Abstract

A novel architecture of a visible light communication (VLC) network that can provide bidirectional transmission for multiple users is proposed in this paper. Multiple users can exchange data asynchronously and simultaneously thanks to the use of analog network coding (ANC) and optical code division multiple access (OCDMA) with the support of a coordinator, which plays a role as a relay node. We derive the mathematical expressions for bit error rate (BER) and network throughput of an indoor VLC network with multiple users located in a room and one coordinator mounted on the ceiling. Many physical layer impairments are considered in our analysis, including shot noise, thermal noise, multiuser interference (MUI), and optical beat noise. BER and throughput performance are investigated versus the transmitted optical power, the number of users, and the VLC transceiver’s parameters. The numerical results obtained in this paper will provide useful information for designing the indoor multiuser VLC networks.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical Code Division Multiple Access Network Transmission With M-ary Chip Symbols

Aminata A. Garba and Jan Bajcsy
J. Opt. Commun. Netw. 3(5) 435-446 (2011)

Smart LED allocation scheme for efficient multiuser visible light communication networks

Atul Sewaiwar, Samrat Vikramaditya Tiwari, and Yeon Ho Chung
Opt. Express 23(10) 13015-13024 (2015)

Hybrid Visible Light and Power Line Communication for Indoor Multiuser Downlink

Hao Ma, Lutz Lampe, and Steve Hranilovic
J. Opt. Commun. Netw. 9(8) 635-647 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible Light Communications: Theory and Applications (CRC Press, 2017).
  2. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 gbit/s visible optical wireless transmission based on rgb led,” Opt. Express 20(26), B501–B506 (2012).
    [Crossref]
  3. Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-gb/s rgb-led based wdm visible light communication system employing cap modulation and rls based adaptive equalization,” Opt. Express 23(10), 13626–13633 (2015).
    [Crossref]
  4. Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “Network architecture of a high-speed visible light communication local area network,” IEEE Photonics Technol. Lett. 27(2), 197–200 (2015).
    [Crossref]
  5. J. Dang and Z. Zhang, “Comparison of optical ofdm-idma and optical ofdma for uplink visible light communications,” (Huangshan, China, September 2012), Talk at 2012 International Conference on Wireless Communications and Signal Processing (WCSP).
  6. H. Marshoud, V. Kapinas, G. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).
    [Crossref]
  7. Z. Chen and H. Hass, “Space division multiple access in visible light communications,” (London, UK, June 2015), Talk at 2015 IEEE International Conference on Communications (ICC).
  8. Y. Qiu, S. Chen, H. H. Chen, and W. Meng, “Visible light communications based on cdma technology,” IEEE Wirel. Commun. 25(2), 178–185 (2018).
    [Crossref]
  9. A. Stok and E. H. Sargent, “The role of optical cdma in access networks,” IEEE Wirel. Commun. Mag. 40(9), 83–87 (2002).
    [Crossref]
  10. M. F. Guerra-Medina, O. Gonzalez, B. Rojas-Guillama, J. A. Martin-Gonzalez, F. Delgado, and J. Rabadan, “Ethernet-ocdma system for multi-user visible light communications,” Electron. Lett. 48(4), 227–228 (2012).
    [Crossref]
  11. M. Noshad and M. Brandt-Pearce, “High-speed visible light indoor networks based on optical orthogonal codes and combinatorial designs,” (London, UK, 2013), Talk at 2013 IEEE Globecom - Optical networks and systems symposium (GLOBECOM).
  12. Y. Idriss, R. K. Sahbudin, S. Hitam, and S. B. A. Anas, “Performance comparison of indoor vlc system employing sac-ocdma technique,” (Serdang, Selangor, Malaysia, 2016) Talk at 2016 IEEE 6th International Conference on Photonics (ICP 2016).
  13. M. Hammouda, A. M. Vegni, J. Peissig, and M. Biagi, “Resource allocation in a multi-color ds-ocdma vlc cellular architecture,” Opt. Express 26(5), 5940–5961 (2018).
    [Crossref]
  14. D. Chen, J. Wang, J. Jin, H. Lu, and L. Feng, “A cdma system implementation with dimming control for visible light communication,” Opt. Commun. 412, 172–177 (2018).
    [Crossref]
  15. S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: analog network coding,” SIGCOMM Comput. Commun. Rev. 37(4), 397–407 (2007).
    [Crossref]
  16. J. R. Barry, Wireless Infrared Communications (Kluwer Academic Press, 1994).
  17. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using led lights,” IEEE Transactions on Consumer Electron. 50(1), 100–107 (2004).
    [Crossref]
  18. X. Wang and K. Kitayama, “Analysis of beat noise in coherent and incoherent time-spreading ocdma,” J. Lightwave Technol. 22(10), 2226–2235 (2004).
    [Crossref]
  19. G. P. Agrawal, Fiber-optic communication systems, the 4th edition (John Wiley and Sons Ltd, New York, 2010).
  20. C. He, L. L. Yang, P. Xiao, and M. A. Imran, “Ds-cdma assisted visible light communications systems,” (Guildford, UK, 2015), Talk at 2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD).

2018 (3)

M. Hammouda, A. M. Vegni, J. Peissig, and M. Biagi, “Resource allocation in a multi-color ds-ocdma vlc cellular architecture,” Opt. Express 26(5), 5940–5961 (2018).
[Crossref]

D. Chen, J. Wang, J. Jin, H. Lu, and L. Feng, “A cdma system implementation with dimming control for visible light communication,” Opt. Commun. 412, 172–177 (2018).
[Crossref]

Y. Qiu, S. Chen, H. H. Chen, and W. Meng, “Visible light communications based on cdma technology,” IEEE Wirel. Commun. 25(2), 178–185 (2018).
[Crossref]

2016 (1)

H. Marshoud, V. Kapinas, G. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).
[Crossref]

2015 (2)

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-gb/s rgb-led based wdm visible light communication system employing cap modulation and rls based adaptive equalization,” Opt. Express 23(10), 13626–13633 (2015).
[Crossref]

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “Network architecture of a high-speed visible light communication local area network,” IEEE Photonics Technol. Lett. 27(2), 197–200 (2015).
[Crossref]

2012 (2)

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 gbit/s visible optical wireless transmission based on rgb led,” Opt. Express 20(26), B501–B506 (2012).
[Crossref]

M. F. Guerra-Medina, O. Gonzalez, B. Rojas-Guillama, J. A. Martin-Gonzalez, F. Delgado, and J. Rabadan, “Ethernet-ocdma system for multi-user visible light communications,” Electron. Lett. 48(4), 227–228 (2012).
[Crossref]

2007 (1)

S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: analog network coding,” SIGCOMM Comput. Commun. Rev. 37(4), 397–407 (2007).
[Crossref]

2004 (2)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using led lights,” IEEE Transactions on Consumer Electron. 50(1), 100–107 (2004).
[Crossref]

X. Wang and K. Kitayama, “Analysis of beat noise in coherent and incoherent time-spreading ocdma,” J. Lightwave Technol. 22(10), 2226–2235 (2004).
[Crossref]

2002 (1)

A. Stok and E. H. Sargent, “The role of optical cdma in access networks,” IEEE Wirel. Commun. Mag. 40(9), 83–87 (2002).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Fiber-optic communication systems, the 4th edition (John Wiley and Sons Ltd, New York, 2010).

Alves, L. N.

Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible Light Communications: Theory and Applications (CRC Press, 2017).

Anas, S. B. A.

Y. Idriss, R. K. Sahbudin, S. Hitam, and S. B. A. Anas, “Performance comparison of indoor vlc system employing sac-ocdma technique,” (Serdang, Selangor, Malaysia, 2016) Talk at 2016 IEEE 6th International Conference on Photonics (ICP 2016).

Barry, J. R.

J. R. Barry, Wireless Infrared Communications (Kluwer Academic Press, 1994).

Biagi, M.

Brandt-Pearce, M.

M. Noshad and M. Brandt-Pearce, “High-speed visible light indoor networks based on optical orthogonal codes and combinatorial designs,” (London, UK, 2013), Talk at 2013 IEEE Globecom - Optical networks and systems symposium (GLOBECOM).

Chen, D.

D. Chen, J. Wang, J. Jin, H. Lu, and L. Feng, “A cdma system implementation with dimming control for visible light communication,” Opt. Commun. 412, 172–177 (2018).
[Crossref]

Chen, H. H.

Y. Qiu, S. Chen, H. H. Chen, and W. Meng, “Visible light communications based on cdma technology,” IEEE Wirel. Commun. 25(2), 178–185 (2018).
[Crossref]

Chen, S.

Y. Qiu, S. Chen, H. H. Chen, and W. Meng, “Visible light communications based on cdma technology,” IEEE Wirel. Commun. 25(2), 178–185 (2018).
[Crossref]

Chen, Z.

Z. Chen and H. Hass, “Space division multiple access in visible light communications,” (London, UK, June 2015), Talk at 2015 IEEE International Conference on Communications (ICC).

Chi, N.

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-gb/s rgb-led based wdm visible light communication system employing cap modulation and rls based adaptive equalization,” Opt. Express 23(10), 13626–13633 (2015).
[Crossref]

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “Network architecture of a high-speed visible light communication local area network,” IEEE Photonics Technol. Lett. 27(2), 197–200 (2015).
[Crossref]

Choudhury, P.

Ciaramella, E.

Corsini, R.

Cossu, G.

Dang, J.

J. Dang and Z. Zhang, “Comparison of optical ofdm-idma and optical ofdma for uplink visible light communications,” (Huangshan, China, September 2012), Talk at 2012 International Conference on Wireless Communications and Signal Processing (WCSP).

Delgado, F.

M. F. Guerra-Medina, O. Gonzalez, B. Rojas-Guillama, J. A. Martin-Gonzalez, F. Delgado, and J. Rabadan, “Ethernet-ocdma system for multi-user visible light communications,” Electron. Lett. 48(4), 227–228 (2012).
[Crossref]

Feng, L.

D. Chen, J. Wang, J. Jin, H. Lu, and L. Feng, “A cdma system implementation with dimming control for visible light communication,” Opt. Commun. 412, 172–177 (2018).
[Crossref]

Ghassemlooy, Z.

Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible Light Communications: Theory and Applications (CRC Press, 2017).

Gollakota, S.

S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: analog network coding,” SIGCOMM Comput. Commun. Rev. 37(4), 397–407 (2007).
[Crossref]

Gonzalez, O.

M. F. Guerra-Medina, O. Gonzalez, B. Rojas-Guillama, J. A. Martin-Gonzalez, F. Delgado, and J. Rabadan, “Ethernet-ocdma system for multi-user visible light communications,” Electron. Lett. 48(4), 227–228 (2012).
[Crossref]

Guerra-Medina, M. F.

M. F. Guerra-Medina, O. Gonzalez, B. Rojas-Guillama, J. A. Martin-Gonzalez, F. Delgado, and J. Rabadan, “Ethernet-ocdma system for multi-user visible light communications,” Electron. Lett. 48(4), 227–228 (2012).
[Crossref]

Hammouda, M.

Hass, H.

Z. Chen and H. Hass, “Space division multiple access in visible light communications,” (London, UK, June 2015), Talk at 2015 IEEE International Conference on Communications (ICC).

He, C.

C. He, L. L. Yang, P. Xiao, and M. A. Imran, “Ds-cdma assisted visible light communications systems,” (Guildford, UK, 2015), Talk at 2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD).

Hitam, S.

Y. Idriss, R. K. Sahbudin, S. Hitam, and S. B. A. Anas, “Performance comparison of indoor vlc system employing sac-ocdma technique,” (Serdang, Selangor, Malaysia, 2016) Talk at 2016 IEEE 6th International Conference on Photonics (ICP 2016).

Huang, X.

Idriss, Y.

Y. Idriss, R. K. Sahbudin, S. Hitam, and S. B. A. Anas, “Performance comparison of indoor vlc system employing sac-ocdma technique,” (Serdang, Selangor, Malaysia, 2016) Talk at 2016 IEEE 6th International Conference on Photonics (ICP 2016).

Imran, M. A.

C. He, L. L. Yang, P. Xiao, and M. A. Imran, “Ds-cdma assisted visible light communications systems,” (Guildford, UK, 2015), Talk at 2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD).

Jin, J.

D. Chen, J. Wang, J. Jin, H. Lu, and L. Feng, “A cdma system implementation with dimming control for visible light communication,” Opt. Commun. 412, 172–177 (2018).
[Crossref]

Kapinas, V.

H. Marshoud, V. Kapinas, G. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).
[Crossref]

Karagiannidis, G.

H. Marshoud, V. Kapinas, G. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).
[Crossref]

Katabi, D.

S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: analog network coding,” SIGCOMM Comput. Commun. Rev. 37(4), 397–407 (2007).
[Crossref]

Katti, S.

S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: analog network coding,” SIGCOMM Comput. Commun. Rev. 37(4), 397–407 (2007).
[Crossref]

Khalid, A. M.

Khalighi, M.-A.

Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible Light Communications: Theory and Applications (CRC Press, 2017).

Kitayama, K.

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using led lights,” IEEE Transactions on Consumer Electron. 50(1), 100–107 (2004).
[Crossref]

Lu, H.

D. Chen, J. Wang, J. Jin, H. Lu, and L. Feng, “A cdma system implementation with dimming control for visible light communication,” Opt. Commun. 412, 172–177 (2018).
[Crossref]

Marshoud, H.

H. Marshoud, V. Kapinas, G. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).
[Crossref]

Martin-Gonzalez, J. A.

M. F. Guerra-Medina, O. Gonzalez, B. Rojas-Guillama, J. A. Martin-Gonzalez, F. Delgado, and J. Rabadan, “Ethernet-ocdma system for multi-user visible light communications,” Electron. Lett. 48(4), 227–228 (2012).
[Crossref]

Meng, W.

Y. Qiu, S. Chen, H. H. Chen, and W. Meng, “Visible light communications based on cdma technology,” IEEE Wirel. Commun. 25(2), 178–185 (2018).
[Crossref]

Muhaidat, S.

H. Marshoud, V. Kapinas, G. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).
[Crossref]

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using led lights,” IEEE Transactions on Consumer Electron. 50(1), 100–107 (2004).
[Crossref]

Noshad, M.

M. Noshad and M. Brandt-Pearce, “High-speed visible light indoor networks based on optical orthogonal codes and combinatorial designs,” (London, UK, 2013), Talk at 2013 IEEE Globecom - Optical networks and systems symposium (GLOBECOM).

Peissig, J.

Qiu, Y.

Y. Qiu, S. Chen, H. H. Chen, and W. Meng, “Visible light communications based on cdma technology,” IEEE Wirel. Commun. 25(2), 178–185 (2018).
[Crossref]

Rabadan, J.

M. F. Guerra-Medina, O. Gonzalez, B. Rojas-Guillama, J. A. Martin-Gonzalez, F. Delgado, and J. Rabadan, “Ethernet-ocdma system for multi-user visible light communications,” Electron. Lett. 48(4), 227–228 (2012).
[Crossref]

Rojas-Guillama, B.

M. F. Guerra-Medina, O. Gonzalez, B. Rojas-Guillama, J. A. Martin-Gonzalez, F. Delgado, and J. Rabadan, “Ethernet-ocdma system for multi-user visible light communications,” Electron. Lett. 48(4), 227–228 (2012).
[Crossref]

Sahbudin, R. K.

Y. Idriss, R. K. Sahbudin, S. Hitam, and S. B. A. Anas, “Performance comparison of indoor vlc system employing sac-ocdma technique,” (Serdang, Selangor, Malaysia, 2016) Talk at 2016 IEEE 6th International Conference on Photonics (ICP 2016).

Sargent, E. H.

A. Stok and E. H. Sargent, “The role of optical cdma in access networks,” IEEE Wirel. Commun. Mag. 40(9), 83–87 (2002).
[Crossref]

Shi, J.

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “Network architecture of a high-speed visible light communication local area network,” IEEE Photonics Technol. Lett. 27(2), 197–200 (2015).
[Crossref]

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-gb/s rgb-led based wdm visible light communication system employing cap modulation and rls based adaptive equalization,” Opt. Express 23(10), 13626–13633 (2015).
[Crossref]

Stok, A.

A. Stok and E. H. Sargent, “The role of optical cdma in access networks,” IEEE Wirel. Commun. Mag. 40(9), 83–87 (2002).
[Crossref]

Tao, L.

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “Network architecture of a high-speed visible light communication local area network,” IEEE Photonics Technol. Lett. 27(2), 197–200 (2015).
[Crossref]

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-gb/s rgb-led based wdm visible light communication system employing cap modulation and rls based adaptive equalization,” Opt. Express 23(10), 13626–13633 (2015).
[Crossref]

Vegni, A. M.

Wang, J.

D. Chen, J. Wang, J. Jin, H. Lu, and L. Feng, “A cdma system implementation with dimming control for visible light communication,” Opt. Commun. 412, 172–177 (2018).
[Crossref]

Wang, X.

Wang, Y.

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-gb/s rgb-led based wdm visible light communication system employing cap modulation and rls based adaptive equalization,” Opt. Express 23(10), 13626–13633 (2015).
[Crossref]

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “Network architecture of a high-speed visible light communication local area network,” IEEE Photonics Technol. Lett. 27(2), 197–200 (2015).
[Crossref]

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “Network architecture of a high-speed visible light communication local area network,” IEEE Photonics Technol. Lett. 27(2), 197–200 (2015).
[Crossref]

Xiao, P.

C. He, L. L. Yang, P. Xiao, and M. A. Imran, “Ds-cdma assisted visible light communications systems,” (Guildford, UK, 2015), Talk at 2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD).

Yang, L. L.

C. He, L. L. Yang, P. Xiao, and M. A. Imran, “Ds-cdma assisted visible light communications systems,” (Guildford, UK, 2015), Talk at 2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD).

Zhang, Z.

J. Dang and Z. Zhang, “Comparison of optical ofdm-idma and optical ofdma for uplink visible light communications,” (Huangshan, China, September 2012), Talk at 2012 International Conference on Wireless Communications and Signal Processing (WCSP).

Zvanovec, S.

Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible Light Communications: Theory and Applications (CRC Press, 2017).

Electron. Lett. (1)

M. F. Guerra-Medina, O. Gonzalez, B. Rojas-Guillama, J. A. Martin-Gonzalez, F. Delgado, and J. Rabadan, “Ethernet-ocdma system for multi-user visible light communications,” Electron. Lett. 48(4), 227–228 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

Y. Wang, N. Chi, Y. Wang, L. Tao, and J. Shi, “Network architecture of a high-speed visible light communication local area network,” IEEE Photonics Technol. Lett. 27(2), 197–200 (2015).
[Crossref]

H. Marshoud, V. Kapinas, G. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).
[Crossref]

IEEE Transactions on Consumer Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using led lights,” IEEE Transactions on Consumer Electron. 50(1), 100–107 (2004).
[Crossref]

IEEE Wirel. Commun. (1)

Y. Qiu, S. Chen, H. H. Chen, and W. Meng, “Visible light communications based on cdma technology,” IEEE Wirel. Commun. 25(2), 178–185 (2018).
[Crossref]

IEEE Wirel. Commun. Mag. (1)

A. Stok and E. H. Sargent, “The role of optical cdma in access networks,” IEEE Wirel. Commun. Mag. 40(9), 83–87 (2002).
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (1)

D. Chen, J. Wang, J. Jin, H. Lu, and L. Feng, “A cdma system implementation with dimming control for visible light communication,” Opt. Commun. 412, 172–177 (2018).
[Crossref]

Opt. Express (3)

SIGCOMM Comput. Commun. Rev. (1)

S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: analog network coding,” SIGCOMM Comput. Commun. Rev. 37(4), 397–407 (2007).
[Crossref]

Other (8)

J. R. Barry, Wireless Infrared Communications (Kluwer Academic Press, 1994).

Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible Light Communications: Theory and Applications (CRC Press, 2017).

G. P. Agrawal, Fiber-optic communication systems, the 4th edition (John Wiley and Sons Ltd, New York, 2010).

C. He, L. L. Yang, P. Xiao, and M. A. Imran, “Ds-cdma assisted visible light communications systems,” (Guildford, UK, 2015), Talk at 2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD).

M. Noshad and M. Brandt-Pearce, “High-speed visible light indoor networks based on optical orthogonal codes and combinatorial designs,” (London, UK, 2013), Talk at 2013 IEEE Globecom - Optical networks and systems symposium (GLOBECOM).

Y. Idriss, R. K. Sahbudin, S. Hitam, and S. B. A. Anas, “Performance comparison of indoor vlc system employing sac-ocdma technique,” (Serdang, Selangor, Malaysia, 2016) Talk at 2016 IEEE 6th International Conference on Photonics (ICP 2016).

Z. Chen and H. Hass, “Space division multiple access in visible light communications,” (London, UK, June 2015), Talk at 2015 IEEE International Conference on Communications (ICC).

J. Dang and Z. Zhang, “Comparison of optical ofdm-idma and optical ofdma for uplink visible light communications,” (Huangshan, China, September 2012), Talk at 2012 International Conference on Wireless Communications and Signal Processing (WCSP).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. The proposed VLC network using ANC and OCDMA.
Fig. 2.
Fig. 2. (a) Conventional bidirectional relaying; (b) Digital network coding; (c) Analog network coding [15].
Fig. 3.
Fig. 3. Block diagram of the coordinator.
Fig. 4.
Fig. 4. BER versus the transmitted optical power of User $\#c,d$ ($P_{c,d}^{(T)}$) with $K = 8$ users.
Fig. 5.
Fig. 5. BER versus the transmitted optical power of User $\#c,d$ ($P_{c,d}^{(T)}$) with $r = 0.5$ m.
Fig. 6.
Fig. 6. BER versus the number of users ($K$) with power control.
Fig. 7.
Fig. 7. Network throughput versus the number of users ($K$) with $N = 5000$ bits.
Fig. 8.
Fig. 8. BER versus the field of view ($\Psi _{c}$) with $\Phi _{1/2} = 70^{\circ }$, $P_{c,d}^{(T)} = 290$ mW, and $K = 8$ users.

Tables (1)

Tables Icon

Table 1. Network parameters and constants

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Sk(t)=i=1Lck,i(t)p(tiTc)Pk(T)exp[j(ωct+θk)],
SC(R)(t)=k=1Ki=1Lck,i(t)p(tiTc)Pk(RC)exp[j(ωct+θk)],
SC(T)(t)=k=1Ki=1Lck,i(t)p(tiTc)Pk(TC)exp[j(ωct+θk)],
Sd^(T)(t)=i=1Lcd,i(t)p(tiTc)Pd(R)exp[j(ωct+θk)]+k=1,kc,dKi=1Lck,i(t)p(tiTc)Pk(R)exp[j(ωct+θk)].
y(t)=x(t)h(t)+n(t),
H={(m+1)A2πd2cosm(ϕ)Ts(ψ)g(ψ)cos(ψ),0ψΨc,0,ψ>Ψc,
g(ψ)={n2sin2Ψc,0ψΨc,0,ψ>Ψc,
m=ln(2)ln(cos(Φ1/2)),
I(1)=(wPd(R)+PMUI),
I(0)=PMUI,
σsh12=2q(wPd(R)+PMUI)B+2qIBI2B,σsh02=2qPMUIB+2qIBI2B,
σth2=8πκTkGolCpdAI2B2+16π2κΓTkgmCpd2APD2I3B3,
σbn2=2(BLB0)2Pd(R)k=1lλPk(R).
σ12=σsh12+σth2+σbn2,
σ02=σsh02+σth2.
BER=l=1K2(K2l)2(K2)Q(I(1)I(0)σ1+σ0),
TP2u=2N2TsP(Ωc,Ωd)+N2TsP(Ωc,Ω¯d)+N2TsP(Ω¯c,Ωd)=Rs2[2P(Ωc,Ωd)+P(Ωc,Ω¯d)+P(Ω¯c,Ωd)]=Rs2[P(Ωc)+P(Ωd)]=Rs2[(1PEPdc)+(1PEPcd)],
TPN=K2TP2u=K2Rs(1PEPxy),
PEPxy=1(1BER)N.

Metrics