterization and gas sensing properties,” RSC Adv. 2(18), 7180–7189 (2012).
[Crossref]

Uchida, S.

P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” Nature 425(6954), 158–162 (2003).
[Crossref]

P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, 2011), pp. 94–98.

Vinayak, P.

J. Mehta, P. Vinayak, S. K. Tuteja, V. A. Chhabra, N. Bhardwaj, A. Paul, K.-H. Kim, and A. Deep, “Graphene modified screen printed immunosensor for highly sensitive detection of parathion,” Biosens. Bioelectron. 83, 339–346 (2016).
[Crossref]

Wadi Harun, S.

S. Wadi Harun, S. Salam, A. Al-Masoodi, m. hazaa, A. H. H. Al-Masoodi, W. Haliza Abdul Majid, M. Yasin, W. Ru Wong, and I. Alani, Tris-(8-Hydroxyquinoline) Aluminum Thin Film as Saturable Absorber for Passively Q-Switched Erbium-Doped Fiber Laser (2019).

Wang, J.

K. Lei, F. Li, C. Mu, J. Wang, Q. Zhao, C. Chen, and J. Chen, “High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes,” Energy Environ. Sci. 10(2), 552–557 (2017).
[Crossref]

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS 2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref]

M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 µm,” Opt. Lett. 32(8), 897–899 (2007).
[Crossref]

Wang, P.

Wang, Y.

R. Zhao, J. He, X. Su, Y. Wang, X. Sun, H. Nie, B. Zhang, and K. Yang, “Tunable High-Power Q-Switched Fiber Laser Based on BP-PVA Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–5 (2018).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” IEEE Photonics Technol. Lett. 19(19), 3077–3083 (2009).
[Crossref]

Wang, Y. J. O. C.

Y. Gao, T. Zhao, C. Li, W. Ge, Q. Wu, Z. Shi, G. Niu, J. Yu, Z. Fan, and Y. J. O. C. Wang, “Diode-side-pumped passively Q-switched Nd: YAG laser at 1123 nm with reflective single walled carbon nanotube saturable absorber,” Opt. Commun. 286(1), 261–264 (2013).
[Crossref]

Wang, Z.

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi 2 Se 3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Wei, L.

L. Wei, D.-P. Zhou, H. Y. Fan, and W.-K. Liu, “Graphene-based $ Q $-switched erbium-doped fiber laser with wide pulse-repetition-rate range,” IEEE Photonics Technol. Lett. 24(4), 309–311 (2012).
[Crossref]

Wen, Q.

Y. Shi, H. Long, S. Liu, Y. H. Tsang, and Q. Wen, “Ultrasmall 2D NbSe 2 based quantum dots used for low threshold ultrafast lasers,” J. Mater. Chem. C 6(46), 12638–12642 (2018).
[Crossref]

Wen, S.

B. Huang, L. Du, Q. Yi, L. Yang, J. Li, L. Miao, C. Zhao, and S. Wen, “Bulk-structured PtSe 2 for femtosecond fiber laser mode-locking,” Sci. Rep. 27(3), 2604–2611 (2019).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi 2 Se 3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref]

Weng, J.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-µm fiber lasers Q-switched by a broadband few-layer MoS 2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, and H. Xu, “1.06 µm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi 2 Se 3 as a saturable absorber,” Opt. Express 21(24), 29516–29522 (2013).
[Crossref]

Wen-Xue, L.

X. Shi-Xiang, L. Wen-Xue, H. Qiang, Z. Hui, and Z. He-Ping, “Efficient laser-diode end-pumped passively Q-switched mode-locked Yb: LYSO laser based on SESAM,” Chin. Phys. Lett. 25(2), 548–551 (2008).
[Crossref]

Williams, D. J.

D. J. Williams, “Nonlinear optical properties of organic and polymeric materials,” in ACS Symposium series 233 (ACS1983).

Wu, J.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-µm fiber lasers Q-switched by a broadband few-layer MoS 2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Wu, Q.

Y. Gao, T. Zhao, C. Li, W. Ge, Q. Wu, Z. Shi, G. Niu, J. Yu, Z. Fan, and Y. J. O. C. Wang, “Diode-side-pumped passively Q-switched Nd: YAG laser at 1123 nm with reflective single walled carbon nanotube saturable absorber,” Opt. Commun. 286(1), 261–264 (2013).
[Crossref]

Wu, S.

Wudl, F.

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Xia, T.

A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
[Crossref]

Xu, B.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-µm fiber lasers Q-switched by a broadband few-layer MoS 2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, and H. Xu, “1.06 µm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi 2 Se 3 as a saturable absorber,” Opt. Express 21(24), 29516–29522 (2013).
[Crossref]

Xu, H.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-µm fiber lasers Q-switched by a broadband few-layer MoS 2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Z. Luo, Y. Huang, J. Weng, H. Cheng, Z. Lin, B. Xu, Z. Cai, and H. Xu, “1.06 µm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi 2 Se 3 as a saturable absorber,” Opt. Express 21(24), 29516–29522 (2013).
[Crossref]

Yan, P.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS 2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref]

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” IEEE Photonics Technol. Lett. 19(19), 3077–3083 (2009).
[Crossref]

Yang, H. R.

W. L. Li, Y. C. Kong, G. W. Chen, and H. R. Yang, “Coexistence of conventional solitons and stretched pulses in a fiber laser mode-locked by carbon nanotubes,” Laser Phys. 25(4), 045103 (2015).
[Crossref]

Yang, K.

R. Zhao, J. He, X. Su, Y. Wang, X. Sun, H. Nie, B. Zhang, and K. Yang, “Tunable High-Power Q-Switched Fiber Laser Based on BP-PVA Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–5 (2018).
[Crossref]

Yang, L.

B. Huang, L. Du, Q. Yi, L. Yang, J. Li, L. Miao, C. Zhao, and S. Wen, “Bulk-structured PtSe 2 for femtosecond fiber laser mode-locking,” Sci. Rep. 27(3), 2604–2611 (2019).
[Crossref]

Yang, Q.-H.

Yang, Y.

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

Yap, Y.

Y. Yap, S. Kida, T. Aoyama, Y. Mori, and T. Sasaki, “Influence of negative dc bias voltage on structural transformation of carbon nitride at 600 C,” Appl. Phys. Lett. 73(7), 915–917 (1998).
[Crossref]

Yasin, M.

S. Wadi Harun, S. Salam, A. Al-Masoodi, m. hazaa, A. H. H. Al-Masoodi, W. Haliza Abdul Majid, M. Yasin, W. Ru Wong, and I. Alani, Tris-(8-Hydroxyquinoline) Aluminum Thin Film as Saturable Absorber for Passively Q-Switched Erbium-Doped Fiber Laser (2019).

Yeom, D.-I.

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

Yi, Q.

B. Huang, L. Du, Q. Yi, L. Yang, J. Li, L. Miao, C. Zhao, and S. Wen, “Bulk-structured PtSe 2 for femtosecond fiber laser mode-locking,” Sci. Rep. 27(3), 2604–2611 (2019).
[Crossref]

Yim, J. H.

Yu, J.

Y. Gao, T. Zhao, C. Li, W. Ge, Q. Wu, Z. Shi, G. Niu, J. Yu, Z. Fan, and Y. J. O. C. Wang, “Diode-side-pumped passively Q-switched Nd: YAG laser at 1123 nm with reflective single walled carbon nanotube saturable absorber,” Opt. Commun. 286(1), 261–264 (2013).
[Crossref]

Zhang, B.

R. Zhao, J. He, X. Su, Y. Wang, X. Sun, H. Nie, B. Zhang, and K. Yang, “Tunable High-Power Q-Switched Fiber Laser Based on BP-PVA Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–5 (2018).
[Crossref]

Zhang, H.

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi 2 Se 3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” IEEE Photonics Technol. Lett. 19(19), 3077–3083 (2009).
[Crossref]

Zhao, C.

B. Huang, L. Du, Q. Yi, L. Yang, J. Li, L. Miao, C. Zhao, and S. Wen, “Bulk-structured PtSe 2 for femtosecond fiber laser mode-locking,” Sci. Rep. 27(3), 2604–2611 (2019).
[Crossref]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with topological insulator: Bi 2 Se 3 as a mode locker,” Opt. Express 20(25), 27888–27895 (2012).
[Crossref]

Zhao, Q.

K. Lei, F. Li, C. Mu, J. Wang, Q. Zhao, C. Chen, and J. Chen, “High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes,” Energy Environ. Sci. 10(2), 552–557 (2017).
[Crossref]

Zhao, R.

R. Zhao, J. He, X. Su, Y. Wang, X. Sun, H. Nie, B. Zhang, and K. Yang, “Tunable High-Power Q-Switched Fiber Laser Based on BP-PVA Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–5 (2018).
[Crossref]

Zhao, T.

Y. Gao, T. Zhao, C. Li, W. Ge, Q. Wu, Z. Shi, G. Niu, J. Yu, Z. Fan, and Y. J. O. C. Wang, “Diode-side-pumped passively Q-switched Nd: YAG laser at 1123 nm with reflective single walled carbon nanotube saturable absorber,” Opt. Commun. 286(1), 261–264 (2013).
[Crossref]

Zhong, M.

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-µm fiber lasers Q-switched by a broadband few-layer MoS 2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

Zhou, D.-P.

L. Wei, D.-P. Zhou, H. Y. Fan, and W.-K. Liu, “Graphene-based $ Q $-switched erbium-doped fiber laser with wide pulse-repetition-rate range,” IEEE Photonics Technol. Lett. 24(4), 309–311 (2012).
[Crossref]

Zong, J.

Zou, Y.

Appl. Phys. Lett. (3)

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett. 101(21), 211106 (2012).
[Crossref]

R. Holmes, S. Forrest, Y.-J. Tung, R. Kwong, J. Brown, S. Garon, and M. Thompson, “Blue organic electrophosphorescence using exothermic host–guest energy transfer,” Appl. Phys. Lett. 82(15), 2422–2424 (2003).
[Crossref]

Y. Yap, S. Kida, T. Aoyama, Y. Mori, and T. Sasaki, “Influence of negative dc bias voltage on structural transformation of carbon nitride at 600 C,” Appl. Phys. Lett. 73(7), 915–917 (1998).
[Crossref]

Biosens. Bioelectron. (1)

J. Mehta, P. Vinayak, S. K. Tuteja, V. A. Chhabra, N. Bhardwaj, A. Paul, K.-H. Kim, and A. Deep, “Graphene modified screen printed immunosensor for highly sensitive detection of parathion,” Biosens. Bioelectron. 83, 339–346 (2016).
[Crossref]

Chin. Phys. Lett. (1)

X. Shi-Xiang, L. Wen-Xue, H. Qiang, Z. Hui, and Z. He-Ping, “Efficient laser-diode end-pumped passively Q-switched mode-locked Yb: LYSO laser based on SESAM,” Chin. Phys. Lett. 25(2), 548–551 (2008).
[Crossref]

Dalton Trans. (1)

E. Baranoff and B. F. Curchod, “FIrpic: archetypal blue phosphorescent emitter for electroluminescence,” Dalton Trans. 44(18), 8318–8329 (2015).
[Crossref]

Energy Environ. Sci. (1)

K. Lei, F. Li, C. Mu, J. Wang, Q. Zhao, C. Chen, and J. Chen, “High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes,” Energy Environ. Sci. 10(2), 552–557 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Zhao, J. He, X. Su, Y. Wang, X. Sun, H. Nie, B. Zhang, and K. Yang, “Tunable High-Power Q-Switched Fiber Laser Based on BP-PVA Saturable Absorber,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–5 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. Wei, D.-P. Zhou, H. Y. Fan, and W.-K. Liu, “Graphene-based $ Q $-switched erbium-doped fiber laser with wide pulse-repetition-rate range,” IEEE Photonics Technol. Lett. 24(4), 309–311 (2012).
[Crossref]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” IEEE Photonics Technol. Lett. 19(19), 3077–3083 (2009).
[Crossref]

J. Ind. Eng. Chem. (4)

O. Y. Kim and J. Y. Lee, “High efficiency deep blue phosphorescent organic light-emitting diodes using a tetraphenylsilane based phosphine oxide host material,” J. Ind. Eng. Chem. 18(3), 1029–1032 (2012).
[Crossref]

M.-J. Jung, E. Jeong, Y. Kim, and Y.-S. Lee, “Influence of the textual properties of activated carbon nanofibers on the performance of electric double-layer capacitors,” J. Ind. Eng. Chem. 19(4), 1315–1319 (2013).
[Crossref]

H.-K. Choi, S.-H. Jin, J.-W. Park, S. Y. Kim, and Y.-S. Gal, “Electro-optical and electrochemical properties of poly(2-ethynylthiophene),” J. Ind. Eng. Chem. 18(2), 814–817 (2012).
[Crossref]

J.-M. Kim, S. K. Jha, D.-H. Lee, R. Chand, J.-H. Jeun, and Y.-S. Kim, “A flexible pentacene thin film transistors as disposable DNA hybridization sensor,” J. Ind. Eng. Chem. 18(5), 1642–1646 (2012).
[Crossref]

J. Lightwave Technol. (1)

Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng, and J. Weng, “1-, 1.5-, and 2-µm fiber lasers Q-switched by a broadband few-layer MoS 2 saturable absorber,” J. Lightwave Technol. 32(24), 4679–4686 (2014).
[Crossref]

J. Mater. Chem. C (1)

Y. Shi, H. Long, S. Liu, Y. H. Tsang, and Q. Wen, “Ultrasmall 2D NbSe 2 based quantum dots used for low threshold ultrafast lasers,” J. Mater. Chem. C 6(46), 12638–12642 (2018).
[Crossref]

J. Mater. Sci.: Mater. Electron. (1)

O. G. Abdullah, S. B. Aziz, K. M. Omer, and Y. M. Salih, “Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite,” J. Mater. Sci.: Mater. Electron. 26(7), 5303–5309 (2015).
[Crossref]

J. Nanosci. Nanotechnol. (1)

J. Boulet, A. Mohammadpour, and K. Shankar, “Insights into the solution crystallization of oriented Alq3 and Znq2 microprisms and nanorods,” J. Nanosci. Nanotechnol. 15(9), 6680–6689 (2015).
[Crossref]

J. Vac. Sci. Technol., A (1)

P. Hammer, M. Baker, C. Lenardi, and W. Gissler, “Synthesis of carbon nitride films at low temperatures,” J. Vac. Sci. Technol., A 15(1), 107–112 (1997).
[Crossref]

J. Visualized Exp. (1)

J. B. DeCoste and G. W. Peterson, “Preparation of hydrophobic metal-organic frameworks via plasma enhanced chemical vapor deposition of perfluoroalkanes for the removal of ammonia,” J. Visualized Exp. 80, 51175 (2013).
[Crossref]

Laser Phys. (1)

W. L. Li, Y. C. Kong, G. W. Chen, and H. R. Yang, “Coexistence of conventional solitons and stretched pulses in a fiber laser mode-locked by carbon nanotubes,” Laser Phys. 25(4), 045103 (2015).
[Crossref]

Nat. Photonics (1)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4(7), 438–446 (2010).
[Crossref]

Nature (2)

A. L. Briseno, S. C. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, “Patterning organic single-crystal transistor arrays,” Nature 444(7121), 913–917 (2006).
[Crossref]

P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” Nature 425(6954), 158–162 (2003).
[Crossref]

Opt. Commun. (1)

Y. Gao, T. Zhao, C. Li, W. Ge, Q. Wu, Z. Shi, G. Niu, J. Yu, Z. Fan, and Y. J. O. C. Wang, “Diode-side-pumped passively Q-switched Nd: YAG laser at 1123 nm with reflective single walled carbon nanotube saturable absorber,” Opt. Commun. 286(1), 261–264 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Optik (1)

T. A. Hamdalla and T. A. Hanafy, “Optical properties studies for PVA/Gd, La, Er or Y chlorides based on structural modification,” Optik 127(2), 878–882 (2016).
[Crossref]

Phys. B (1)

I. Omkaram, R. S. Chakradhar, and J. L. Rao, “EPR, optical, infrared and Raman studies of VO2+ ions in polyvinylalcohol films,” Phys. B 388(1-2), 318–325 (2007).
[Crossref]

Results Phys. (1)

O. G. Abdullah, S. B. Aziz, and M. A. Rasheed, “Structural and optical characterization of PVA: KMnO4 based solid polymer electrolyte,” Results Phys. 6, 1103–1108 (2016).
[Crossref]

RSC Adv. (1)

A. Singhal, M. Kaur, K. Dubey, Y. Bhardwaj, D. Jain, C. Pillai, and A. Tyagi, “Polyvinyl alcohol–In 2 O 3 nanocomposite films: synthesis, characterization and gas sensing properties,” RSC Adv. 2(18), 7180–7189 (2012).
[Crossref]

Sci. Rep. (3)

R. Khazaeinezhad, S. Hosseinzadeh Kassani, B. Paulson, H. Jeong, J. Gwak, F. Rotermund, D.-I. Yeom, and K. Oh, “Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser,” Sci. Rep. 7(1), 41480 (2017).
[Crossref]

B. Huang, L. Du, Q. Yi, L. Yang, J. Li, L. Miao, C. Zhao, and S. Wen, “Bulk-structured PtSe 2 for femtosecond fiber laser mode-locking,” Sci. Rep. 27(3), 2604–2611 (2019).
[Crossref]

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS 2 nanosheets saturable absorber,” Sci. Rep. 5(1), 12587 (2015).
[Crossref]

Science (2)

A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).
[Crossref]

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref]

Other (3)

P. Peumans, S. Uchida, and S. R. Forrest, “Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, 2011), pp. 94–98.

S. Wadi Harun, S. Salam, A. Al-Masoodi, m. hazaa, A. H. H. Al-Masoodi, W. Haliza Abdul Majid, M. Yasin, W. Ru Wong, and I. Alani, Tris-(8-Hydroxyquinoline) Aluminum Thin Film as Saturable Absorber for Passively Q-Switched Erbium-Doped Fiber Laser (2019).

D. J. Williams, “Nonlinear optical properties of organic and polymeric materials,” in ACS Symposium series 233 (ACS1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) FTIR spectra (b) FTIR fingerprint region of FIrpic-PVA and PVA thin films
Fig. 2.
Fig. 2. (a) Optical absorption spectrum of FIrpic-PVA thin film (b) the calculated optical band gap (c) SEM image of FIrpic-PVA thin film (d) The power-dependent transmission of FIrpic-PVA
Fig. 3.
Fig. 3. Cavity Setup for YDFL laser
Fig. 4.
Fig. 4. characteristics of Q-switched YDFL. (a) Output optical spectrum, (b) pulse train at 86 mW and shows and repetition rate of 46.2 kHz, inset figure shows a single pulse profile with a pulse width of 4.9 µs, (c) pulse train at 117 mW and shows and repetition rate of 54.6 kHz, inset figure shows a single pulse profile with a pulse width of 3.2 µs, (d) pulse train at147 mW and shows and repetition rate of 59.1 kHz, inset figure shows a pulse profile with a pulse width of 2.4 µs, (e) pulse width duration and repetition rate against input incident power, (f) pulse energy and output power versus input incident power, (g) peak power versus input power and (h) RF spectrum at maximum input incident power.

Metrics