Abstract

This paper reports a dual-core photonic crystal fiber (PCF) based temperature sensor designed to measure the temperature of water as an analyte. The sample sneaked into the smallest air hole in cladding, which serves as analyte core, and the center of the cladding serves as silica core. Using the finite element method (FEM), the optical energy shifted from the silica core to analyte core is examined to fulfill the phase-matching condition. The wavelength sensitivity of temperature in the water sample is recorded as 25000 nm/refractive index unit (RIU) with a detection level of 0.0012 RIU. To the best of our knowledge, this is the highest sensitivity for a PCF based temperature sensor, which is obtained for analyte refractive indices from 1.3328 to 1.3375. The maximum temperature sensitivity of 818 pm/° C is achieved from this proposed structure. Moreover, the temperature level varies from 30° C to 70° C to obtain the highest sensitivity response. This structure can be applied in the detection of biomolecules, organic chemicals, and biological and biomedical analysis upon modification as well.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Asymmetrical photonic crystal fiber based plasmonic sensor using the lower birefringence peak method

Mohammad Al Mahfuz, Md. Rabiul Hasan, Moriom Rojy Momota, Al Masud, and Sanjida Akter
OSA Continuum 2(5) 1713-1725 (2019)

Temperature sensor based on liquid-filled negative curvature optical fibers

Chengli Wei, Joshua T. Young, Curtis R. Menyuk, and Jonathan Hu
OSA Continuum 2(7) 2123-2130 (2019)

Investigation of a SPR based refractive index sensor using a single mode fiber with a large D shaped microfluidic channel

A. K. Pathak, V. K. Singh, S. Ghosh, and B. M. A. Rahman
OSA Continuum 2(11) 3008-3018 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. Chen, S. Li, J. Li, Y. Han, and Y. Wu, “High sensitivity of temperature sensor based on ultracompact photonics crystal fibers,” IEEE Photonics J. 6(6), 1–6 (2014).
    [Crossref]
  2. B. K. Paul, K. Ahmed, D. Vigneswaran, F. Ahmed, S. Roy, and D. Abbott, “Quasi-photonic crystal fiber-based spectroscopic chemical sensor in the terahertz spectrum: Design and analysis,” IEEE Sens. J. 18(24), 9948–9954 (2018).
    [Crossref]
  3. B. K. Paul, E. Rajesh, S. Asaduzzaman, M. S. Islam, K. Ahmed, I. S. Amiri, and R. Zakaria, “Design and analysis of slotted core photonic crystal fiber for gas sensing application,” Results Phys. 11, 643–650 (2018).
    [Crossref]
  4. I. S. Amiri, B. K. Paul, K. Ahmed, A. H. Aly, R. Zakaria, P. Yupapin, and D. Vigneswaran, “Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection,” Microw. Opt. Technol. Lett. 61(3), 847–852 (2019).
    [Crossref]
  5. H. Fu, H. Tam, L.-Y. Shao, X. Dong, P. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based sagnac interferometer,” Appl. Opt. 47(15), 2835–2839 (2008).
    [Crossref]
  6. J. H. Osório, J. G. Hayashi, Y. A. Espinel, M. A. Franco, M. V. Andrés, and C. M. Cordeiro, “Photonic-crystal fiber-based pressure sensor for dual environment monitoring,” Appl. Opt. 53(17), 3668–3672 (2014).
    [Crossref]
  7. P. Hu, X. Dong, W. C. Wong, L. H. Chen, K. Ni, and C. C. Chan, “Photonic crystal fiber interferometric ph sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating,” Appl. Opt. 54(10), 2647–2652 (2015).
    [Crossref]
  8. D. Kumar, D. Kalra, and M. Kumar, “Analysis of photonic crystal fiber-based micro-strain sensor,” in Recent Trends in Communication, Computing, and Electronics, (Springer, 2019), pp. 43–50.
  9. F. Yang, Z. Wang, and D. Wang, “A highly sensitive optical fiber strain sensor based on cascaded multimode fiber and photonic crystal fiber,” Opt. Fiber Technol. 47, 102–106 (2019).
    [Crossref]
  10. J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46(19), 1341–1343 (2010).
    [Crossref]
  11. R.-J. Tong, Y. Zhao, M.-Q. Chen, and Y. Peng, “Relative humidity sensor based on small up-tapered photonic crystal fiber mach–zehnder interferometer,” Sens. Actuators, A 280, 24–30 (2018).
    [Crossref]
  12. Y. Lu, M. Wang, C. Hao, Z. Zhao, and J. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photonics J. 6(3), 1–7 (2014).
    [Crossref]
  13. J. Ju and W. Jin, “Photonic crystal fiber sensors for strain and temperature measurement,” J. Sens. 2009, 1–10 (2009).
    [Crossref]
  14. A. Jana, G. Sharma, A. M. Shrivastav, A. S. Rathore, and R. Jha, “Photonic crystal fiber based magnetic field sensor realizing mach zehnder interference,” in Optical Sensors, (Optical Society of America, 2018), pp. SeW3E–2.
  15. X. Z. Ding, H.-Z. Yang, X.-G. Qiao, P. Zhang, O. Tian, Q. Z. Rong, N. A. M. Nazal, K.-S. Lim, and H. Ahmad, “Mach–zehnder interferometric magnetic field sensor based on a photonic crystal fiber and magnetic fluid,” Appl. Opt. 57(9), 2050–2056 (2018).
    [Crossref]
  16. J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30(8), 1150–1155 (2012).
    [Crossref]
  17. K. Barczak, “Application of photonic crystal fiber in op-tical fiber current sensors,” Acta Phys. Pol., A 122(5), 793–795 (2012).
    [Crossref]
  18. L. E. Horan and F. C. G. Gunning, “Hollow core photonic crystal fiber as a viscosity sensor,” in OFS2012 22nd International Conference on Optical Fiber Sensors, vol. 8421 (International Society for Optics and Photonics, 2012), p. 84216X.
  19. M.-H. Chiu, S.-F. Wang, and R.-S. Chang, “D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Opt. Lett. 30(3), 233–235 (2005).
    [Crossref]
  20. R. K. Verma, A. K. Sharma, and B. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
    [Crossref]
  21. R. Verma and B. Gupta, “Theoretical modelling of a bi-dimensional u-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D: Appl. Phys. 41(9), 095106 (2008).
    [Crossref]
  22. H. Gong, X. Yang, K. Ni, C.-L. Zhao, and X. Dong, “An optical fiber curvature sensor based on two peanut-shape structures modal interferometer,” IEEE Photonics Technol. Lett. 26(1), 22–24 (2014).
    [Crossref]
  23. D. Clerc and W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sens. Actuators, B 19(1-3), 581–586 (1994).
    [Crossref]
  24. C. Wu, B.-O. Guan, C. Lu, and H.-Y. Tam, “Salinity sensor based on polyimide-coated photonic crystal fiber,” Opt. Express 19(21), 20003–20008 (2011).
    [Crossref]
  25. A. Duval, M. Lhoutellier, J. Jensen, P. Hoiby, V. Missier, L. Pedersen, T. P. Hansen, A. Bjarklev, and O. Bang, “Photonic crystal fiber based antibody detection,” in SENSORS, 2004 IEEE, (IEEE, 2004), pp. 1222–1225.
  26. S. Pevec and D. Donlagic, “High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature,” Opt. Express 22(13), 16241–16253 (2014).
    [Crossref]
  27. A. Natesan, K. P. Govindasamy, T. R. Gopal, V. Dhasarathan, and A. H. Aly, “Tricore photonic crystal fibre based refractive index sensor for glucose detection,” IET Optoelectron. 13(3), 118–123 (2019).
    [Crossref]
  28. D. K. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
    [Crossref]
  29. Y. Wang, M. Yang, D. Wang, and C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photonics Technol. Lett. 23(20), 1520–1522 (2011).
    [Crossref]
  30. D. J. J. Hu, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, P. P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
    [Crossref]
  31. D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6chbt,” IEEE Photonics J. 4(5), 2010–2016 (2012).
    [Crossref]
  32. Q. Liu, S. Li, H. Chen, Z. Fan, and J. Li, “Photonic crystal fiber temperature sensor based on coupling between liquid-core mode and defect mode,” IEEE Photonics J. 7(2), 1–9 (2015).
    [Crossref]
  33. D. Vigneswaran, N. Ayyanar, M. Sharma, M. Sumathi, M. Rajan, and K. Porsezian, “Salinity sensor using photonic crystal fiber,” Sens. Actuators, A 269, 22–28 (2018).
    [Crossref]
  34. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
    [Crossref]
  35. B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
    [Crossref]
  36. S. Gao, C. Baker, L. Chen, and X. Bao, “High-sensitivity temperature and strain measurement in dual-core hybrid tapers,” IEEE Photonics Technol. Lett. 30(12), 1155–1158 (2018).
    [Crossref]
  37. C. Lu, J. Su, X. Dong, T. Sun, and K. T. Grattan, “Simultaneous measurement of strain and temperature with a few-mode fiber-based sensor,” J. Lightwave Technol. 36(13), 2796–2802 (2018).
    [Crossref]
  38. X. Zhang, W. Peng, L.-Y. Shao, W. Pan, and L. Yan, “Strain and temperature discrimination by using temperature-independent fpi and fbg,” Sens. Actuators, A 272, 134–138 (2018).
    [Crossref]

2019 (3)

I. S. Amiri, B. K. Paul, K. Ahmed, A. H. Aly, R. Zakaria, P. Yupapin, and D. Vigneswaran, “Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection,” Microw. Opt. Technol. Lett. 61(3), 847–852 (2019).
[Crossref]

F. Yang, Z. Wang, and D. Wang, “A highly sensitive optical fiber strain sensor based on cascaded multimode fiber and photonic crystal fiber,” Opt. Fiber Technol. 47, 102–106 (2019).
[Crossref]

A. Natesan, K. P. Govindasamy, T. R. Gopal, V. Dhasarathan, and A. H. Aly, “Tricore photonic crystal fibre based refractive index sensor for glucose detection,” IET Optoelectron. 13(3), 118–123 (2019).
[Crossref]

2018 (8)

D. Vigneswaran, N. Ayyanar, M. Sharma, M. Sumathi, M. Rajan, and K. Porsezian, “Salinity sensor using photonic crystal fiber,” Sens. Actuators, A 269, 22–28 (2018).
[Crossref]

S. Gao, C. Baker, L. Chen, and X. Bao, “High-sensitivity temperature and strain measurement in dual-core hybrid tapers,” IEEE Photonics Technol. Lett. 30(12), 1155–1158 (2018).
[Crossref]

C. Lu, J. Su, X. Dong, T. Sun, and K. T. Grattan, “Simultaneous measurement of strain and temperature with a few-mode fiber-based sensor,” J. Lightwave Technol. 36(13), 2796–2802 (2018).
[Crossref]

X. Zhang, W. Peng, L.-Y. Shao, W. Pan, and L. Yan, “Strain and temperature discrimination by using temperature-independent fpi and fbg,” Sens. Actuators, A 272, 134–138 (2018).
[Crossref]

B. K. Paul, K. Ahmed, D. Vigneswaran, F. Ahmed, S. Roy, and D. Abbott, “Quasi-photonic crystal fiber-based spectroscopic chemical sensor in the terahertz spectrum: Design and analysis,” IEEE Sens. J. 18(24), 9948–9954 (2018).
[Crossref]

B. K. Paul, E. Rajesh, S. Asaduzzaman, M. S. Islam, K. Ahmed, I. S. Amiri, and R. Zakaria, “Design and analysis of slotted core photonic crystal fiber for gas sensing application,” Results Phys. 11, 643–650 (2018).
[Crossref]

X. Z. Ding, H.-Z. Yang, X.-G. Qiao, P. Zhang, O. Tian, Q. Z. Rong, N. A. M. Nazal, K.-S. Lim, and H. Ahmad, “Mach–zehnder interferometric magnetic field sensor based on a photonic crystal fiber and magnetic fluid,” Appl. Opt. 57(9), 2050–2056 (2018).
[Crossref]

R.-J. Tong, Y. Zhao, M.-Q. Chen, and Y. Peng, “Relative humidity sensor based on small up-tapered photonic crystal fiber mach–zehnder interferometer,” Sens. Actuators, A 280, 24–30 (2018).
[Crossref]

2015 (2)

Q. Liu, S. Li, H. Chen, Z. Fan, and J. Li, “Photonic crystal fiber temperature sensor based on coupling between liquid-core mode and defect mode,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

P. Hu, X. Dong, W. C. Wong, L. H. Chen, K. Ni, and C. C. Chan, “Photonic crystal fiber interferometric ph sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating,” Appl. Opt. 54(10), 2647–2652 (2015).
[Crossref]

2014 (5)

H. Gong, X. Yang, K. Ni, C.-L. Zhao, and X. Dong, “An optical fiber curvature sensor based on two peanut-shape structures modal interferometer,” IEEE Photonics Technol. Lett. 26(1), 22–24 (2014).
[Crossref]

S. Pevec and D. Donlagic, “High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature,” Opt. Express 22(13), 16241–16253 (2014).
[Crossref]

Y. Lu, M. Wang, C. Hao, Z. Zhao, and J. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photonics J. 6(3), 1–7 (2014).
[Crossref]

H. Chen, S. Li, J. Li, Y. Han, and Y. Wu, “High sensitivity of temperature sensor based on ultracompact photonics crystal fibers,” IEEE Photonics J. 6(6), 1–6 (2014).
[Crossref]

J. H. Osório, J. G. Hayashi, Y. A. Espinel, M. A. Franco, M. V. Andrés, and C. M. Cordeiro, “Photonic-crystal fiber-based pressure sensor for dual environment monitoring,” Appl. Opt. 53(17), 3668–3672 (2014).
[Crossref]

2012 (4)

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30(8), 1150–1155 (2012).
[Crossref]

K. Barczak, “Application of photonic crystal fiber in op-tical fiber current sensors,” Acta Phys. Pol., A 122(5), 793–795 (2012).
[Crossref]

D. J. J. Hu, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, P. P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
[Crossref]

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6chbt,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

2011 (2)

Y. Wang, M. Yang, D. Wang, and C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photonics Technol. Lett. 23(20), 1520–1522 (2011).
[Crossref]

C. Wu, B.-O. Guan, C. Lu, and H.-Y. Tam, “Salinity sensor based on polyimide-coated photonic crystal fiber,” Opt. Express 19(21), 20003–20008 (2011).
[Crossref]

2010 (1)

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46(19), 1341–1343 (2010).
[Crossref]

2009 (2)

J. Ju and W. Jin, “Photonic crystal fiber sensors for strain and temperature measurement,” J. Sens. 2009, 1–10 (2009).
[Crossref]

D. K. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009).
[Crossref]

2008 (3)

R. K. Verma, A. K. Sharma, and B. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

R. Verma and B. Gupta, “Theoretical modelling of a bi-dimensional u-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D: Appl. Phys. 41(9), 095106 (2008).
[Crossref]

H. Fu, H. Tam, L.-Y. Shao, X. Dong, P. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based sagnac interferometer,” Appl. Opt. 47(15), 2835–2839 (2008).
[Crossref]

2007 (2)

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

B. Gauvreau, A. Hassani, M. F. Fehri, A. Kabashin, and M. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
[Crossref]

2005 (1)

1994 (1)

D. Clerc and W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sens. Actuators, B 19(1-3), 581–586 (1994).
[Crossref]

Abbott, D.

B. K. Paul, K. Ahmed, D. Vigneswaran, F. Ahmed, S. Roy, and D. Abbott, “Quasi-photonic crystal fiber-based spectroscopic chemical sensor in the terahertz spectrum: Design and analysis,” IEEE Sens. J. 18(24), 9948–9954 (2018).
[Crossref]

Ahmad, H.

Ahmed, F.

B. K. Paul, K. Ahmed, D. Vigneswaran, F. Ahmed, S. Roy, and D. Abbott, “Quasi-photonic crystal fiber-based spectroscopic chemical sensor in the terahertz spectrum: Design and analysis,” IEEE Sens. J. 18(24), 9948–9954 (2018).
[Crossref]

Ahmed, K.

I. S. Amiri, B. K. Paul, K. Ahmed, A. H. Aly, R. Zakaria, P. Yupapin, and D. Vigneswaran, “Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection,” Microw. Opt. Technol. Lett. 61(3), 847–852 (2019).
[Crossref]

B. K. Paul, E. Rajesh, S. Asaduzzaman, M. S. Islam, K. Ahmed, I. S. Amiri, and R. Zakaria, “Design and analysis of slotted core photonic crystal fiber for gas sensing application,” Results Phys. 11, 643–650 (2018).
[Crossref]

B. K. Paul, K. Ahmed, D. Vigneswaran, F. Ahmed, S. Roy, and D. Abbott, “Quasi-photonic crystal fiber-based spectroscopic chemical sensor in the terahertz spectrum: Design and analysis,” IEEE Sens. J. 18(24), 9948–9954 (2018).
[Crossref]

Aly, A. H.

I. S. Amiri, B. K. Paul, K. Ahmed, A. H. Aly, R. Zakaria, P. Yupapin, and D. Vigneswaran, “Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection,” Microw. Opt. Technol. Lett. 61(3), 847–852 (2019).
[Crossref]

A. Natesan, K. P. Govindasamy, T. R. Gopal, V. Dhasarathan, and A. H. Aly, “Tricore photonic crystal fibre based refractive index sensor for glucose detection,” IET Optoelectron. 13(3), 118–123 (2019).
[Crossref]

Amiri, I. S.

I. S. Amiri, B. K. Paul, K. Ahmed, A. H. Aly, R. Zakaria, P. Yupapin, and D. Vigneswaran, “Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection,” Microw. Opt. Technol. Lett. 61(3), 847–852 (2019).
[Crossref]

B. K. Paul, E. Rajesh, S. Asaduzzaman, M. S. Islam, K. Ahmed, I. S. Amiri, and R. Zakaria, “Design and analysis of slotted core photonic crystal fiber for gas sensing application,” Results Phys. 11, 643–650 (2018).
[Crossref]

Andrés, M. V.

Asaduzzaman, S.

B. K. Paul, E. Rajesh, S. Asaduzzaman, M. S. Islam, K. Ahmed, I. S. Amiri, and R. Zakaria, “Design and analysis of slotted core photonic crystal fiber for gas sensing application,” Results Phys. 11, 643–650 (2018).
[Crossref]

Ayyanar, N.

D. Vigneswaran, N. Ayyanar, M. Sharma, M. Sumathi, M. Rajan, and K. Porsezian, “Salinity sensor using photonic crystal fiber,” Sens. Actuators, A 269, 22–28 (2018).
[Crossref]

Badenes, G.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Baker, C.

S. Gao, C. Baker, L. Chen, and X. Bao, “High-sensitivity temperature and strain measurement in dual-core hybrid tapers,” IEEE Photonics Technol. Lett. 30(12), 1155–1158 (2018).
[Crossref]

Bang, O.

A. Duval, M. Lhoutellier, J. Jensen, P. Hoiby, V. Missier, L. Pedersen, T. P. Hansen, A. Bjarklev, and O. Bang, “Photonic crystal fiber based antibody detection,” in SENSORS, 2004 IEEE, (IEEE, 2004), pp. 1222–1225.

Bao, X.

S. Gao, C. Baker, L. Chen, and X. Bao, “High-sensitivity temperature and strain measurement in dual-core hybrid tapers,” IEEE Photonics Technol. Lett. 30(12), 1155–1158 (2018).
[Crossref]

Barczak, K.

K. Barczak, “Application of photonic crystal fiber in op-tical fiber current sensors,” Acta Phys. Pol., A 122(5), 793–795 (2012).
[Crossref]

Bjarklev, A.

A. Duval, M. Lhoutellier, J. Jensen, P. Hoiby, V. Missier, L. Pedersen, T. P. Hansen, A. Bjarklev, and O. Bang, “Photonic crystal fiber based antibody detection,” in SENSORS, 2004 IEEE, (IEEE, 2004), pp. 1222–1225.

Chan, C. C.

Chang, R.-S.

Chen, H.

Q. Liu, S. Li, H. Chen, Z. Fan, and J. Li, “Photonic crystal fiber temperature sensor based on coupling between liquid-core mode and defect mode,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

H. Chen, S. Li, J. Li, Y. Han, and Y. Wu, “High sensitivity of temperature sensor based on ultracompact photonics crystal fibers,” IEEE Photonics J. 6(6), 1–6 (2014).
[Crossref]

Chen, L.

S. Gao, C. Baker, L. Chen, and X. Bao, “High-sensitivity temperature and strain measurement in dual-core hybrid tapers,” IEEE Photonics Technol. Lett. 30(12), 1155–1158 (2018).
[Crossref]

Chen, L. H.

Chen, M.-Q.

R.-J. Tong, Y. Zhao, M.-Q. Chen, and Y. Peng, “Relative humidity sensor based on small up-tapered photonic crystal fiber mach–zehnder interferometer,” Sens. Actuators, A 280, 24–30 (2018).
[Crossref]

Chiu, M.-H.

Clerc, D.

D. Clerc and W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sens. Actuators, B 19(1-3), 581–586 (1994).
[Crossref]

Cordeiro, C. M.

Cui, Y.

D. J. J. Hu, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, P. P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
[Crossref]

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6chbt,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Dhasarathan, V.

A. Natesan, K. P. Govindasamy, T. R. Gopal, V. Dhasarathan, and A. H. Aly, “Tricore photonic crystal fibre based refractive index sensor for glucose detection,” IET Optoelectron. 13(3), 118–123 (2019).
[Crossref]

Ding, X. Z.

Dong, X.

Donlagic, D.

Duval, A.

A. Duval, M. Lhoutellier, J. Jensen, P. Hoiby, V. Missier, L. Pedersen, T. P. Hansen, A. Bjarklev, and O. Bang, “Photonic crystal fiber based antibody detection,” in SENSORS, 2004 IEEE, (IEEE, 2004), pp. 1222–1225.

Eggleton, B. J.

Espinel, Y. A.

Fan, Z.

Q. Liu, S. Li, H. Chen, Z. Fan, and J. Li, “Photonic crystal fiber temperature sensor based on coupling between liquid-core mode and defect mode,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

Farrell, G.

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30(8), 1150–1155 (2012).
[Crossref]

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46(19), 1341–1343 (2010).
[Crossref]

Fehri, M. F.

Finazzi, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Franco, M. A.

Fu, H.

Gao, S.

S. Gao, C. Baker, L. Chen, and X. Bao, “High-sensitivity temperature and strain measurement in dual-core hybrid tapers,” IEEE Photonics Technol. Lett. 30(12), 1155–1158 (2018).
[Crossref]

Gauvreau, B.

Gong, H.

H. Gong, X. Yang, K. Ni, C.-L. Zhao, and X. Dong, “An optical fiber curvature sensor based on two peanut-shape structures modal interferometer,” IEEE Photonics Technol. Lett. 26(1), 22–24 (2014).
[Crossref]

Gopal, T. R.

A. Natesan, K. P. Govindasamy, T. R. Gopal, V. Dhasarathan, and A. H. Aly, “Tricore photonic crystal fibre based refractive index sensor for glucose detection,” IET Optoelectron. 13(3), 118–123 (2019).
[Crossref]

Govindasamy, K. P.

A. Natesan, K. P. Govindasamy, T. R. Gopal, V. Dhasarathan, and A. H. Aly, “Tricore photonic crystal fibre based refractive index sensor for glucose detection,” IET Optoelectron. 13(3), 118–123 (2019).
[Crossref]

Grattan, K. T.

Guan, B.-O.

Gunning, F. C. G.

L. E. Horan and F. C. G. Gunning, “Hollow core photonic crystal fiber as a viscosity sensor,” in OFS2012 22nd International Conference on Optical Fiber Sensors, vol. 8421 (International Society for Optics and Photonics, 2012), p. 84216X.

Gupta, B.

R. K. Verma, A. K. Sharma, and B. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

R. Verma and B. Gupta, “Theoretical modelling of a bi-dimensional u-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D: Appl. Phys. 41(9), 095106 (2008).
[Crossref]

Han, Y.

H. Chen, S. Li, J. Li, Y. Han, and Y. Wu, “High sensitivity of temperature sensor based on ultracompact photonics crystal fibers,” IEEE Photonics J. 6(6), 1–6 (2014).
[Crossref]

Hansen, T. P.

A. Duval, M. Lhoutellier, J. Jensen, P. Hoiby, V. Missier, L. Pedersen, T. P. Hansen, A. Bjarklev, and O. Bang, “Photonic crystal fiber based antibody detection,” in SENSORS, 2004 IEEE, (IEEE, 2004), pp. 1222–1225.

Hao, C.

Y. Lu, M. Wang, C. Hao, Z. Zhao, and J. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photonics J. 6(3), 1–7 (2014).
[Crossref]

Hassani, A.

Hayashi, J. G.

Hoiby, P.

A. Duval, M. Lhoutellier, J. Jensen, P. Hoiby, V. Missier, L. Pedersen, T. P. Hansen, A. Bjarklev, and O. Bang, “Photonic crystal fiber based antibody detection,” in SENSORS, 2004 IEEE, (IEEE, 2004), pp. 1222–1225.

Horan, L. E.

L. E. Horan and F. C. G. Gunning, “Hollow core photonic crystal fiber as a viscosity sensor,” in OFS2012 22nd International Conference on Optical Fiber Sensors, vol. 8421 (International Society for Optics and Photonics, 2012), p. 84216X.

Hu, D. J. J.

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6chbt,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

D. J. J. Hu, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, P. P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
[Crossref]

Hu, P.

Islam, M. S.

B. K. Paul, E. Rajesh, S. Asaduzzaman, M. S. Islam, K. Ahmed, I. S. Amiri, and R. Zakaria, “Design and analysis of slotted core photonic crystal fiber for gas sensing application,” Results Phys. 11, 643–650 (2018).
[Crossref]

Jana, A.

A. Jana, G. Sharma, A. M. Shrivastav, A. S. Rathore, and R. Jha, “Photonic crystal fiber based magnetic field sensor realizing mach zehnder interference,” in Optical Sensors, (Optical Society of America, 2018), pp. SeW3E–2.

Jensen, J.

A. Duval, M. Lhoutellier, J. Jensen, P. Hoiby, V. Missier, L. Pedersen, T. P. Hansen, A. Bjarklev, and O. Bang, “Photonic crystal fiber based antibody detection,” in SENSORS, 2004 IEEE, (IEEE, 2004), pp. 1222–1225.

Jha, R.

A. Jana, G. Sharma, A. M. Shrivastav, A. S. Rathore, and R. Jha, “Photonic crystal fiber based magnetic field sensor realizing mach zehnder interference,” in Optical Sensors, (Optical Society of America, 2018), pp. SeW3E–2.

Jin, W.

J. Ju and W. Jin, “Photonic crystal fiber sensors for strain and temperature measurement,” J. Sens. 2009, 1–10 (2009).
[Crossref]

Ju, J.

J. Ju and W. Jin, “Photonic crystal fiber sensors for strain and temperature measurement,” J. Sens. 2009, 1–10 (2009).
[Crossref]

Kabashin, A.

Kalra, D.

D. Kumar, D. Kalra, and M. Kumar, “Analysis of photonic crystal fiber-based micro-strain sensor,” in Recent Trends in Communication, Computing, and Electronics, (Springer, 2019), pp. 43–50.

Khijwania, S. K.

Kuhlmey, B. T.

Kumar, D.

D. Kumar, D. Kalra, and M. Kumar, “Analysis of photonic crystal fiber-based micro-strain sensor,” in Recent Trends in Communication, Computing, and Electronics, (Springer, 2019), pp. 43–50.

Kumar, M.

D. Kumar, D. Kalra, and M. Kumar, “Analysis of photonic crystal fiber-based micro-strain sensor,” in Recent Trends in Communication, Computing, and Electronics, (Springer, 2019), pp. 43–50.

Lhoutellier, M.

A. Duval, M. Lhoutellier, J. Jensen, P. Hoiby, V. Missier, L. Pedersen, T. P. Hansen, A. Bjarklev, and O. Bang, “Photonic crystal fiber based antibody detection,” in SENSORS, 2004 IEEE, (IEEE, 2004), pp. 1222–1225.

Li, J.

Q. Liu, S. Li, H. Chen, Z. Fan, and J. Li, “Photonic crystal fiber temperature sensor based on coupling between liquid-core mode and defect mode,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

H. Chen, S. Li, J. Li, Y. Han, and Y. Wu, “High sensitivity of temperature sensor based on ultracompact photonics crystal fibers,” IEEE Photonics J. 6(6), 1–6 (2014).
[Crossref]

Li, S.

Q. Liu, S. Li, H. Chen, Z. Fan, and J. Li, “Photonic crystal fiber temperature sensor based on coupling between liquid-core mode and defect mode,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

H. Chen, S. Li, J. Li, Y. Han, and Y. Wu, “High sensitivity of temperature sensor based on ultracompact photonics crystal fibers,” IEEE Photonics J. 6(6), 1–6 (2014).
[Crossref]

Liao, C.

Y. Wang, M. Yang, D. Wang, and C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photonics Technol. Lett. 23(20), 1520–1522 (2011).
[Crossref]

Lim, J. L.

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6chbt,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

D. J. J. Hu, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, P. P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
[Crossref]

Lim, K.-S.

Liu, Q.

Q. Liu, S. Li, H. Chen, Z. Fan, and J. Li, “Photonic crystal fiber temperature sensor based on coupling between liquid-core mode and defect mode,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

Lu, C.

Lu, Y.

Y. Lu, M. Wang, C. Hao, Z. Zhao, and J. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photonics J. 6(3), 1–7 (2014).
[Crossref]

Lukosz, W.

D. Clerc and W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sens. Actuators, B 19(1-3), 581–586 (1994).
[Crossref]

Mathew, J.

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30(8), 1150–1155 (2012).
[Crossref]

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46(19), 1341–1343 (2010).
[Crossref]

Milenko, K.

D. J. J. Hu, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, P. P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
[Crossref]

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6chbt,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Minkovich, V. P.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Missier, V.

A. Duval, M. Lhoutellier, J. Jensen, P. Hoiby, V. Missier, L. Pedersen, T. P. Hansen, A. Bjarklev, and O. Bang, “Photonic crystal fiber based antibody detection,” in SENSORS, 2004 IEEE, (IEEE, 2004), pp. 1222–1225.

Natesan, A.

A. Natesan, K. P. Govindasamy, T. R. Gopal, V. Dhasarathan, and A. H. Aly, “Tricore photonic crystal fibre based refractive index sensor for glucose detection,” IET Optoelectron. 13(3), 118–123 (2019).
[Crossref]

Nazal, N. A. M.

Ni, K.

P. Hu, X. Dong, W. C. Wong, L. H. Chen, K. Ni, and C. C. Chan, “Photonic crystal fiber interferometric ph sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating,” Appl. Opt. 54(10), 2647–2652 (2015).
[Crossref]

H. Gong, X. Yang, K. Ni, C.-L. Zhao, and X. Dong, “An optical fiber curvature sensor based on two peanut-shape structures modal interferometer,” IEEE Photonics Technol. Lett. 26(1), 22–24 (2014).
[Crossref]

Osório, J. H.

Pan, W.

X. Zhang, W. Peng, L.-Y. Shao, W. Pan, and L. Yan, “Strain and temperature discrimination by using temperature-independent fpi and fbg,” Sens. Actuators, A 272, 134–138 (2018).
[Crossref]

Paul, B. K.

I. S. Amiri, B. K. Paul, K. Ahmed, A. H. Aly, R. Zakaria, P. Yupapin, and D. Vigneswaran, “Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection,” Microw. Opt. Technol. Lett. 61(3), 847–852 (2019).
[Crossref]

B. K. Paul, K. Ahmed, D. Vigneswaran, F. Ahmed, S. Roy, and D. Abbott, “Quasi-photonic crystal fiber-based spectroscopic chemical sensor in the terahertz spectrum: Design and analysis,” IEEE Sens. J. 18(24), 9948–9954 (2018).
[Crossref]

B. K. Paul, E. Rajesh, S. Asaduzzaman, M. S. Islam, K. Ahmed, I. S. Amiri, and R. Zakaria, “Design and analysis of slotted core photonic crystal fiber for gas sensing application,” Results Phys. 11, 643–650 (2018).
[Crossref]

Pedersen, L.

A. Duval, M. Lhoutellier, J. Jensen, P. Hoiby, V. Missier, L. Pedersen, T. P. Hansen, A. Bjarklev, and O. Bang, “Photonic crystal fiber based antibody detection,” in SENSORS, 2004 IEEE, (IEEE, 2004), pp. 1222–1225.

Peng, W.

X. Zhang, W. Peng, L.-Y. Shao, W. Pan, and L. Yan, “Strain and temperature discrimination by using temperature-independent fpi and fbg,” Sens. Actuators, A 272, 134–138 (2018).
[Crossref]

Peng, Y.

R.-J. Tong, Y. Zhao, M.-Q. Chen, and Y. Peng, “Relative humidity sensor based on small up-tapered photonic crystal fiber mach–zehnder interferometer,” Sens. Actuators, A 280, 24–30 (2018).
[Crossref]

Pevec, S.

Porsezian, K.

D. Vigneswaran, N. Ayyanar, M. Sharma, M. Sumathi, M. Rajan, and K. Porsezian, “Salinity sensor using photonic crystal fiber,” Sens. Actuators, A 269, 22–28 (2018).
[Crossref]

Pruneri, V.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Qiao, X.-G.

Rajan, G.

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46(19), 1341–1343 (2010).
[Crossref]

Rajan, M.

D. Vigneswaran, N. Ayyanar, M. Sharma, M. Sumathi, M. Rajan, and K. Porsezian, “Salinity sensor using photonic crystal fiber,” Sens. Actuators, A 269, 22–28 (2018).
[Crossref]

Rajesh, E.

B. K. Paul, E. Rajesh, S. Asaduzzaman, M. S. Islam, K. Ahmed, I. S. Amiri, and R. Zakaria, “Design and analysis of slotted core photonic crystal fiber for gas sensing application,” Results Phys. 11, 643–650 (2018).
[Crossref]

Rathore, A. S.

A. Jana, G. Sharma, A. M. Shrivastav, A. S. Rathore, and R. Jha, “Photonic crystal fiber based magnetic field sensor realizing mach zehnder interference,” in Optical Sensors, (Optical Society of America, 2018), pp. SeW3E–2.

Rong, Q. Z.

Roy, S.

B. K. Paul, K. Ahmed, D. Vigneswaran, F. Ahmed, S. Roy, and D. Abbott, “Quasi-photonic crystal fiber-based spectroscopic chemical sensor in the terahertz spectrum: Design and analysis,” IEEE Sens. J. 18(24), 9948–9954 (2018).
[Crossref]

Semenova, Y.

J. Mathew, Y. Semenova, and G. Farrell, “Photonic crystal fiber interferometer for dew detection,” J. Lightwave Technol. 30(8), 1150–1155 (2012).
[Crossref]

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46(19), 1341–1343 (2010).
[Crossref]

Shao, L.-Y.

X. Zhang, W. Peng, L.-Y. Shao, W. Pan, and L. Yan, “Strain and temperature discrimination by using temperature-independent fpi and fbg,” Sens. Actuators, A 272, 134–138 (2018).
[Crossref]

H. Fu, H. Tam, L.-Y. Shao, X. Dong, P. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based sagnac interferometer,” Appl. Opt. 47(15), 2835–2839 (2008).
[Crossref]

Sharma, A. K.

R. K. Verma, A. K. Sharma, and B. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

Sharma, G.

A. Jana, G. Sharma, A. M. Shrivastav, A. S. Rathore, and R. Jha, “Photonic crystal fiber based magnetic field sensor realizing mach zehnder interference,” in Optical Sensors, (Optical Society of America, 2018), pp. SeW3E–2.

Sharma, M.

D. Vigneswaran, N. Ayyanar, M. Sharma, M. Sumathi, M. Rajan, and K. Porsezian, “Salinity sensor using photonic crystal fiber,” Sens. Actuators, A 269, 22–28 (2018).
[Crossref]

Shrivastav, A. M.

A. Jana, G. Sharma, A. M. Shrivastav, A. S. Rathore, and R. Jha, “Photonic crystal fiber based magnetic field sensor realizing mach zehnder interference,” in Optical Sensors, (Optical Society of America, 2018), pp. SeW3E–2.

Shum, P. P.

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6chbt,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

D. J. J. Hu, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, P. P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
[Crossref]

Skorobogatiy, M.

Su, J.

Sumathi, M.

D. Vigneswaran, N. Ayyanar, M. Sharma, M. Sumathi, M. Rajan, and K. Porsezian, “Salinity sensor using photonic crystal fiber,” Sens. Actuators, A 269, 22–28 (2018).
[Crossref]

Sun, T.

Tam, H.

Tam, H.-Y.

Tian, O.

Tong, R.-J.

R.-J. Tong, Y. Zhao, M.-Q. Chen, and Y. Peng, “Relative humidity sensor based on small up-tapered photonic crystal fiber mach–zehnder interferometer,” Sens. Actuators, A 280, 24–30 (2018).
[Crossref]

Verma, R.

R. Verma and B. Gupta, “Theoretical modelling of a bi-dimensional u-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D: Appl. Phys. 41(9), 095106 (2008).
[Crossref]

Verma, R. K.

R. K. Verma, A. K. Sharma, and B. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

Vigneswaran, D.

I. S. Amiri, B. K. Paul, K. Ahmed, A. H. Aly, R. Zakaria, P. Yupapin, and D. Vigneswaran, “Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection,” Microw. Opt. Technol. Lett. 61(3), 847–852 (2019).
[Crossref]

B. K. Paul, K. Ahmed, D. Vigneswaran, F. Ahmed, S. Roy, and D. Abbott, “Quasi-photonic crystal fiber-based spectroscopic chemical sensor in the terahertz spectrum: Design and analysis,” IEEE Sens. J. 18(24), 9948–9954 (2018).
[Crossref]

D. Vigneswaran, N. Ayyanar, M. Sharma, M. Sumathi, M. Rajan, and K. Porsezian, “Salinity sensor using photonic crystal fiber,” Sens. Actuators, A 269, 22–28 (2018).
[Crossref]

Villatoro, J.

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Wai, P.

Wang, D.

F. Yang, Z. Wang, and D. Wang, “A highly sensitive optical fiber strain sensor based on cascaded multimode fiber and photonic crystal fiber,” Opt. Fiber Technol. 47, 102–106 (2019).
[Crossref]

Y. Wang, M. Yang, D. Wang, and C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photonics Technol. Lett. 23(20), 1520–1522 (2011).
[Crossref]

Wang, M.

Y. Lu, M. Wang, C. Hao, Z. Zhao, and J. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photonics J. 6(3), 1–7 (2014).
[Crossref]

Wang, S.-F.

Wang, Y.

D. J. J. Hu, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, P. P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
[Crossref]

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6chbt,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Y. Wang, M. Yang, D. Wang, and C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photonics Technol. Lett. 23(20), 1520–1522 (2011).
[Crossref]

Wang, Z.

F. Yang, Z. Wang, and D. Wang, “A highly sensitive optical fiber strain sensor based on cascaded multimode fiber and photonic crystal fiber,” Opt. Fiber Technol. 47, 102–106 (2019).
[Crossref]

Wolinski, T.

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6chbt,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

D. J. J. Hu, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, P. P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
[Crossref]

Wong, W. C.

Wu, C.

Wu, D. K.

Wu, Y.

H. Chen, S. Li, J. Li, Y. Han, and Y. Wu, “High sensitivity of temperature sensor based on ultracompact photonics crystal fibers,” IEEE Photonics J. 6(6), 1–6 (2014).
[Crossref]

Yan, L.

X. Zhang, W. Peng, L.-Y. Shao, W. Pan, and L. Yan, “Strain and temperature discrimination by using temperature-independent fpi and fbg,” Sens. Actuators, A 272, 134–138 (2018).
[Crossref]

Yang, F.

F. Yang, Z. Wang, and D. Wang, “A highly sensitive optical fiber strain sensor based on cascaded multimode fiber and photonic crystal fiber,” Opt. Fiber Technol. 47, 102–106 (2019).
[Crossref]

Yang, H.-Z.

Yang, M.

Y. Wang, M. Yang, D. Wang, and C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photonics Technol. Lett. 23(20), 1520–1522 (2011).
[Crossref]

Yang, X.

H. Gong, X. Yang, K. Ni, C.-L. Zhao, and X. Dong, “An optical fiber curvature sensor based on two peanut-shape structures modal interferometer,” IEEE Photonics Technol. Lett. 26(1), 22–24 (2014).
[Crossref]

Yao, J.

Y. Lu, M. Wang, C. Hao, Z. Zhao, and J. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photonics J. 6(3), 1–7 (2014).
[Crossref]

Yupapin, P.

I. S. Amiri, B. K. Paul, K. Ahmed, A. H. Aly, R. Zakaria, P. Yupapin, and D. Vigneswaran, “Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection,” Microw. Opt. Technol. Lett. 61(3), 847–852 (2019).
[Crossref]

Zakaria, R.

I. S. Amiri, B. K. Paul, K. Ahmed, A. H. Aly, R. Zakaria, P. Yupapin, and D. Vigneswaran, “Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection,” Microw. Opt. Technol. Lett. 61(3), 847–852 (2019).
[Crossref]

B. K. Paul, E. Rajesh, S. Asaduzzaman, M. S. Islam, K. Ahmed, I. S. Amiri, and R. Zakaria, “Design and analysis of slotted core photonic crystal fiber for gas sensing application,” Results Phys. 11, 643–650 (2018).
[Crossref]

Zhang, P.

Zhang, X.

X. Zhang, W. Peng, L.-Y. Shao, W. Pan, and L. Yan, “Strain and temperature discrimination by using temperature-independent fpi and fbg,” Sens. Actuators, A 272, 134–138 (2018).
[Crossref]

Zhao, C.-L.

H. Gong, X. Yang, K. Ni, C.-L. Zhao, and X. Dong, “An optical fiber curvature sensor based on two peanut-shape structures modal interferometer,” IEEE Photonics Technol. Lett. 26(1), 22–24 (2014).
[Crossref]

Zhao, Y.

R.-J. Tong, Y. Zhao, M.-Q. Chen, and Y. Peng, “Relative humidity sensor based on small up-tapered photonic crystal fiber mach–zehnder interferometer,” Sens. Actuators, A 280, 24–30 (2018).
[Crossref]

Zhao, Z.

Y. Lu, M. Wang, C. Hao, Z. Zhao, and J. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photonics J. 6(3), 1–7 (2014).
[Crossref]

Acta Phys. Pol., A (1)

K. Barczak, “Application of photonic crystal fiber in op-tical fiber current sensors,” Acta Phys. Pol., A 122(5), 793–795 (2012).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91(9), 091109 (2007).
[Crossref]

Electron. Lett. (1)

J. Mathew, Y. Semenova, G. Rajan, and G. Farrell, “Humidity sensor based on photonic crystal fibre interferometer,” Electron. Lett. 46(19), 1341–1343 (2010).
[Crossref]

IEEE Photonics J. (5)

Y. Lu, M. Wang, C. Hao, Z. Zhao, and J. Yao, “Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid,” IEEE Photonics J. 6(3), 1–7 (2014).
[Crossref]

H. Chen, S. Li, J. Li, Y. Han, and Y. Wu, “High sensitivity of temperature sensor based on ultracompact photonics crystal fibers,” IEEE Photonics J. 6(6), 1–6 (2014).
[Crossref]

D. J. J. Hu, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, P. P. Shum, and T. Wolinski, “Fabrication and characterization of a highly temperature sensitive device based on nematic liquid crystal-filled photonic crystal fiber,” IEEE Photonics J. 4(5), 1248–1255 (2012).
[Crossref]

D. J. J. Hu, P. P. Shum, J. L. Lim, Y. Cui, K. Milenko, Y. Wang, and T. Wolinski, “A compact and temperature-sensitive directional coupler based on photonic crystal fiber filled with liquid crystal 6chbt,” IEEE Photonics J. 4(5), 2010–2016 (2012).
[Crossref]

Q. Liu, S. Li, H. Chen, Z. Fan, and J. Li, “Photonic crystal fiber temperature sensor based on coupling between liquid-core mode and defect mode,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Y. Wang, M. Yang, D. Wang, and C. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photonics Technol. Lett. 23(20), 1520–1522 (2011).
[Crossref]

S. Gao, C. Baker, L. Chen, and X. Bao, “High-sensitivity temperature and strain measurement in dual-core hybrid tapers,” IEEE Photonics Technol. Lett. 30(12), 1155–1158 (2018).
[Crossref]

H. Gong, X. Yang, K. Ni, C.-L. Zhao, and X. Dong, “An optical fiber curvature sensor based on two peanut-shape structures modal interferometer,” IEEE Photonics Technol. Lett. 26(1), 22–24 (2014).
[Crossref]

IEEE Sens. J. (1)

B. K. Paul, K. Ahmed, D. Vigneswaran, F. Ahmed, S. Roy, and D. Abbott, “Quasi-photonic crystal fiber-based spectroscopic chemical sensor in the terahertz spectrum: Design and analysis,” IEEE Sens. J. 18(24), 9948–9954 (2018).
[Crossref]

IET Optoelectron. (1)

A. Natesan, K. P. Govindasamy, T. R. Gopal, V. Dhasarathan, and A. H. Aly, “Tricore photonic crystal fibre based refractive index sensor for glucose detection,” IET Optoelectron. 13(3), 118–123 (2019).
[Crossref]

J. Lightwave Technol. (2)

J. Phys. D: Appl. Phys. (1)

R. Verma and B. Gupta, “Theoretical modelling of a bi-dimensional u-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement,” J. Phys. D: Appl. Phys. 41(9), 095106 (2008).
[Crossref]

J. Sens. (1)

J. Ju and W. Jin, “Photonic crystal fiber sensors for strain and temperature measurement,” J. Sens. 2009, 1–10 (2009).
[Crossref]

Microw. Opt. Technol. Lett. (1)

I. S. Amiri, B. K. Paul, K. Ahmed, A. H. Aly, R. Zakaria, P. Yupapin, and D. Vigneswaran, “Tri-core photonic crystal fiber based refractive index dual sensor for salinity and temperature detection,” Microw. Opt. Technol. Lett. 61(3), 847–852 (2019).
[Crossref]

Opt. Commun. (1)

R. K. Verma, A. K. Sharma, and B. Gupta, “Surface plasmon resonance based tapered fiber optic sensor with different taper profiles,” Opt. Commun. 281(6), 1486–1491 (2008).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

F. Yang, Z. Wang, and D. Wang, “A highly sensitive optical fiber strain sensor based on cascaded multimode fiber and photonic crystal fiber,” Opt. Fiber Technol. 47, 102–106 (2019).
[Crossref]

Opt. Lett. (2)

Results Phys. (1)

B. K. Paul, E. Rajesh, S. Asaduzzaman, M. S. Islam, K. Ahmed, I. S. Amiri, and R. Zakaria, “Design and analysis of slotted core photonic crystal fiber for gas sensing application,” Results Phys. 11, 643–650 (2018).
[Crossref]

Sens. Actuators, A (3)

R.-J. Tong, Y. Zhao, M.-Q. Chen, and Y. Peng, “Relative humidity sensor based on small up-tapered photonic crystal fiber mach–zehnder interferometer,” Sens. Actuators, A 280, 24–30 (2018).
[Crossref]

D. Vigneswaran, N. Ayyanar, M. Sharma, M. Sumathi, M. Rajan, and K. Porsezian, “Salinity sensor using photonic crystal fiber,” Sens. Actuators, A 269, 22–28 (2018).
[Crossref]

X. Zhang, W. Peng, L.-Y. Shao, W. Pan, and L. Yan, “Strain and temperature discrimination by using temperature-independent fpi and fbg,” Sens. Actuators, A 272, 134–138 (2018).
[Crossref]

Sens. Actuators, B (1)

D. Clerc and W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sens. Actuators, B 19(1-3), 581–586 (1994).
[Crossref]

Other (4)

A. Duval, M. Lhoutellier, J. Jensen, P. Hoiby, V. Missier, L. Pedersen, T. P. Hansen, A. Bjarklev, and O. Bang, “Photonic crystal fiber based antibody detection,” in SENSORS, 2004 IEEE, (IEEE, 2004), pp. 1222–1225.

L. E. Horan and F. C. G. Gunning, “Hollow core photonic crystal fiber as a viscosity sensor,” in OFS2012 22nd International Conference on Optical Fiber Sensors, vol. 8421 (International Society for Optics and Photonics, 2012), p. 84216X.

A. Jana, G. Sharma, A. M. Shrivastav, A. S. Rathore, and R. Jha, “Photonic crystal fiber based magnetic field sensor realizing mach zehnder interference,” in Optical Sensors, (Optical Society of America, 2018), pp. SeW3E–2.

D. Kumar, D. Kalra, and M. Kumar, “Analysis of photonic crystal fiber-based micro-strain sensor,” in Recent Trends in Communication, Computing, and Electronics, (Springer, 2019), pp. 43–50.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Cross-sectional end face view of proposed dual-core PCF based temperature sensor.
Fig. 2.
Fig. 2. Experimental connection diagram of proposed temperature sensor.
Fig. 3.
Fig. 3. Mode propagation of silica core mode for (a) x-polarization (b) y-polarization, defect core mode for (c) x-polarization (d) y-polarization, coupling between silica and defect core where light pass more tightly in silica core for (e) x-polarization(f) y-polarization and coupling and coupling between silica and defect core where light pass more tightly in defect core for (e) x-polarization(f) y-polarization and coupling.
Fig. 4.
Fig. 4. Real part of the effective refractive index of silica core mode and liquid core mode and loss spectra with respect to wavelength variation for (a) 60° C and (b) 70° C.
Fig. 5.
Fig. 5. Confinement loss spectra of coupling mode under different temperature as a function of wavelength.
Fig. 6.
Fig. 6. Peak Wavelength over a temperature range from 30° C to 70° C.
Fig. 7.
Fig. 7. Wavelength shift with various temperatures.
Fig. 8.
Fig. 8. Sensitivity spectra with different temperature.
Fig. 9.
Fig. 9. Loss spectra with respect to wavelength for different pitch (p) values.
Fig. 10.
Fig. 10. Analysis of loss spectra with respect to different d2 diameters.
Fig. 11.
Fig. 11. The change of wavelength for loss peaks at different temperatures.

Tables (4)

Tables Icon

Table 1. Sensitivity variation with different temperature.

Tables Icon

Table 2. Performance of proposed structure for different pitch values.

Tables Icon

Table 3. Sensitivity variation in different values of d2 diameters.

Tables Icon

Table 4. Comparison of the sensitivity performance of proposed sensor with previously published sensors.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ , T ) = ( 1.31552 + 6.90754 × 10 6 T ) + ( 0.788404 + 23.5835 × 10 6 T ) λ 2 λ 2 ( 0.0110199 + 0.584758 × 10 6 T ) + ( 0.91316 + 0.548368 × 10 6 T ) λ 2 λ 2 100
n ( S l , λ p , T ) = 1.3104 + ( 1.779 × 10 4 1.05 × 10 6 T ) S l + ( 1.6 × 10 8 T 2 ) S l 4382 λ 2 2.02 × 10 6 T 2 + 15.868 + 0.01155 S l 0.00423 T λ + 1.1455 × 10 6 λ 3
α ( x , y ) = 8.686 × 2 π λ × I m [ n eff ] × 10 6

Metrics