Abstract

A novel refractive index sensor based on etched multicore fiber Bragg gratings with temperature in-line compensation is proposed and experimentally demonstrated. By chemically etching the cladding of the multicore fiber, the six outer cores exhibit the sensitive responses to the surrounding refractive index change, with refractive index insensitive and temperature-sensitive central core inside of the multicore fiber. By using the a central Bragg wavelength in the multicore fiber as temperature compensators, the refractive index sensing can be in-line compensated. Moreover, the distribution of multiple outer cores enables the capability of avoiding the nonhomogeneous performance by averaging and balancing the read-out data. Theoretical analysis and experimental results demonstrate that this structure can easily discriminate the RI and temperature. The maximum sensitivity 42.83 nm/ RIU could be obtained at around 1.435 RIU, and the temperature sensitivity is 9.89 pm/°C. The proposed structure is able to in-line and in-situ determine refractive index and temperature simultaneously.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing

Jie Li, Hao Wang, Li-Peng Sun, Yunyun Huang, Long Jin, and Bai-Ou Guan
Opt. Express 22(26) 31917-31923 (2014)

Refractive index and temperature sensitivity characteristics of a micro-slot fiber Bragg grating

Pouneh Saffari, Zhijun Yan, Kaiming Zhou, and Lin Zhang
Appl. Opt. 51(20) 4715-4721 (2012)

Simultaneous measurement of refractive index and temperature with high sensitivity based on a multipath fiber Mach–Zehnder interferometer

Yajun Jiang, Tao Wang, Chi Liu, Dingyi Feng, Biqiang Jiang, Dexing Yang, and Jianlin Zhao
Appl. Opt. 58(15) 4085-4090 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. Jin, W. Zhang, and H. Zhang, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2006).
    [Crossref]
  2. L. Liu, Z. Hao, and Q. Zhao, “Temperature-independent FBG pressure sensor with high sensitivity,” Opt. Fiber Technol. 13(1), 78–80 (2007).
    [Crossref]
  3. J. Leng and A. Anand, “Structural health monitoring of smart composite materials by using EFPI and FBG sensors,” Sens. Actuators, A 103(3), 330–340 (2003).
    [Crossref]
  4. A. Rajabzadeh, R. Heusdens, and R. C. Hendriks, “Calculation of the Mean Strain of Smooth Non-Uniform Strain Fields Using Conventional FBG Sensors,” J. Lightwave Technol. 36(17), 3716–3725 (2018).
    [Crossref]
  5. X. Liu, T. Wang, and Y. Wu, “Dual-Parameter Sensor Based on Tapered FBG Combined with Microfiber Cavity,” IEEE Photonics Technol. Lett. 26(8), 817–820 (2014).
    [Crossref]
  6. K. Zhou, X. Chen, and L. Zhang, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
    [Crossref]
  7. S. Sridevi, S. Vasu K, and N. Jayaraman, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators, B 195, 150–155 (2014).
    [Crossref]
  8. A. Iadicicco, A. Cusano, and S. Campopiano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
    [Crossref]
  9. N. Chen, B. Yun, and Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).
    [Crossref]
  10. X. Chen, K. Zhou, and L. Zhang, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber,” IEEE Photonics Technol. Lett. 17(4), 864–866 (2005).
    [Crossref]
  11. J. H. Osório, R. Oliveira, S. Aristilde, G. Chesini, M. A. R. Franco, R. N. Nogueira, and C. M. B. Cordeiro, “Bragg gratings in surface-core fibers: Refractive index and directional curvature sensing,” Opt. Fiber Technol. 34, 86–90 (2017).
    [Crossref]
  12. X. Shu, B. A. Gwandu, and Y. Liu, “Sampled fiber Bragg grating for simultaneous refractive-index and temperature measurement,” Opt. Lett. 26(11), 774 (2001).
    [Crossref]
  13. J. Yan, A. P. Zhang, and L. Y. Shao, “Simultaneous Measurement of Refractive Index and Temperature by Using Dual Long-Period Gratings with an Etching Process,” IEEE Sens. J. 7(9), 1360–1361 (2007).
    [Crossref]
  14. A. Iadicicco, S. Campopiano, and A. Cutolo, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photonics Technol. Lett. 17(7), 1495–1497 (2005).
    [Crossref]
  15. D. A. C. Enríquez, A. R. D. Cruz, and M. T. M. R. Giraldi, “Hybrid FBG–LPG sensor for surrounding refractive index and temperature simultaneous discrimination,” Opt. Laser Technol. 44(4), 981–986 (2012).
    [Crossref]
  16. C. Gouveia, P. A. S. Jorge, and J. M. Baptista, “Fabry–Pérot Cavity Based on a High-Birefringent Fiber Bragg Grating for Refractive Index and Temperature Measurement,” IEEE Sens. J. 12(1), 17–21 (2012).
    [Crossref]
  17. C. R. Liao, Y. Wang, and D. N. Wang, “Fiber In-Line Mach–Zehnder Interferometer Embedded in FBG for Simultaneous Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 22(22), 1686–1688 (2010).
    [Crossref]
  18. R. M. Silva, M. S. Ferreira, and J. Kobelke, “Simultaneous measurement of curvature and strain using a suspended multicore fiber,” Opt. Lett. 36(19), 3939 (2011).
    [Crossref]
  19. P. Saffari, T. Allsop, and A. Adebayo, “Long period grating in multicore optical fiber: an ultra-sensitive vector bending sensor for low curvatures,” Opt. Lett. 39(12), 3508 (2014).
    [Crossref]
  20. J. E. Antoniolopez, Z. S. Eznaveh, and P. Likamwa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Opt. Lett. 39(15), 4309 (2014).
    [Crossref]
  21. P. S. Westbrook, T. Kremp, and K. S. Feder, “Continuous multicore optical fiber grating arrays for distributed sensing applications,” J. Lightwave Technol. 35(6), 1248–1252 (2017).
    [Crossref]
  22. A. Zhou, Y. Zhang, and G. Li, “Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer,” Opt. Lett. 36(16), 3221 (2011).
    [Crossref]
  23. D. A. May-Arrioja and J. R. Guzman-Sepulveda, “Highly sensitive fiber optic refractive index sensor using multicore coupled structures,” J. Lightwave Technol. 35(13), 2695–2701 (2017).
    [Crossref]
  24. F. Mumtaz, P. Cheng, C. Li, S. Cheng, C. Du, M. Yang, Y. Dai, and W. Hu, “A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer,” IEEE Sensors Journal. 2020 Mar 5
  25. A. Kersey, M. A. Davis, and H. J. Patrick, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  26. K. Zhou, X. Chen, and L. Zhang, “Implementation of optical chemsensors based on HF-etched fiber Bragg grating structures,” Meas. Sci. Technol. 17(5), 1140–1145 (2006).
    [Crossref]
  27. Y. Yuan, L. Wang, and L. Ding, “Theory, experiment, and application of optical fiber etching,” Appl. Opt. 51(24), 5845–5849 (2012).
    [Crossref]
  28. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
    [Crossref]
  29. H. Zhou Y, X. Guang Q, and M. Rajibul I, “Simultaneous measurement of aliphatic alcohol concentration and temperature based on etched taper FBG,” Sens. Actuators, B 202, 959–963 (2014).
    [Crossref]
  30. J. Li, H. Wang, L.-P. Sun, Y. Huang, L. Jin, and B.-O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express 22(26), 31917–31923 (2014).
    [Crossref]

2018 (1)

2017 (3)

2014 (6)

P. Saffari, T. Allsop, and A. Adebayo, “Long period grating in multicore optical fiber: an ultra-sensitive vector bending sensor for low curvatures,” Opt. Lett. 39(12), 3508 (2014).
[Crossref]

J. E. Antoniolopez, Z. S. Eznaveh, and P. Likamwa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Opt. Lett. 39(15), 4309 (2014).
[Crossref]

H. Zhou Y, X. Guang Q, and M. Rajibul I, “Simultaneous measurement of aliphatic alcohol concentration and temperature based on etched taper FBG,” Sens. Actuators, B 202, 959–963 (2014).
[Crossref]

J. Li, H. Wang, L.-P. Sun, Y. Huang, L. Jin, and B.-O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express 22(26), 31917–31923 (2014).
[Crossref]

X. Liu, T. Wang, and Y. Wu, “Dual-Parameter Sensor Based on Tapered FBG Combined with Microfiber Cavity,” IEEE Photonics Technol. Lett. 26(8), 817–820 (2014).
[Crossref]

S. Sridevi, S. Vasu K, and N. Jayaraman, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators, B 195, 150–155 (2014).
[Crossref]

2012 (3)

D. A. C. Enríquez, A. R. D. Cruz, and M. T. M. R. Giraldi, “Hybrid FBG–LPG sensor for surrounding refractive index and temperature simultaneous discrimination,” Opt. Laser Technol. 44(4), 981–986 (2012).
[Crossref]

C. Gouveia, P. A. S. Jorge, and J. M. Baptista, “Fabry–Pérot Cavity Based on a High-Birefringent Fiber Bragg Grating for Refractive Index and Temperature Measurement,” IEEE Sens. J. 12(1), 17–21 (2012).
[Crossref]

Y. Yuan, L. Wang, and L. Ding, “Theory, experiment, and application of optical fiber etching,” Appl. Opt. 51(24), 5845–5849 (2012).
[Crossref]

2011 (2)

2010 (1)

C. R. Liao, Y. Wang, and D. N. Wang, “Fiber In-Line Mach–Zehnder Interferometer Embedded in FBG for Simultaneous Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 22(22), 1686–1688 (2010).
[Crossref]

2007 (2)

J. Yan, A. P. Zhang, and L. Y. Shao, “Simultaneous Measurement of Refractive Index and Temperature by Using Dual Long-Period Gratings with an Etching Process,” IEEE Sens. J. 7(9), 1360–1361 (2007).
[Crossref]

L. Liu, Z. Hao, and Q. Zhao, “Temperature-independent FBG pressure sensor with high sensitivity,” Opt. Fiber Technol. 13(1), 78–80 (2007).
[Crossref]

2006 (3)

N. Chen, B. Yun, and Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).
[Crossref]

L. Jin, W. Zhang, and H. Zhang, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2006).
[Crossref]

K. Zhou, X. Chen, and L. Zhang, “Implementation of optical chemsensors based on HF-etched fiber Bragg grating structures,” Meas. Sci. Technol. 17(5), 1140–1145 (2006).
[Crossref]

2005 (4)

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

A. Iadicicco, S. Campopiano, and A. Cutolo, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photonics Technol. Lett. 17(7), 1495–1497 (2005).
[Crossref]

X. Chen, K. Zhou, and L. Zhang, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber,” IEEE Photonics Technol. Lett. 17(4), 864–866 (2005).
[Crossref]

A. Iadicicco, A. Cusano, and S. Campopiano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]

2004 (1)

K. Zhou, X. Chen, and L. Zhang, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[Crossref]

2003 (1)

J. Leng and A. Anand, “Structural health monitoring of smart composite materials by using EFPI and FBG sensors,” Sens. Actuators, A 103(3), 330–340 (2003).
[Crossref]

2001 (1)

1997 (1)

A. Kersey, M. A. Davis, and H. J. Patrick, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Adebayo, A.

Allsop, T.

Anand, A.

J. Leng and A. Anand, “Structural health monitoring of smart composite materials by using EFPI and FBG sensors,” Sens. Actuators, A 103(3), 330–340 (2003).
[Crossref]

Antoniolopez, J. E.

Aristilde, S.

J. H. Osório, R. Oliveira, S. Aristilde, G. Chesini, M. A. R. Franco, R. N. Nogueira, and C. M. B. Cordeiro, “Bragg gratings in surface-core fibers: Refractive index and directional curvature sensing,” Opt. Fiber Technol. 34, 86–90 (2017).
[Crossref]

Baptista, J. M.

C. Gouveia, P. A. S. Jorge, and J. M. Baptista, “Fabry–Pérot Cavity Based on a High-Birefringent Fiber Bragg Grating for Refractive Index and Temperature Measurement,” IEEE Sens. J. 12(1), 17–21 (2012).
[Crossref]

Campopiano, S.

A. Iadicicco, S. Campopiano, and A. Cutolo, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photonics Technol. Lett. 17(7), 1495–1497 (2005).
[Crossref]

A. Iadicicco, A. Cusano, and S. Campopiano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]

Chen, N.

N. Chen, B. Yun, and Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).
[Crossref]

Chen, X.

K. Zhou, X. Chen, and L. Zhang, “Implementation of optical chemsensors based on HF-etched fiber Bragg grating structures,” Meas. Sci. Technol. 17(5), 1140–1145 (2006).
[Crossref]

X. Chen, K. Zhou, and L. Zhang, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber,” IEEE Photonics Technol. Lett. 17(4), 864–866 (2005).
[Crossref]

K. Zhou, X. Chen, and L. Zhang, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[Crossref]

Cheng, P.

F. Mumtaz, P. Cheng, C. Li, S. Cheng, C. Du, M. Yang, Y. Dai, and W. Hu, “A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer,” IEEE Sensors Journal. 2020 Mar 5

Cheng, S.

F. Mumtaz, P. Cheng, C. Li, S. Cheng, C. Du, M. Yang, Y. Dai, and W. Hu, “A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer,” IEEE Sensors Journal. 2020 Mar 5

Chesini, G.

J. H. Osório, R. Oliveira, S. Aristilde, G. Chesini, M. A. R. Franco, R. N. Nogueira, and C. M. B. Cordeiro, “Bragg gratings in surface-core fibers: Refractive index and directional curvature sensing,” Opt. Fiber Technol. 34, 86–90 (2017).
[Crossref]

Chryssis, A. N.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Cordeiro, C. M. B.

J. H. Osório, R. Oliveira, S. Aristilde, G. Chesini, M. A. R. Franco, R. N. Nogueira, and C. M. B. Cordeiro, “Bragg gratings in surface-core fibers: Refractive index and directional curvature sensing,” Opt. Fiber Technol. 34, 86–90 (2017).
[Crossref]

Cruz, A. R. D.

D. A. C. Enríquez, A. R. D. Cruz, and M. T. M. R. Giraldi, “Hybrid FBG–LPG sensor for surrounding refractive index and temperature simultaneous discrimination,” Opt. Laser Technol. 44(4), 981–986 (2012).
[Crossref]

Cui, Y.

N. Chen, B. Yun, and Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).
[Crossref]

Cusano, A.

A. Iadicicco, A. Cusano, and S. Campopiano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]

Cutolo, A.

A. Iadicicco, S. Campopiano, and A. Cutolo, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photonics Technol. Lett. 17(7), 1495–1497 (2005).
[Crossref]

Dagenais, M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Dai, Y.

F. Mumtaz, P. Cheng, C. Li, S. Cheng, C. Du, M. Yang, Y. Dai, and W. Hu, “A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer,” IEEE Sensors Journal. 2020 Mar 5

Davis, M. A.

A. Kersey, M. A. Davis, and H. J. Patrick, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Ding, L.

Du, C.

F. Mumtaz, P. Cheng, C. Li, S. Cheng, C. Du, M. Yang, Y. Dai, and W. Hu, “A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer,” IEEE Sensors Journal. 2020 Mar 5

Enríquez, D. A. C.

D. A. C. Enríquez, A. R. D. Cruz, and M. T. M. R. Giraldi, “Hybrid FBG–LPG sensor for surrounding refractive index and temperature simultaneous discrimination,” Opt. Laser Technol. 44(4), 981–986 (2012).
[Crossref]

Eznaveh, Z. S.

Feder, K. S.

Ferreira, M. S.

Franco, M. A. R.

J. H. Osório, R. Oliveira, S. Aristilde, G. Chesini, M. A. R. Franco, R. N. Nogueira, and C. M. B. Cordeiro, “Bragg gratings in surface-core fibers: Refractive index and directional curvature sensing,” Opt. Fiber Technol. 34, 86–90 (2017).
[Crossref]

Giraldi, M. T. M. R.

D. A. C. Enríquez, A. R. D. Cruz, and M. T. M. R. Giraldi, “Hybrid FBG–LPG sensor for surrounding refractive index and temperature simultaneous discrimination,” Opt. Laser Technol. 44(4), 981–986 (2012).
[Crossref]

Gouveia, C.

C. Gouveia, P. A. S. Jorge, and J. M. Baptista, “Fabry–Pérot Cavity Based on a High-Birefringent Fiber Bragg Grating for Refractive Index and Temperature Measurement,” IEEE Sens. J. 12(1), 17–21 (2012).
[Crossref]

Guan, B.-O.

Guang Q, X.

H. Zhou Y, X. Guang Q, and M. Rajibul I, “Simultaneous measurement of aliphatic alcohol concentration and temperature based on etched taper FBG,” Sens. Actuators, B 202, 959–963 (2014).
[Crossref]

Guzman-Sepulveda, J. R.

Gwandu, B. A.

Hao, Z.

L. Liu, Z. Hao, and Q. Zhao, “Temperature-independent FBG pressure sensor with high sensitivity,” Opt. Fiber Technol. 13(1), 78–80 (2007).
[Crossref]

Hendriks, R. C.

Heusdens, R.

Hu, W.

F. Mumtaz, P. Cheng, C. Li, S. Cheng, C. Du, M. Yang, Y. Dai, and W. Hu, “A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer,” IEEE Sensors Journal. 2020 Mar 5

Huang, Y.

Iadicicco, A.

A. Iadicicco, A. Cusano, and S. Campopiano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]

A. Iadicicco, S. Campopiano, and A. Cutolo, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photonics Technol. Lett. 17(7), 1495–1497 (2005).
[Crossref]

Jayaraman, N.

S. Sridevi, S. Vasu K, and N. Jayaraman, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators, B 195, 150–155 (2014).
[Crossref]

Jin, L.

J. Li, H. Wang, L.-P. Sun, Y. Huang, L. Jin, and B.-O. Guan, “Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing,” Opt. Express 22(26), 31917–31923 (2014).
[Crossref]

L. Jin, W. Zhang, and H. Zhang, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2006).
[Crossref]

Jorge, P. A. S.

C. Gouveia, P. A. S. Jorge, and J. M. Baptista, “Fabry–Pérot Cavity Based on a High-Birefringent Fiber Bragg Grating for Refractive Index and Temperature Measurement,” IEEE Sens. J. 12(1), 17–21 (2012).
[Crossref]

Kersey, A.

A. Kersey, M. A. Davis, and H. J. Patrick, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Kobelke, J.

Kremp, T.

Lee, S. B.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Lee, S. M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Leng, J.

J. Leng and A. Anand, “Structural health monitoring of smart composite materials by using EFPI and FBG sensors,” Sens. Actuators, A 103(3), 330–340 (2003).
[Crossref]

Li, C.

F. Mumtaz, P. Cheng, C. Li, S. Cheng, C. Du, M. Yang, Y. Dai, and W. Hu, “A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer,” IEEE Sensors Journal. 2020 Mar 5

Li, G.

Li, J.

Liao, C. R.

C. R. Liao, Y. Wang, and D. N. Wang, “Fiber In-Line Mach–Zehnder Interferometer Embedded in FBG for Simultaneous Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 22(22), 1686–1688 (2010).
[Crossref]

Likamwa, P.

Liu, L.

L. Liu, Z. Hao, and Q. Zhao, “Temperature-independent FBG pressure sensor with high sensitivity,” Opt. Fiber Technol. 13(1), 78–80 (2007).
[Crossref]

Liu, X.

X. Liu, T. Wang, and Y. Wu, “Dual-Parameter Sensor Based on Tapered FBG Combined with Microfiber Cavity,” IEEE Photonics Technol. Lett. 26(8), 817–820 (2014).
[Crossref]

Liu, Y.

May-Arrioja, D. A.

Mumtaz, F.

F. Mumtaz, P. Cheng, C. Li, S. Cheng, C. Du, M. Yang, Y. Dai, and W. Hu, “A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer,” IEEE Sensors Journal. 2020 Mar 5

Nogueira, R. N.

J. H. Osório, R. Oliveira, S. Aristilde, G. Chesini, M. A. R. Franco, R. N. Nogueira, and C. M. B. Cordeiro, “Bragg gratings in surface-core fibers: Refractive index and directional curvature sensing,” Opt. Fiber Technol. 34, 86–90 (2017).
[Crossref]

Oliveira, R.

J. H. Osório, R. Oliveira, S. Aristilde, G. Chesini, M. A. R. Franco, R. N. Nogueira, and C. M. B. Cordeiro, “Bragg gratings in surface-core fibers: Refractive index and directional curvature sensing,” Opt. Fiber Technol. 34, 86–90 (2017).
[Crossref]

Osório, J. H.

J. H. Osório, R. Oliveira, S. Aristilde, G. Chesini, M. A. R. Franco, R. N. Nogueira, and C. M. B. Cordeiro, “Bragg gratings in surface-core fibers: Refractive index and directional curvature sensing,” Opt. Fiber Technol. 34, 86–90 (2017).
[Crossref]

Patrick, H. J.

A. Kersey, M. A. Davis, and H. J. Patrick, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[Crossref]

Rajabzadeh, A.

Rajibul I, M.

H. Zhou Y, X. Guang Q, and M. Rajibul I, “Simultaneous measurement of aliphatic alcohol concentration and temperature based on etched taper FBG,” Sens. Actuators, B 202, 959–963 (2014).
[Crossref]

Saffari, P.

Saini, S. S.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

Shao, L. Y.

J. Yan, A. P. Zhang, and L. Y. Shao, “Simultaneous Measurement of Refractive Index and Temperature by Using Dual Long-Period Gratings with an Etching Process,” IEEE Sens. J. 7(9), 1360–1361 (2007).
[Crossref]

Shu, X.

Silva, R. M.

Sridevi, S.

S. Sridevi, S. Vasu K, and N. Jayaraman, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators, B 195, 150–155 (2014).
[Crossref]

Sun, L.-P.

Vasu K, S.

S. Sridevi, S. Vasu K, and N. Jayaraman, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators, B 195, 150–155 (2014).
[Crossref]

Wang, D. N.

C. R. Liao, Y. Wang, and D. N. Wang, “Fiber In-Line Mach–Zehnder Interferometer Embedded in FBG for Simultaneous Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 22(22), 1686–1688 (2010).
[Crossref]

Wang, H.

Wang, L.

Wang, T.

X. Liu, T. Wang, and Y. Wu, “Dual-Parameter Sensor Based on Tapered FBG Combined with Microfiber Cavity,” IEEE Photonics Technol. Lett. 26(8), 817–820 (2014).
[Crossref]

Wang, Y.

C. R. Liao, Y. Wang, and D. N. Wang, “Fiber In-Line Mach–Zehnder Interferometer Embedded in FBG for Simultaneous Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 22(22), 1686–1688 (2010).
[Crossref]

Westbrook, P. S.

Wu, Y.

X. Liu, T. Wang, and Y. Wu, “Dual-Parameter Sensor Based on Tapered FBG Combined with Microfiber Cavity,” IEEE Photonics Technol. Lett. 26(8), 817–820 (2014).
[Crossref]

Yan, J.

J. Yan, A. P. Zhang, and L. Y. Shao, “Simultaneous Measurement of Refractive Index and Temperature by Using Dual Long-Period Gratings with an Etching Process,” IEEE Sens. J. 7(9), 1360–1361 (2007).
[Crossref]

Yang, M.

F. Mumtaz, P. Cheng, C. Li, S. Cheng, C. Du, M. Yang, Y. Dai, and W. Hu, “A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer,” IEEE Sensors Journal. 2020 Mar 5

Yuan, Y.

Yun, B.

N. Chen, B. Yun, and Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).
[Crossref]

Zhang, A. P.

J. Yan, A. P. Zhang, and L. Y. Shao, “Simultaneous Measurement of Refractive Index and Temperature by Using Dual Long-Period Gratings with an Etching Process,” IEEE Sens. J. 7(9), 1360–1361 (2007).
[Crossref]

Zhang, H.

L. Jin, W. Zhang, and H. Zhang, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2006).
[Crossref]

Zhang, L.

K. Zhou, X. Chen, and L. Zhang, “Implementation of optical chemsensors based on HF-etched fiber Bragg grating structures,” Meas. Sci. Technol. 17(5), 1140–1145 (2006).
[Crossref]

X. Chen, K. Zhou, and L. Zhang, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber,” IEEE Photonics Technol. Lett. 17(4), 864–866 (2005).
[Crossref]

K. Zhou, X. Chen, and L. Zhang, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[Crossref]

Zhang, W.

L. Jin, W. Zhang, and H. Zhang, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2006).
[Crossref]

Zhang, Y.

Zhao, Q.

L. Liu, Z. Hao, and Q. Zhao, “Temperature-independent FBG pressure sensor with high sensitivity,” Opt. Fiber Technol. 13(1), 78–80 (2007).
[Crossref]

Zhou, A.

Zhou, K.

K. Zhou, X. Chen, and L. Zhang, “Implementation of optical chemsensors based on HF-etched fiber Bragg grating structures,” Meas. Sci. Technol. 17(5), 1140–1145 (2006).
[Crossref]

X. Chen, K. Zhou, and L. Zhang, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber,” IEEE Photonics Technol. Lett. 17(4), 864–866 (2005).
[Crossref]

K. Zhou, X. Chen, and L. Zhang, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[Crossref]

Zhou Y, H.

H. Zhou Y, X. Guang Q, and M. Rajibul I, “Simultaneous measurement of aliphatic alcohol concentration and temperature based on etched taper FBG,” Sens. Actuators, B 202, 959–963 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

N. Chen, B. Yun, and Y. Cui, “Cladding mode resonances of etch-eroded fiber Bragg grating for ambient refractive index sensing,” Appl. Phys. Lett. 88(13), 133902 (2006).
[Crossref]

Electron. Lett. (1)

K. Zhou, X. Chen, and L. Zhang, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40(4), 232–234 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (6)

X. Liu, T. Wang, and Y. Wu, “Dual-Parameter Sensor Based on Tapered FBG Combined with Microfiber Cavity,” IEEE Photonics Technol. Lett. 26(8), 817–820 (2014).
[Crossref]

X. Chen, K. Zhou, and L. Zhang, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fiber,” IEEE Photonics Technol. Lett. 17(4), 864–866 (2005).
[Crossref]

A. Iadicicco, S. Campopiano, and A. Cutolo, “Nonuniform thinned fiber Bragg gratings for simultaneous refractive index and temperature measurements,” IEEE Photonics Technol. Lett. 17(7), 1495–1497 (2005).
[Crossref]

C. R. Liao, Y. Wang, and D. N. Wang, “Fiber In-Line Mach–Zehnder Interferometer Embedded in FBG for Simultaneous Refractive Index and Temperature Measurement,” IEEE Photonics Technol. Lett. 22(22), 1686–1688 (2010).
[Crossref]

L. Jin, W. Zhang, and H. Zhang, “An embedded FBG sensor for simultaneous measurement of stress and temperature,” IEEE Photonics Technol. Lett. 18(1), 154–156 (2006).
[Crossref]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 17(6), 1253–1255 (2005).
[Crossref]

IEEE Sens. J. (3)

J. Yan, A. P. Zhang, and L. Y. Shao, “Simultaneous Measurement of Refractive Index and Temperature by Using Dual Long-Period Gratings with an Etching Process,” IEEE Sens. J. 7(9), 1360–1361 (2007).
[Crossref]

C. Gouveia, P. A. S. Jorge, and J. M. Baptista, “Fabry–Pérot Cavity Based on a High-Birefringent Fiber Bragg Grating for Refractive Index and Temperature Measurement,” IEEE Sens. J. 12(1), 17–21 (2012).
[Crossref]

A. Iadicicco, A. Cusano, and S. Campopiano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]

J. Lightwave Technol. (4)

Meas. Sci. Technol. (1)

K. Zhou, X. Chen, and L. Zhang, “Implementation of optical chemsensors based on HF-etched fiber Bragg grating structures,” Meas. Sci. Technol. 17(5), 1140–1145 (2006).
[Crossref]

Opt. Express (1)

Opt. Fiber Technol. (2)

L. Liu, Z. Hao, and Q. Zhao, “Temperature-independent FBG pressure sensor with high sensitivity,” Opt. Fiber Technol. 13(1), 78–80 (2007).
[Crossref]

J. H. Osório, R. Oliveira, S. Aristilde, G. Chesini, M. A. R. Franco, R. N. Nogueira, and C. M. B. Cordeiro, “Bragg gratings in surface-core fibers: Refractive index and directional curvature sensing,” Opt. Fiber Technol. 34, 86–90 (2017).
[Crossref]

Opt. Laser Technol. (1)

D. A. C. Enríquez, A. R. D. Cruz, and M. T. M. R. Giraldi, “Hybrid FBG–LPG sensor for surrounding refractive index and temperature simultaneous discrimination,” Opt. Laser Technol. 44(4), 981–986 (2012).
[Crossref]

Opt. Lett. (5)

Sens. Actuators, A (1)

J. Leng and A. Anand, “Structural health monitoring of smart composite materials by using EFPI and FBG sensors,” Sens. Actuators, A 103(3), 330–340 (2003).
[Crossref]

Sens. Actuators, B (2)

S. Sridevi, S. Vasu K, and N. Jayaraman, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sens. Actuators, B 195, 150–155 (2014).
[Crossref]

H. Zhou Y, X. Guang Q, and M. Rajibul I, “Simultaneous measurement of aliphatic alcohol concentration and temperature based on etched taper FBG,” Sens. Actuators, B 202, 959–963 (2014).
[Crossref]

Other (1)

F. Mumtaz, P. Cheng, C. Li, S. Cheng, C. Du, M. Yang, Y. Dai, and W. Hu, “A design of taper-like etched multicore fiber refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer,” IEEE Sensors Journal. 2020 Mar 5

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Simulated e-field distributions of the center-core mode with diameters of (a) 150 µm, (b) 117 µm, (c) 91 µm and (d) 88 µm, and the outer-core modes with diameters of (e) 150 µm, (f) 117 µm, (g) 91 µm and (h) 88 µm.
Fig. 2.
Fig. 2. (a) Effective RI of central core and one of the outer cores for different cladding diameters of MCFs (SRI=1.333). (b) Effective RI of central core and outer core for MCF diameters of 91 µm, 93 µm and 95 µm under different SRI
Fig. 3.
Fig. 3. The reflection spectra of FBGs in MCF
Fig. 4.
Fig. 4. The microscope images of cross-section for unetched MCF (a) and etched MCFs with diameters of (b) 93.2 µm, (c) 89.8 µm, and their side-views (d-f).
Fig. 5.
Fig. 5. Experimental setup of the proposed RI sensor and the schematic diagram of the probe.
Fig. 6.
Fig. 6. The evolution of the resonance wavelengths shifts of two types of cores, central core (C1) and outer cores (O1-O6)
Fig. 7.
Fig. 7. (a) The experimental results of wavelength shifts as functions of the SRI for central core (C) and outer cores ${\bar{\textrm O}}$) with diameters of 89.8 µm, 93.2 µm and 94.3 µm, respectively. (b) The simulation wavelength shifts calculated from computed effective RI of simulation models
Fig. 8.
Fig. 8. The wavelength shifts as functions of the SRI for central core (C) and outer cores${\bar{\textrm O}}$) with diameters of 89.8 µm, 93.2 µm and 94.3 µm, respectively.
Fig. 9.
Fig. 9. Error of measured RI value corresponding to actual RI value (a) with compensation and (b) without compensation

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λ C = 2 n e f f , C Λ
λ O = 2 n e f f , O Λ
Δ λ C λ c = ( 1 n e f f , c n e f f , C T + 1 Λ Λ α T ) Δ T = ( ζ C + α ) Δ T
Δ λ O λ O = ( 1 n e f f , O n e f f , O T + 1 Λ Λ α T ) Δ T + ( 1 n e f f , O n e f f O S R I ) Δ S R I = ( ζ O + α ) Δ T + κ S R I
Δ λ = 4.174 E 36 e R I 0.018  +  0.061 , R 2 = 99.1 %
Δ λ = 7.661 E 30 e R I 0.022  +  0.018 , R 2 = 98.8 %
Δ λ = 1.459 E 29 e R I 0.022  +  0.172 , R 2 = 98.5 %

Metrics