Abstract

We experimentally demonstrate a 4×4 nonblocking silicon thermo-optic (TO) switch fabric consisting of three stages of tunable generalized Mach–Zehnder interferometers. All 24 routing states for nonblocking switching are characterized. The device’s footprint is 4.6mm×1.0mm. Measurements show that the worst cross talk of all switching states is 7.2dB. The on-chip insertion loss is in the range of 3.7–13.1 dB. The average TO switching power consumption is 104.8 mW.

© 2016 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Compact InGaAsP/InP nonblocking 4 × 4 trench-coupler-based Mach–Zehnder photonic switch fabric

Ke Liu, Le Wang, Chenglong Zhang, Qingyu Ma, and Bing Qi
Appl. Opt. 57(14) 3838-3846 (2018)

16 × 16 silicon Mach–Zehnder interferometer switch actuated with waveguide microheaters

Shuoyi Zhao, Liangjun Lu, Linjie Zhou, Dong Li, Zhanzhi Guo, and Jianping Chen
Photon. Res. 4(5) 202-207 (2016)

16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers

Liangjun Lu, Shuoyi Zhao, Linjie Zhou, Dong Li, Zuxiang Li, Minjuan Wang, Xinwan Li, and Jianping Chen
Opt. Express 24(9) 9295-9307 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. G. Lee, A. V. Rylyakov, W. M. J. Green, S. Assefa, C. W. Baks, R. Rimolo-Donadio, D. M. Kuchta, M. H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S. M. Shank, C. L. Schow, and Y. A. Vlasov, “Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits,” J. Lightwave Technol. 32, 743–751 (2014).
    [Crossref]
  2. K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8×8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22, 3887–3894 (2014).
    [Crossref]
  3. L. Zhou, L. Lu, Z. Li, and J. Chen, “Broadband 4×4 non-blocking optical switch fabric based on Mach–Zehnder interferometers,” in 13th International Conference on Optical Communications and Networks (IEEE, 2014), pp. 1–4.
  4. K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “32×32 strictly non-blocking si-wire optical switch on ultra-small die of 11×25  mm2,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.5.
  5. T. J. Seok, N. Quack, S. Han, and M. C. Wu, “50×50 digital silicon photonic switches with MEMS-actuated adiabatic couplers,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.4.
  6. J. Xing, Z. Li, P. Zhou, X. Xiao, J. Yu, and Y. Yu, “Nonblocking 4×4 silicon electro-optic switch matrix with push-pull drive,” Opt. Lett. 38, 3926–3929 (2013).
    [Crossref]
  7. M. Yang, W. M. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4×4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19, 47–54 (2011).
    [Crossref]
  8. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4×4 hitless silicon router for optical networks-on-chip (NoC),” Opt. Express 16, 15915 (2008).
    [Crossref]
  9. A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
    [Crossref]
  10. L. Yang, Y. Xia, F. Zhang, Q. Chen, J. Ding, P. Zhou, and L. Zhang, “Reconfigurable nonblocking 4-port silicon thermo-optic optical router based on Mach–Zehnder optical switches,” Opt. Lett. 40, 1402–1405 (2015).
    [Crossref]
  11. L. Lu, L. Zhou, S. Li, Z. Li, X. Li, and J. Chen, “4×4 nonblocking silicon thermo-optic switches based on multimode interferometers,” J. Lightwave Technol. 33, 857–864 (2015).
    [Crossref]
  12. Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives Invited.,” Photon. Res. 3, B10 (2015).
    [Crossref]
  13. J. Xing, Z. Li, Y. Yu, and J. Yu, “Low cross-talk 2×2 silicon electro-optic switch matrix with a double-gate configuration,” Opt. Lett. 38, 4774–4776 (2013).
    [Crossref]
  14. N. Xie, T. Hashimoto, and K. Utaka, “Design and performance of low-power, high-speed, polarization-independent and wideband polymer buried- channel waveguide thermo-optic switches,” J. Lightwave Technol. 32, 3067–3073 (2014).
    [Crossref]
  15. L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach–Zehnder interferometers,” Opt. Lett. 39, 1633–1636 (2014).
    [Crossref]
  16. N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Worhoff, and A. Driessen, “Analysis of generalized Mach-Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Lightwave Technol. 17, 2542–2550 (1999).
    [Crossref]
  17. P. E. Morrissey, H. Yang, R. N. Sheehan, B. Corbett, and F. H. Peters, “Design and fabrication tolerance analysis of multimode interference couplers,” Opt. Commun. 340, 26–32 (2015).
    [Crossref]
  18. L. W. Cahill, “The modelling of integrated optical power splitters and switches based on generalised Mach–Zehnder devices,” Opt. Quantum Electron. 36, 165–173 (2004).
    [Crossref]
  19. H. Zhou, J. Song, E. K. Chee, C. Li, H. Zhang, and G. Lo, “A compact thermo-optical multimode-interference silicon-based 1×4 nano-photonic switch,” Opt. Express 21, 21403–21413 (2013).
    [Crossref]
  20. W. Wang, H. Zhou, J. Yang, M. Wang, and X. Jiang, “Highly integrated 3×3 silicon thermo-optical switch using a single combined phase shifter for optical interconnects,” Opt. Lett. 37, 2307–2309 (2012).
    [Crossref]
  21. G. T. Reed and A. P. Knights, Silicon Photonics (Wiley, 2008).
  22. L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photon. J. 5, 6601211 (2013).
    [Crossref]
  23. Q. Wu, L. Zhou, X. Sun, H. Zhu, L. Lu, and J. Chen, “Silicon thermo-optic variable optical attenuators based on Mach–Zehnder interference structures,” Opt. Commun. 341, 69–73 (2015).
    [Crossref]

2015 (5)

2014 (4)

2013 (4)

2012 (1)

2011 (1)

2009 (1)

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

2008 (1)

2004 (1)

L. W. Cahill, “The modelling of integrated optical power splitters and switches based on generalised Mach–Zehnder devices,” Opt. Quantum Electron. 36, 165–173 (2004).
[Crossref]

1999 (1)

Assefa, S.

Baks, C. W.

Barwicz, T.

Bergman, K.

Biberman, A.

Cahill, L. W.

L. W. Cahill, “The modelling of integrated optical power splitters and switches based on generalised Mach–Zehnder devices,” Opt. Quantum Electron. 36, 165–173 (2004).
[Crossref]

Chee, E. K.

Chen, H.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Chen, J.

Q. Wu, L. Zhou, X. Sun, H. Zhu, L. Lu, and J. Chen, “Silicon thermo-optic variable optical attenuators based on Mach–Zehnder interference structures,” Opt. Commun. 341, 69–73 (2015).
[Crossref]

L. Lu, L. Zhou, S. Li, Z. Li, X. Li, and J. Chen, “4×4 nonblocking silicon thermo-optic switches based on multimode interferometers,” J. Lightwave Technol. 33, 857–864 (2015).
[Crossref]

L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach–Zehnder interferometers,” Opt. Lett. 39, 1633–1636 (2014).
[Crossref]

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photon. J. 5, 6601211 (2013).
[Crossref]

L. Zhou, L. Lu, Z. Li, and J. Chen, “Broadband 4×4 non-blocking optical switch fabric based on Mach–Zehnder interferometers,” in 13th International Conference on Optical Communications and Networks (IEEE, 2014), pp. 1–4.

Chen, L.

Chen, Q.

Chiba, T.

Cong, G.

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8×8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22, 3887–3894 (2014).
[Crossref]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “32×32 strictly non-blocking si-wire optical switch on ultra-small die of 11×25  mm2,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.5.

Corbett, B.

P. E. Morrissey, H. Yang, R. N. Sheehan, B. Corbett, and F. H. Peters, “Design and fabrication tolerance analysis of multimode interference couplers,” Opt. Commun. 340, 26–32 (2015).
[Crossref]

Ding, J.

Doany, F. E.

Driessen, A.

Green, W. M.

Green, W. M. J.

Han, S.

T. J. Seok, N. Quack, S. Han, and M. C. Wu, “50×50 digital silicon photonic switches with MEMS-actuated adiabatic couplers,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.4.

Hashimoto, T.

Igarashi, Y.

Ikeda, K.

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “32×32 strictly non-blocking si-wire optical switch on ultra-small die of 11×25  mm2,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.5.

Jahnes, C. V.

Jiang, X.

Kash, J. A.

Kawashima, H.

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8×8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22, 3887–3894 (2014).
[Crossref]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “32×32 strictly non-blocking si-wire optical switch on ultra-small die of 11×25  mm2,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.5.

Khater, M. H.

Kiewra, E.

Kim, S. H.

Kimura, T.

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “32×32 strictly non-blocking si-wire optical switch on ultra-small die of 11×25  mm2,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.5.

Knights, A. P.

G. T. Reed and A. P. Knights, Silicon Photonics (Wiley, 2008).

Koshino, K.

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “32×32 strictly non-blocking si-wire optical switch on ultra-small die of 11×25  mm2,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.5.

Kuchta, D. M.

Lagali, N. S.

Lee, B. G.

Li, C.

Li, S.

Li, X.

Li, Y.

Li, Z.

Lipson, M.

Lo, G.

Lu, L.

L. Lu, L. Zhou, S. Li, Z. Li, X. Li, and J. Chen, “4×4 nonblocking silicon thermo-optic switches based on multimode interferometers,” J. Lightwave Technol. 33, 857–864 (2015).
[Crossref]

Q. Wu, L. Zhou, X. Sun, H. Zhu, L. Lu, and J. Chen, “Silicon thermo-optic variable optical attenuators based on Mach–Zehnder interference structures,” Opt. Commun. 341, 69–73 (2015).
[Crossref]

L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach–Zehnder interferometers,” Opt. Lett. 39, 1633–1636 (2014).
[Crossref]

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photon. J. 5, 6601211 (2013).
[Crossref]

L. Zhou, L. Lu, Z. Li, and J. Chen, “Broadband 4×4 non-blocking optical switch fabric based on Mach–Zehnder interferometers,” in 13th International Conference on Optical Communications and Networks (IEEE, 2014), pp. 1–4.

Luo, X.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

MacDonald, R. I.

Masahara, M.

Matsukawa, T.

Matsumaro, K.

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “32×32 strictly non-blocking si-wire optical switch on ultra-small die of 11×25  mm2,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.5.

Morrissey, P. E.

P. E. Morrissey, H. Yang, R. N. Sheehan, B. Corbett, and F. H. Peters, “Design and fabrication tolerance analysis of multimode interference couplers,” Opt. Commun. 340, 26–32 (2015).
[Crossref]

Namiki, S.

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8×8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22, 3887–3894 (2014).
[Crossref]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “32×32 strictly non-blocking si-wire optical switch on ultra-small die of 11×25  mm2,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.5.

Ohno, M.

Ohtsuka, M.

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “32×32 strictly non-blocking si-wire optical switch on ultra-small die of 11×25  mm2,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.5.

Paiam, M. R.

Peters, F. H.

P. E. Morrissey, H. Yang, R. N. Sheehan, B. Corbett, and F. H. Peters, “Design and fabrication tolerance analysis of multimode interference couplers,” Opt. Commun. 340, 26–32 (2015).
[Crossref]

Poon, A. W.

Y. Li, Y. Zhang, L. Zhang, and A. W. Poon, “Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives Invited.,” Photon. Res. 3, B10 (2015).
[Crossref]

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Quack, N.

T. J. Seok, N. Quack, S. Han, and M. C. Wu, “50×50 digital silicon photonic switches with MEMS-actuated adiabatic couplers,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.4.

Reed, G. T.

G. T. Reed and A. P. Knights, Silicon Photonics (Wiley, 2008).

Reinholm, C.

Rimolo-Donadio, R.

Rylyakov, A. V.

Schow, C. L.

Seki, M.

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “32×32 strictly non-blocking si-wire optical switch on ultra-small die of 11×25  mm2,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.5.

Seok, T. J.

T. J. Seok, N. Quack, S. Han, and M. C. Wu, “50×50 digital silicon photonic switches with MEMS-actuated adiabatic couplers,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.4.

Shank, S. M.

Sheehan, R. N.

P. E. Morrissey, H. Yang, R. N. Sheehan, B. Corbett, and F. H. Peters, “Design and fabrication tolerance analysis of multimode interference couplers,” Opt. Commun. 340, 26–32 (2015).
[Crossref]

Sherwood-Droz, N.

Song, J.

Suda, S.

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8×8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22, 3887–3894 (2014).
[Crossref]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “32×32 strictly non-blocking si-wire optical switch on ultra-small die of 11×25  mm2,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.5.

Sugaya, T.

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “32×32 strictly non-blocking si-wire optical switch on ultra-small die of 11×25  mm2,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.5.

Sun, X.

Q. Wu, L. Zhou, X. Sun, H. Zhu, L. Lu, and J. Chen, “Silicon thermo-optic variable optical attenuators based on Mach–Zehnder interference structures,” Opt. Commun. 341, 69–73 (2015).
[Crossref]

Suzuki, K.

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8×8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22, 3887–3894 (2014).
[Crossref]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “32×32 strictly non-blocking si-wire optical switch on ultra-small die of 11×25  mm2,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.5.

Tadokoro, H.

Tanizawa, K.

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8×8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22, 3887–3894 (2014).
[Crossref]

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “32×32 strictly non-blocking si-wire optical switch on ultra-small die of 11×25  mm2,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.5.

Toyama, M.

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “32×32 strictly non-blocking si-wire optical switch on ultra-small die of 11×25  mm2,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.5.

Utaka, K.

Van Campenhout, J.

Vlasov, Y. A.

Wang, H.

Wang, M.

Wang, W.

Worhoff, K.

Wu, M. C.

T. J. Seok, N. Quack, S. Han, and M. C. Wu, “50×50 digital silicon photonic switches with MEMS-actuated adiabatic couplers,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.4.

Wu, Q.

Q. Wu, L. Zhou, X. Sun, H. Zhu, L. Lu, and J. Chen, “Silicon thermo-optic variable optical attenuators based on Mach–Zehnder interference structures,” Opt. Commun. 341, 69–73 (2015).
[Crossref]

Xia, Y.

Xiao, X.

Xie, N.

Xing, J.

Xu, F.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Yanagihara, M.

Yang, H.

P. E. Morrissey, H. Yang, R. N. Sheehan, B. Corbett, and F. H. Peters, “Design and fabrication tolerance analysis of multimode interference couplers,” Opt. Commun. 340, 26–32 (2015).
[Crossref]

Yang, J.

Yang, L.

Yang, M.

Yokoyama, N.

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “32×32 strictly non-blocking si-wire optical switch on ultra-small die of 11×25  mm2,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.5.

Yu, J.

Yu, Y.

Zhang, F.

Zhang, H.

Zhang, L.

Zhang, X.

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photon. J. 5, 6601211 (2013).
[Crossref]

Zhang, Y.

Zhou, H.

Zhou, L.

Q. Wu, L. Zhou, X. Sun, H. Zhu, L. Lu, and J. Chen, “Silicon thermo-optic variable optical attenuators based on Mach–Zehnder interference structures,” Opt. Commun. 341, 69–73 (2015).
[Crossref]

L. Lu, L. Zhou, S. Li, Z. Li, X. Li, and J. Chen, “4×4 nonblocking silicon thermo-optic switches based on multimode interferometers,” J. Lightwave Technol. 33, 857–864 (2015).
[Crossref]

L. Lu, L. Zhou, X. Li, and J. Chen, “Low-power 2×2 silicon electro-optic switches based on double-ring assisted Mach–Zehnder interferometers,” Opt. Lett. 39, 1633–1636 (2014).
[Crossref]

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photon. J. 5, 6601211 (2013).
[Crossref]

L. Zhou, L. Lu, Z. Li, and J. Chen, “Broadband 4×4 non-blocking optical switch fabric based on Mach–Zehnder interferometers,” in 13th International Conference on Optical Communications and Networks (IEEE, 2014), pp. 1–4.

Zhou, P.

Zhu, H.

Q. Wu, L. Zhou, X. Sun, H. Zhu, L. Lu, and J. Chen, “Silicon thermo-optic variable optical attenuators based on Mach–Zehnder interference structures,” Opt. Commun. 341, 69–73 (2015).
[Crossref]

IEEE Photon. J. (1)

L. Zhou, X. Zhang, L. Lu, and J. Chen, “Tunable vernier microring optical filters with p-i-p type microheaters,” IEEE Photon. J. 5, 6601211 (2013).
[Crossref]

J. Lightwave Technol. (4)

Opt. Commun. (2)

P. E. Morrissey, H. Yang, R. N. Sheehan, B. Corbett, and F. H. Peters, “Design and fabrication tolerance analysis of multimode interference couplers,” Opt. Commun. 340, 26–32 (2015).
[Crossref]

Q. Wu, L. Zhou, X. Sun, H. Zhu, L. Lu, and J. Chen, “Silicon thermo-optic variable optical attenuators based on Mach–Zehnder interference structures,” Opt. Commun. 341, 69–73 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Opt. Quantum Electron. (1)

L. W. Cahill, “The modelling of integrated optical power splitters and switches based on generalised Mach–Zehnder devices,” Opt. Quantum Electron. 36, 165–173 (2004).
[Crossref]

Photon. Res. (1)

Proc. IEEE (1)

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97, 1216–1238 (2009).
[Crossref]

Other (4)

L. Zhou, L. Lu, Z. Li, and J. Chen, “Broadband 4×4 non-blocking optical switch fabric based on Mach–Zehnder interferometers,” in 13th International Conference on Optical Communications and Networks (IEEE, 2014), pp. 1–4.

K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, and H. Kawashima, “32×32 strictly non-blocking si-wire optical switch on ultra-small die of 11×25  mm2,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.5.

T. J. Seok, N. Quack, S. Han, and M. C. Wu, “50×50 digital silicon photonic switches with MEMS-actuated adiabatic couplers,” in Optical Fiber Communication Conference (OSA, 2015), paper M2B.4.

G. T. Reed and A. P. Knights, Silicon Photonics (Wiley, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Structure of the 4 × 4 switch based on cascaded GMZIs. (b) All switching states of single 4 × 4 , 3 × 3 , and 2 × 2 GMZIs. (c) Cross-sectional schematic of the TO phase shifter.
Fig. 2.
Fig. 2. (a) Optical microscope image of the fabricated 4 × 4 switch. (b) Zoom-in view of the GMZI switch element. (c) Home-packaged switch chip.
Fig. 3.
Fig. 3. Measured transmission spectra for state ID = 3 .
Fig. 4.
Fig. 4. Measured transmission spectra for state ID = 22 .
Fig. 5.
Fig. 5. Histogram of on-chip insertion loss of all 24 states.
Fig. 6.
Fig. 6. Histogram of cross talk of all 24 states.
Fig. 7.
Fig. 7. Experimental setup for optical data transmission measurement.
Fig. 8.
Fig. 8. Measured eye diagrams of a 25 Gb/s OOK signal before and after the switch chip. (a) BtB transmission, (b) switching state ID = 3 , and (c) switching state ID = 22 .
Fig. 9.
Fig. 9. Tolerance analysis of power imbalance of the 4 × 4 and 3 × 3 MMIs on the cross talk of the device. The triangle represents the simulation of our fabricated device.

Tables (1)

Tables Icon

Table 1. All Switching States and Corresponding Power Consumption a

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

T switch 4 × 4 = T GM 2 · T GM 3 · T GM 4 .
T GMn = T MMI n × n · S psn · T MMI n × n .
S psn = ( e i φ 1 0 0 0 0 e i φ 2 0 0 0 0 0 0 0 0 e i φ n ) .
T MMI 4 × 4 = 1 2 ( 1 e i π 4 e i π 4 1 e i π 4 1 1 e i π 4 e i π 4 1 1 e i π 4 1 e i π 4 e i π 4 1 ) ,
T MMI 3 × 3 = 1 3 ( e i π 3 e i 2 π 3 e i π 3 0 e i 2 π 3 e i π 3 e i 2 π 3 0 e i π 3 e i 2 π 3 e i π 3 0 0 0 0 1 ) ,
T MMI 2 × 2 = 1 2 ( 1 e i π 2 0 0 e i π 2 1 0 0 0 0 1 0 0 0 0 1 ) .
T a , b MMI 4 × 4 = 1 2 [ 1 σ M 4 × 4 rand ( ) ] exp { i [ ψ a , b 4 × 4 + σ M 4 × 4 ( rand ( ) 1 2 ) π ] } ,
T a , b MMI 3 × 3 = 1 3 [ 1 σ M 3 × 3 rand ( ) ] exp { i [ ψ a , b 3 × 3 + σ M 3 × 3 ( rand ( ) 1 2 ) π ] } ,
T a , b MMI 2 × 2 = 1 2 [ 1 σ M 2 × 2 rand ( ) ] exp { i [ ψ a , b 2 × 2 + σ M 2 × 2 ( rand ( ) 1 2 ) π ] } ,

Metrics