Abstract

Einstein–Podolsky–Rosen (EPR) entanglement, involving pairs of particles that are entangled in position and momenta, is of special importance for quantum information processing. Practical quantum communication requires a two-color entanglement source: visible-band photons used to excite atoms and the communication band used for signal transmission. In this article, we report on the first experimental demonstration of two-color EPR entanglement based on spontaneous Raman scattering thermal Rb atoms using quantum ghost interference and ghost imaging. This work adopts a fundamental experiment that assists in promoting practical quantum communications and in providing a means to perform quantum imaging.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Demonstrating continuous variable Einstein–Podolsky–Rosen steering in spite of finite experimental capabilities using Fano steering bounds

James Schneeloch, Samuel H. Knarr, Gregory A. Howland, and John C. Howell
J. Opt. Soc. Am. B 32(4) A8-A14 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
    [Crossref]
  2. P. W. Shor and J. Preskill, “Simple Proof of Security of the BB84 Quantum Key Distribution Protocol,” Phys. Rev. Lett. 85(2), 441–444 (2000).
    [Crossref]
  3. D. S. Tasca, R. M. Gomes, F. Toscano, P. H. Souto Ribeiro, and S. P. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83(5), 052325 (2011).
    [Crossref]
  4. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
    [Crossref]
  5. A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” Phys. Rev. 47(10), 777–780 (1935).
    [Crossref]
  6. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Inseparability Criterion for Continuous Variable Systems,” Phys. Rev. Lett. 84(12), 2722–2725 (2000).
    [Crossref]
  7. M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts toapplications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
    [Crossref]
  8. G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4(4), 227–230 (2010).
    [Crossref]
  9. C. A. Pérez-Delgado, M. E. Pearce, and P. Kok, “Fundamental Limits of Classical and Quantum Imaging,” Phys. Rev. Lett. 109(12), 123601 (2012).
    [Crossref]
  10. T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4(1), 2426 (2013).
    [Crossref]
  11. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
    [Crossref]
  12. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref]
  13. Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
    [Crossref]
  14. J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
    [Crossref]
  15. M. D’Angelo, Y. H. Kim, S. P. Kulik, and Y. Shih, “Identifying Entanglement Using Quantum Ghost Interference and Imaging,” Phys. Rev. Lett. 92(23), 233601 (2004).
    [Crossref]
  16. J. Lee, K. Park, T. Zhao, and Y. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
    [Crossref]
  17. W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Einstein-Podolsky-Rosen Entanglement between Separated Atomic Ensembles,” Preprint at https://arxiv.org/abs/1608.04215
  18. C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic Memory for Correlated Photon States,” Science 301(5630), 196–200 (2003).
    [Crossref]
  19. B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-Wavelength Solid-State Memory at the Single Photon Level,” Phys. Rev. Lett. 104(8), 080502 (2010).
    [Crossref]
  20. Z. Z. Qin, L. M. Cao, H. L. Wang, A. M. Marino, W. P. Zhang, and J. T. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
    [Crossref]
  21. X. Z. Pan, H. Chen, T. X. Wei, J. Zhang, A. M. Marino, N. Treps, R. T. Glasser, and J. T. Jing, “Experimental realization of a feedback optical parametric amplifier with four-wave mixing,” Phys. Rev. B 97(16), 161115 (2018).
    [Crossref]
  22. H. L. Wang, C. Fabre, and J. T. Jing, “Single-step fabrication of scalable multimode quantum resources using four-wave mixing with a spatially structured pump,” Phys. Rev. A 95(5), 051802 (2017).
    [Crossref]
  23. L. M. Cao, J. Qi, J. J. Du, and J. T. Jing, “Experimental generation of quadruple quantum-correlated beams from hot rubidium vapor by cascaded four-wave mixing using spatial multiplexing,” Phys. Rev. A 95(2), 023803 (2017).
    [Crossref]
  24. M. Dąbrowski, M. Parniak, and W. Wasilewski, “Einstein–Podolsky–Rosen paradox in a hybrid bipartite system,” Optica 4(2), 272–275 (2017).
    [Crossref]
  25. T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum Telecommunication Based on Atomic Cascade Transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
    [Crossref]
  26. D. S. Ding, W. Zhang, S. Shi, Z. Y. Zhou, Y. Li, B. S. Shi, and G. C. Guo, “Hybrid-cascaded generation of tripartite telecomphotons using an atomic ensemble and a nonlinearwaveguide,” Optica 2(7), 642–645 (2015).
    [Crossref]
  27. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of Two-Photon “Ghost” Interference and Diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
    [Crossref]
  28. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
    [Crossref]
  29. S. Du, J. Wen, and M. H. Rubin, “Narrowband biphoton generation near atomic resonance,” J. Opt. Soc. Am. B 25(12), C98–C108 (2008).
    [Crossref]
  30. Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering Frequency-Time Quantum Correlation of Narrow-Band Biphotons from Cold Atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
    [Crossref]

2018 (1)

X. Z. Pan, H. Chen, T. X. Wei, J. Zhang, A. M. Marino, N. Treps, R. T. Glasser, and J. T. Jing, “Experimental realization of a feedback optical parametric amplifier with four-wave mixing,” Phys. Rev. B 97(16), 161115 (2018).
[Crossref]

2017 (3)

H. L. Wang, C. Fabre, and J. T. Jing, “Single-step fabrication of scalable multimode quantum resources using four-wave mixing with a spatially structured pump,” Phys. Rev. A 95(5), 051802 (2017).
[Crossref]

L. M. Cao, J. Qi, J. J. Du, and J. T. Jing, “Experimental generation of quadruple quantum-correlated beams from hot rubidium vapor by cascaded four-wave mixing using spatial multiplexing,” Phys. Rev. A 95(2), 023803 (2017).
[Crossref]

M. Dąbrowski, M. Parniak, and W. Wasilewski, “Einstein–Podolsky–Rosen paradox in a hybrid bipartite system,” Optica 4(2), 272–275 (2017).
[Crossref]

2016 (1)

J. Lee, K. Park, T. Zhao, and Y. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
[Crossref]

2015 (1)

2014 (2)

Z. Z. Qin, L. M. Cao, H. L. Wang, A. M. Marino, W. P. Zhang, and J. T. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering Frequency-Time Quantum Correlation of Narrow-Band Biphotons from Cold Atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref]

2013 (1)

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4(1), 2426 (2013).
[Crossref]

2012 (1)

C. A. Pérez-Delgado, M. E. Pearce, and P. Kok, “Fundamental Limits of Classical and Quantum Imaging,” Phys. Rev. Lett. 109(12), 123601 (2012).
[Crossref]

2011 (1)

D. S. Tasca, R. M. Gomes, F. Toscano, P. H. Souto Ribeiro, and S. P. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83(5), 052325 (2011).
[Crossref]

2010 (2)

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4(4), 227–230 (2010).
[Crossref]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-Wavelength Solid-State Memory at the Single Photon Level,” Phys. Rev. Lett. 104(8), 080502 (2010).
[Crossref]

2009 (1)

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts toapplications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

2008 (2)

2006 (1)

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum Telecommunication Based on Atomic Cascade Transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref]

2005 (1)

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

2004 (2)

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref]

M. D’Angelo, Y. H. Kim, S. P. Kulik, and Y. Shih, “Identifying Entanglement Using Quantum Ghost Interference and Imaging,” Phys. Rev. Lett. 92(23), 233601 (2004).
[Crossref]

2003 (1)

C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic Memory for Correlated Photon States,” Science 301(5630), 196–200 (2003).
[Crossref]

2001 (1)

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref]

2000 (2)

P. W. Shor and J. Preskill, “Simple Proof of Security of the BB84 Quantum Key Distribution Protocol,” Phys. Rev. Lett. 85(2), 441–444 (2000).
[Crossref]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Inseparability Criterion for Continuous Variable Systems,” Phys. Rev. Lett. 84(12), 2722–2725 (2000).
[Crossref]

1998 (1)

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

1995 (2)

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of Two-Photon “Ghost” Interference and Diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

1992 (1)

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
[Crossref]

1935 (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” Phys. Rev. 47(10), 777–780 (1935).
[Crossref]

Afzelius, M.

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-Wavelength Solid-State Memory at the Single Photon Level,” Phys. Rev. Lett. 104(8), 080502 (2010).
[Crossref]

Andersen, U. L.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts toapplications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Andre, A.

C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic Memory for Correlated Photon States,” Science 301(5630), 196–200 (2003).
[Crossref]

Bachor, H. A.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts toapplications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Bennink, R. S.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref]

Bentley, S. J.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref]

Bowen, W. P.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts toapplications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Boyd, R. W.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref]

Braunstein, S. L.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

Brida, G.

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4(4), 227–230 (2010).
[Crossref]

Briegel, H. J.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

Cao, L. M.

L. M. Cao, J. Qi, J. J. Du, and J. T. Jing, “Experimental generation of quadruple quantum-correlated beams from hot rubidium vapor by cascaded four-wave mixing using spatial multiplexing,” Phys. Rev. A 95(2), 023803 (2017).
[Crossref]

Z. Z. Qin, L. M. Cao, H. L. Wang, A. M. Marino, W. P. Zhang, and J. T. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]

Cavalcanti, E. G.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts toapplications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Chanelière, T.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum Telecommunication Based on Atomic Cascade Transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref]

Chapman, M. S.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum Telecommunication Based on Atomic Cascade Transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref]

Chen, H.

X. Z. Pan, H. Chen, T. X. Wei, J. Zhang, A. M. Marino, N. Treps, R. T. Glasser, and J. T. Jing, “Experimental realization of a feedback optical parametric amplifier with four-wave mixing,” Phys. Rev. B 97(16), 161115 (2018).
[Crossref]

Cho, Y.-W.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering Frequency-Time Quantum Correlation of Narrow-Band Biphotons from Cold Atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref]

Cirac, J. I.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Inseparability Criterion for Continuous Variable Systems,” Phys. Rev. Lett. 84(12), 2722–2725 (2000).
[Crossref]

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

D’Angelo, M.

M. D’Angelo, Y. H. Kim, S. P. Kulik, and Y. Shih, “Identifying Entanglement Using Quantum Ghost Interference and Imaging,” Phys. Rev. Lett. 92(23), 233601 (2004).
[Crossref]

Dabrowski, M.

de Riedmatten, H.

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-Wavelength Solid-State Memory at the Single Photon Level,” Phys. Rev. Lett. 104(8), 080502 (2010).
[Crossref]

Ding, D. S.

D. S. Ding, W. Zhang, S. Shi, Z. Y. Zhou, Y. Li, B. S. Shi, and G. C. Guo, “Hybrid-cascaded generation of tripartite telecomphotons using an atomic ensemble and a nonlinearwaveguide,” Optica 2(7), 642–645 (2015).
[Crossref]

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Einstein-Podolsky-Rosen Entanglement between Separated Atomic Ensembles,” Preprint at https://arxiv.org/abs/1608.04215

Dong, M. X.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Einstein-Podolsky-Rosen Entanglement between Separated Atomic Ensembles,” Preprint at https://arxiv.org/abs/1608.04215

Drummond, P. D.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts toapplications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Du, J. J.

L. M. Cao, J. Qi, J. J. Du, and J. T. Jing, “Experimental generation of quadruple quantum-correlated beams from hot rubidium vapor by cascaded four-wave mixing using spatial multiplexing,” Phys. Rev. A 95(2), 023803 (2017).
[Crossref]

Du, S.

Duan, L. M.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Inseparability Criterion for Continuous Variable Systems,” Phys. Rev. Lett. 84(12), 2722–2725 (2000).
[Crossref]

Dür, W.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” Phys. Rev. 47(10), 777–780 (1935).
[Crossref]

Eisaman, M. D.

C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic Memory for Correlated Photon States,” Science 301(5630), 196–200 (2003).
[Crossref]

Fabre, C.

H. L. Wang, C. Fabre, and J. T. Jing, “Single-step fabrication of scalable multimode quantum resources using four-wave mixing with a spatially structured pump,” Phys. Rev. A 95(5), 051802 (2017).
[Crossref]

Genovese, M.

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4(4), 227–230 (2010).
[Crossref]

Gisin, N.

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-Wavelength Solid-State Memory at the Single Photon Level,” Phys. Rev. Lett. 104(8), 080502 (2010).
[Crossref]

Glasser, R. T.

X. Z. Pan, H. Chen, T. X. Wei, J. Zhang, A. M. Marino, N. Treps, R. T. Glasser, and J. T. Jing, “Experimental realization of a feedback optical parametric amplifier with four-wave mixing,” Phys. Rev. B 97(16), 161115 (2018).
[Crossref]

Gomes, R. M.

D. S. Tasca, R. M. Gomes, F. Toscano, P. H. Souto Ribeiro, and S. P. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83(5), 052325 (2011).
[Crossref]

Guo, G. C.

D. S. Ding, W. Zhang, S. Shi, Z. Y. Zhou, Y. Li, B. S. Shi, and G. C. Guo, “Hybrid-cascaded generation of tripartite telecomphotons using an atomic ensemble and a nonlinearwaveguide,” Optica 2(7), 642–645 (2015).
[Crossref]

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Einstein-Podolsky-Rosen Entanglement between Separated Atomic Ensembles,” Preprint at https://arxiv.org/abs/1608.04215

Howell, J. C.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref]

Jenkins, S. D.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum Telecommunication Based on Atomic Cascade Transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref]

Jing, J. T.

X. Z. Pan, H. Chen, T. X. Wei, J. Zhang, A. M. Marino, N. Treps, R. T. Glasser, and J. T. Jing, “Experimental realization of a feedback optical parametric amplifier with four-wave mixing,” Phys. Rev. B 97(16), 161115 (2018).
[Crossref]

H. L. Wang, C. Fabre, and J. T. Jing, “Single-step fabrication of scalable multimode quantum resources using four-wave mixing with a spatially structured pump,” Phys. Rev. A 95(5), 051802 (2017).
[Crossref]

L. M. Cao, J. Qi, J. J. Du, and J. T. Jing, “Experimental generation of quadruple quantum-correlated beams from hot rubidium vapor by cascaded four-wave mixing using spatial multiplexing,” Phys. Rev. A 95(2), 023803 (2017).
[Crossref]

Z. Z. Qin, L. M. Cao, H. L. Wang, A. M. Marino, W. P. Zhang, and J. T. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]

Kennedy, T. A. B.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum Telecommunication Based on Atomic Cascade Transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref]

Kim, Y.

J. Lee, K. Park, T. Zhao, and Y. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
[Crossref]

Kim, Y. H.

M. D’Angelo, Y. H. Kim, S. P. Kulik, and Y. Shih, “Identifying Entanglement Using Quantum Ghost Interference and Imaging,” Phys. Rev. Lett. 92(23), 233601 (2004).
[Crossref]

Kim, Y.-H.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering Frequency-Time Quantum Correlation of Narrow-Band Biphotons from Cold Atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref]

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
[Crossref]

Klyshko, D. N.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of Two-Photon “Ghost” Interference and Diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref]

Kok, P.

C. A. Pérez-Delgado, M. E. Pearce, and P. Kok, “Fundamental Limits of Classical and Quantum Imaging,” Phys. Rev. Lett. 109(12), 123601 (2012).
[Crossref]

Kulik, S. P.

M. D’Angelo, Y. H. Kim, S. P. Kulik, and Y. Shih, “Identifying Entanglement Using Quantum Ghost Interference and Imaging,” Phys. Rev. Lett. 92(23), 233601 (2004).
[Crossref]

Kuzmich, A.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum Telecommunication Based on Atomic Cascade Transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref]

Lam, P. K.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts toapplications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Lauritzen, B.

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-Wavelength Solid-State Memory at the Single Photon Level,” Phys. Rev. Lett. 104(8), 080502 (2010).
[Crossref]

Lee, J.

J. Lee, K. Park, T. Zhao, and Y. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
[Crossref]

Lee, J.-C.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering Frequency-Time Quantum Correlation of Narrow-Band Biphotons from Cold Atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref]

Leuchs, G.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts toapplications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Li, Y.

Liu, S. L.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Einstein-Podolsky-Rosen Entanglement between Separated Atomic Ensembles,” Preprint at https://arxiv.org/abs/1608.04215

Lukin, M. D.

C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic Memory for Correlated Photon States,” Science 301(5630), 196–200 (2003).
[Crossref]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Inseparability Criterion for Continuous Variable Systems,” Phys. Rev. Lett. 84(12), 2722–2725 (2000).
[Crossref]

Marino, A. M.

X. Z. Pan, H. Chen, T. X. Wei, J. Zhang, A. M. Marino, N. Treps, R. T. Glasser, and J. T. Jing, “Experimental realization of a feedback optical parametric amplifier with four-wave mixing,” Phys. Rev. B 97(16), 161115 (2018).
[Crossref]

Z. Z. Qin, L. M. Cao, H. L. Wang, A. M. Marino, W. P. Zhang, and J. T. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]

Matsukevich, D. N.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum Telecommunication Based on Atomic Cascade Transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref]

Minár, J.

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-Wavelength Solid-State Memory at the Single Photon Level,” Phys. Rev. Lett. 104(8), 080502 (2010).
[Crossref]

Okamoto, R.

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4(1), 2426 (2013).
[Crossref]

Ono, T.

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4(1), 2426 (2013).
[Crossref]

Ou, Z. Y.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
[Crossref]

Pan, X. Z.

X. Z. Pan, H. Chen, T. X. Wei, J. Zhang, A. M. Marino, N. Treps, R. T. Glasser, and J. T. Jing, “Experimental realization of a feedback optical parametric amplifier with four-wave mixing,” Phys. Rev. B 97(16), 161115 (2018).
[Crossref]

Park, K.

J. Lee, K. Park, T. Zhao, and Y. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
[Crossref]

Park, K.-K.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering Frequency-Time Quantum Correlation of Narrow-Band Biphotons from Cold Atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref]

Parniak, M.

Pearce, M. E.

C. A. Pérez-Delgado, M. E. Pearce, and P. Kok, “Fundamental Limits of Classical and Quantum Imaging,” Phys. Rev. Lett. 109(12), 123601 (2012).
[Crossref]

Peng, K. C.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
[Crossref]

Pereira, S. F.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
[Crossref]

Pérez-Delgado, C. A.

C. A. Pérez-Delgado, M. E. Pearce, and P. Kok, “Fundamental Limits of Classical and Quantum Imaging,” Phys. Rev. Lett. 109(12), 123601 (2012).
[Crossref]

Phillips, D. F.

C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic Memory for Correlated Photon States,” Science 301(5630), 196–200 (2003).
[Crossref]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” Phys. Rev. 47(10), 777–780 (1935).
[Crossref]

Preskill, J.

P. W. Shor and J. Preskill, “Simple Proof of Security of the BB84 Quantum Key Distribution Protocol,” Phys. Rev. Lett. 85(2), 441–444 (2000).
[Crossref]

Qi, J.

L. M. Cao, J. Qi, J. J. Du, and J. T. Jing, “Experimental generation of quadruple quantum-correlated beams from hot rubidium vapor by cascaded four-wave mixing using spatial multiplexing,” Phys. Rev. A 95(2), 023803 (2017).
[Crossref]

Qin, Z. Z.

Z. Z. Qin, L. M. Cao, H. L. Wang, A. M. Marino, W. P. Zhang, and J. T. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]

Reid, M. D.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts toapplications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” Phys. Rev. 47(10), 777–780 (1935).
[Crossref]

Rubin, M. H.

Ruo Berchera, I.

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4(4), 227–230 (2010).
[Crossref]

Sangouard, N.

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-Wavelength Solid-State Memory at the Single Photon Level,” Phys. Rev. Lett. 104(8), 080502 (2010).
[Crossref]

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of Two-Photon “Ghost” Interference and Diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref]

Shi, B. S.

D. S. Ding, W. Zhang, S. Shi, Z. Y. Zhou, Y. Li, B. S. Shi, and G. C. Guo, “Hybrid-cascaded generation of tripartite telecomphotons using an atomic ensemble and a nonlinearwaveguide,” Optica 2(7), 642–645 (2015).
[Crossref]

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Einstein-Podolsky-Rosen Entanglement between Separated Atomic Ensembles,” Preprint at https://arxiv.org/abs/1608.04215

Shi, S.

D. S. Ding, W. Zhang, S. Shi, Z. Y. Zhou, Y. Li, B. S. Shi, and G. C. Guo, “Hybrid-cascaded generation of tripartite telecomphotons using an atomic ensemble and a nonlinearwaveguide,” Optica 2(7), 642–645 (2015).
[Crossref]

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Einstein-Podolsky-Rosen Entanglement between Separated Atomic Ensembles,” Preprint at https://arxiv.org/abs/1608.04215

Shih, Y.

M. D’Angelo, Y. H. Kim, S. P. Kulik, and Y. Shih, “Identifying Entanglement Using Quantum Ghost Interference and Imaging,” Phys. Rev. Lett. 92(23), 233601 (2004).
[Crossref]

Shih, Y. H.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of Two-Photon “Ghost” Interference and Diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Shor, P. W.

P. W. Shor and J. Preskill, “Simple Proof of Security of the BB84 Quantum Key Distribution Protocol,” Phys. Rev. Lett. 85(2), 441–444 (2000).
[Crossref]

Simon, C.

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-Wavelength Solid-State Memory at the Single Photon Level,” Phys. Rev. Lett. 104(8), 080502 (2010).
[Crossref]

Souto Ribeiro, P. H.

D. S. Tasca, R. M. Gomes, F. Toscano, P. H. Souto Ribeiro, and S. P. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83(5), 052325 (2011).
[Crossref]

Strekalov, D. V.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of Two-Photon “Ghost” Interference and Diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Takeuchi, S.

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4(1), 2426 (2013).
[Crossref]

Tasca, D. S.

D. S. Tasca, R. M. Gomes, F. Toscano, P. H. Souto Ribeiro, and S. P. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83(5), 052325 (2011).
[Crossref]

Toscano, F.

D. S. Tasca, R. M. Gomes, F. Toscano, P. H. Souto Ribeiro, and S. P. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83(5), 052325 (2011).
[Crossref]

Treps, N.

X. Z. Pan, H. Chen, T. X. Wei, J. Zhang, A. M. Marino, N. Treps, R. T. Glasser, and J. T. Jing, “Experimental realization of a feedback optical parametric amplifier with four-wave mixing,” Phys. Rev. B 97(16), 161115 (2018).
[Crossref]

van der Wal, C. H.

C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic Memory for Correlated Photon States,” Science 301(5630), 196–200 (2003).
[Crossref]

van Loock, P.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

Walborn, S. P.

D. S. Tasca, R. M. Gomes, F. Toscano, P. H. Souto Ribeiro, and S. P. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83(5), 052325 (2011).
[Crossref]

Walsworth, R. L.

C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic Memory for Correlated Photon States,” Science 301(5630), 196–200 (2003).
[Crossref]

Wang, H. L.

H. L. Wang, C. Fabre, and J. T. Jing, “Single-step fabrication of scalable multimode quantum resources using four-wave mixing with a spatially structured pump,” Phys. Rev. A 95(5), 051802 (2017).
[Crossref]

Z. Z. Qin, L. M. Cao, H. L. Wang, A. M. Marino, W. P. Zhang, and J. T. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]

Wang, K.

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Einstein-Podolsky-Rosen Entanglement between Separated Atomic Ensembles,” Preprint at https://arxiv.org/abs/1608.04215

Wasilewski, W.

Wei, T. X.

X. Z. Pan, H. Chen, T. X. Wei, J. Zhang, A. M. Marino, N. Treps, R. T. Glasser, and J. T. Jing, “Experimental realization of a feedback optical parametric amplifier with four-wave mixing,” Phys. Rev. B 97(16), 161115 (2018).
[Crossref]

Wen, J.

Zhang, J.

X. Z. Pan, H. Chen, T. X. Wei, J. Zhang, A. M. Marino, N. Treps, R. T. Glasser, and J. T. Jing, “Experimental realization of a feedback optical parametric amplifier with four-wave mixing,” Phys. Rev. B 97(16), 161115 (2018).
[Crossref]

Zhang, W.

D. S. Ding, W. Zhang, S. Shi, Z. Y. Zhou, Y. Li, B. S. Shi, and G. C. Guo, “Hybrid-cascaded generation of tripartite telecomphotons using an atomic ensemble and a nonlinearwaveguide,” Optica 2(7), 642–645 (2015).
[Crossref]

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Einstein-Podolsky-Rosen Entanglement between Separated Atomic Ensembles,” Preprint at https://arxiv.org/abs/1608.04215

Zhang, W. P.

Z. Z. Qin, L. M. Cao, H. L. Wang, A. M. Marino, W. P. Zhang, and J. T. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]

Zhao, T.

J. Lee, K. Park, T. Zhao, and Y. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
[Crossref]

Zhou, Z. Y.

D. S. Ding, W. Zhang, S. Shi, Z. Y. Zhou, Y. Li, B. S. Shi, and G. C. Guo, “Hybrid-cascaded generation of tripartite telecomphotons using an atomic ensemble and a nonlinearwaveguide,” Optica 2(7), 642–645 (2015).
[Crossref]

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Einstein-Podolsky-Rosen Entanglement between Separated Atomic Ensembles,” Preprint at https://arxiv.org/abs/1608.04215

Zibrov, A. S.

C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic Memory for Correlated Photon States,” Science 301(5630), 196–200 (2003).
[Crossref]

Zoller, P.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Inseparability Criterion for Continuous Variable Systems,” Phys. Rev. Lett. 84(12), 2722–2725 (2000).
[Crossref]

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

T. Ono, R. Okamoto, and S. Takeuchi, “An entanglement-enhanced microscope,” Nat. Commun. 4(1), 2426 (2013).
[Crossref]

Nat. Photonics (1)

G. Brida, M. Genovese, and I. Ruo Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4(4), 227–230 (2010).
[Crossref]

Nature (2)

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001).
[Crossref]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref]

Optica (2)

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?” Phys. Rev. 47(10), 777–780 (1935).
[Crossref]

Phys. Rev. A (4)

D. S. Tasca, R. M. Gomes, F. Toscano, P. H. Souto Ribeiro, and S. P. Walborn, “Continuous-variable quantum computation with spatial degrees of freedom of photons,” Phys. Rev. A 83(5), 052325 (2011).
[Crossref]

H. L. Wang, C. Fabre, and J. T. Jing, “Single-step fabrication of scalable multimode quantum resources using four-wave mixing with a spatially structured pump,” Phys. Rev. A 95(5), 051802 (2017).
[Crossref]

L. M. Cao, J. Qi, J. J. Du, and J. T. Jing, “Experimental generation of quadruple quantum-correlated beams from hot rubidium vapor by cascaded four-wave mixing using spatial multiplexing,” Phys. Rev. A 95(2), 023803 (2017).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref]

Phys. Rev. B (1)

X. Z. Pan, H. Chen, T. X. Wei, J. Zhang, A. M. Marino, N. Treps, R. T. Glasser, and J. T. Jing, “Experimental realization of a feedback optical parametric amplifier with four-wave mixing,” Phys. Rev. B 97(16), 161115 (2018).
[Crossref]

Phys. Rev. Lett. (13)

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of Two-Photon “Ghost” Interference and Diffraction,” Phys. Rev. Lett. 74(18), 3600–3603 (1995).
[Crossref]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum Telecommunication Based on Atomic Cascade Transitions,” Phys. Rev. Lett. 96(9), 093604 (2006).
[Crossref]

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering Frequency-Time Quantum Correlation of Narrow-Band Biphotons from Cold Atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref]

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).
[Crossref]

P. W. Shor and J. Preskill, “Simple Proof of Security of the BB84 Quantum Key Distribution Protocol,” Phys. Rev. Lett. 85(2), 441–444 (2000).
[Crossref]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Inseparability Criterion for Continuous Variable Systems,” Phys. Rev. Lett. 84(12), 2722–2725 (2000).
[Crossref]

C. A. Pérez-Delgado, M. E. Pearce, and P. Kok, “Fundamental Limits of Classical and Quantum Imaging,” Phys. Rev. Lett. 109(12), 123601 (2012).
[Crossref]

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68(25), 3663–3666 (1992).
[Crossref]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion,” Phys. Rev. Lett. 92(21), 210403 (2004).
[Crossref]

M. D’Angelo, Y. H. Kim, S. P. Kulik, and Y. Shih, “Identifying Entanglement Using Quantum Ghost Interference and Imaging,” Phys. Rev. Lett. 92(23), 233601 (2004).
[Crossref]

J. Lee, K. Park, T. Zhao, and Y. Kim, “Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms,” Phys. Rev. Lett. 117(25), 250501 (2016).
[Crossref]

B. Lauritzen, J. Minář, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-Wavelength Solid-State Memory at the Single Photon Level,” Phys. Rev. Lett. 104(8), 080502 (2010).
[Crossref]

Z. Z. Qin, L. M. Cao, H. L. Wang, A. M. Marino, W. P. Zhang, and J. T. Jing, “Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor,” Phys. Rev. Lett. 113(2), 023602 (2014).
[Crossref]

Rev. Mod. Phys. (2)

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “The Einstein-Podolsky-Rosen paradox: From concepts toapplications,” Rev. Mod. Phys. 81(4), 1727–1751 (2009).
[Crossref]

Science (1)

C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic Memory for Correlated Photon States,” Science 301(5630), 196–200 (2003).
[Crossref]

Other (1)

W. Zhang, D. S. Ding, M. X. Dong, S. Shi, K. Wang, S. L. Liu, Z. Y. Zhou, B. S. Shi, and G. C. Guo, “Einstein-Podolsky-Rosen Entanglement between Separated Atomic Ensembles,” Preprint at https://arxiv.org/abs/1608.04215

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. (a) Atomic energy level diagram. (b) Experimental setup. PBS: polarizing beam splitter; HWP: half-wave plate; FC: fiber collimator, DM: dichroic mirror.
Fig. 2.
Fig. 2. Experimental results for ghost imaging (a) and ghost interference (b) for EPR entanglement. The black dots are experimental data and the red curves are theoretical fitting curves.
Fig. 3.
Fig. 3. The calibrated structured distributions of ghost imaging (a) and ghost interference (b) for ideal EPR entanglement. The red lines are the fitted curves.

Tables (1)

Tables Icon

Table 1. Uncertainties for EPR entanglement.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ 2 ( x a x b ) Δ 2 ( p a p b ) < 2 / 4
| Ψ = A d ω s 1 d k s 2 d k s 1 χ ( 3 ) ( ω s 1 , ω s 2 ) sin c ( Δ k L / 2 ) × ε + ~ ( k s 1 + k s 2 ) a ^ k s 1 + a ^ k s 2 + | 0

Metrics