Abstract

A liquid modified photonic crystal fiber (PCF) integrated with an embedded directional coupler and multi-mode interferometer is fabricated by infiltrating three adjacent air holes of the innermost layer with standard 1.48 refractive index liquids. The refractive index of the filled liquid is higher than that of background silica, which can not only support the transmitting rod modes but also the “liquid modified core” modes propagating between the PCF core and the liquid rods. Hence, the light propagating in the liquid modified core can be efficiently coupled into the satellite waveguides under the phase-matching conditions, resulting in a dramatic decrease of the resonant wavelength intensity. Furthermore, there is a multi-mode interference produced by modified core modes and rod modes. Such a compact (0.91  cm) device integrated with an embedded coupler and interferometer is demonstrated for high-sensitivity simultaneous temperature (14.72  nm/°C) and strain (13.01  pm/μϵ) measurement.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
All-fiber Mach-Zehnder interferometer based on two liquid infiltrations in a photonic crystal fiber

Jia-hong Liou and Chin-ping Yu
Opt. Express 23(5) 6946-6951 (2015)

Embedded coupler based on selectively infiltrated photonic crystal fiber for strain measurement

Ying Wang, C. R. Liao, and D. N. Wang
Opt. Lett. 37(22) 4747-4749 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34, 322–324 (2009).
    [Crossref]
  2. M. Luo, Y. G. Liu, Z. Wang, T. Han, Z. Wu, J. Guo, and W. Huang, “Twin-resonance-coupling and high sensitivity sensing characteristics of a selectively fluid-filled microstructured optical fiber,” Opt. Express 21, 30911–30917 (2013).
    [Crossref]
  3. Y. Wang, C. R. Liao, and D. N. Wang, “Embedded coupler based on selectively infiltrated photonic crystal fiber for strain measurement,” Opt. Lett. 37, 4747–4749 (2012).
    [Crossref]
  4. K. J. Lee, X. Liu, N. Vuillemin, R. Lwin, S. G. Leon-Saval, A. Argyros, and B. T. Kuhlmey, “Refractive index sensor based on a polymer fiber directional coupler for low index sensing,” Opt. Express 22, 17497–17507 (2014).
    [Crossref]
  5. Z. Xu, J. Lim, D. J. Hu, Q. Sun, R. Y. Wong, K. Li, M. Jiang, and P. P. Shum, “Investigation of temperature sensing characteristics in selectively infiltrated photonic crystal fiber,” Opt. Express 24, 1699–1707 (2016).
    [Crossref]
  6. B. Sun, Z. Zhang, W. Wei, C. Wang, C. Liao, L. Zhang, and Y. Wang, “Unique temperature dependence of selectively liquid-crystal-filled photonic crystal fibers,” IEEE Photon. Technol. Lett. 28, 1282–1285 (2016).
    [Crossref]
  7. J. Guo, Y.-G. Liu, Z. Wang, T. Han, W. Huang, and M. Luo, “Tunable fiber polarizing filter based on a single-hole-infiltrated polarization maintaining photonic crystal fiber,” Opt. Express 22, 7607–7616 (2014).
    [Crossref]
  8. H. F. Chen, Y. Wang, and D. N. Wang, “Selectively infiltrated PCF for directional bend sensing with large bending range,” IEEE Photon. Technol. Lett. 27, 502–505 (2015).
    [Crossref]
  9. M. Yang, D. N. Wang, Y. Wang, and C. R. Liao, “Fiber in-line Mach–Zehnder interferometer constructed by selective infiltration of two air holes in photonic crystal fiber,” Opt. Lett. 36, 636–638 (2011).
    [Crossref]
  10. H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultrahigh temperature,” IEEE Photon. Technol. Lett. 27, 58–61 (2015).
    [Crossref]
  11. H. Liu, H. Z. Yang, X. Qiao, M. Hu, Z. Feng, R. Wang, Q. Rong, D. S. Gunawardena, K.-S. Lim, and H. Ahmad, “Strain measurement at high temperature environment based on Fabry–Perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
    [Crossref]
  12. Y.-J. Rao, Z.-l. Ran, X. Liao, and H.-Y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Express 15, 14936–14941 (2007).
    [Crossref]
  13. Q. Liu, Z. L. Ran, Y. J. Rao, S. C. Luo, H. Q. Yang, and Y. Huang, “Highly integrated FP/FBG sensor for simultaneous measurement of high temperature and strain,” IEEE Photon. Technol. Lett. 26, 1715–1717 (2014).
    [Crossref]
  14. Y. Jiang, D. Yang, Y. Yuan, J. Xu, D. Li, and J. Zhao, “Strain and high-temperature discrimination using a type II fiber Bragg grating and a miniature fiber Fabry–Perot interferometer,” Appl. Opt. 55, 6341–6345 (2016).
    [Crossref]
  15. C. Chen, Y. S. Yu, X. Y. Zhang, R. Yang, C. C. Zhu, C. Wang, Y. Xue, F. Zhu, Q. D. Chen, and H. B. Sun, “Compact fiber tip modal interferometer for high-temperature and transverse load measurements,” Opt. Lett. 38, 3202–3204 (2013).
    [Crossref]
  16. S. Rota-Rodrigo, M. Lopez-Amo, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazao, “Multimodal interferometer based on a suspended core fiber for simultaneous measurement of physical parameters,” J. Lightwave Technol. 33, 2468–2473 (2015).
    [Crossref]
  17. H. F. Chen, D. N. Wang, and Y. Wang, “Simultaneous strain and temperature sensing using a slightly tapered optical fiber with an inner cavity,” Analyst 140, 1859–1862 (2015).
    [Crossref]
  18. Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express 18, 18056–18060 (2010).
    [Crossref]
  19. Y. Wang, M. Yang, D. N. Wang, and C. R. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photon. Technol. Lett. 23, 1520–1522 (2011).
    [Crossref]
  20. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [Crossref]
  21. P. R. Cooper, “Refractive-index measurements of liquids used in conjunction with optical fibers,” Appl. Opt. 22, 3070–3072 (1983).
    [Crossref]

2016 (4)

B. Sun, Z. Zhang, W. Wei, C. Wang, C. Liao, L. Zhang, and Y. Wang, “Unique temperature dependence of selectively liquid-crystal-filled photonic crystal fibers,” IEEE Photon. Technol. Lett. 28, 1282–1285 (2016).
[Crossref]

H. Liu, H. Z. Yang, X. Qiao, M. Hu, Z. Feng, R. Wang, Q. Rong, D. S. Gunawardena, K.-S. Lim, and H. Ahmad, “Strain measurement at high temperature environment based on Fabry–Perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

Z. Xu, J. Lim, D. J. Hu, Q. Sun, R. Y. Wong, K. Li, M. Jiang, and P. P. Shum, “Investigation of temperature sensing characteristics in selectively infiltrated photonic crystal fiber,” Opt. Express 24, 1699–1707 (2016).
[Crossref]

Y. Jiang, D. Yang, Y. Yuan, J. Xu, D. Li, and J. Zhao, “Strain and high-temperature discrimination using a type II fiber Bragg grating and a miniature fiber Fabry–Perot interferometer,” Appl. Opt. 55, 6341–6345 (2016).
[Crossref]

2015 (4)

S. Rota-Rodrigo, M. Lopez-Amo, J. Kobelke, K. Schuster, J. L. Santos, and O. Frazao, “Multimodal interferometer based on a suspended core fiber for simultaneous measurement of physical parameters,” J. Lightwave Technol. 33, 2468–2473 (2015).
[Crossref]

H. F. Chen, Y. Wang, and D. N. Wang, “Selectively infiltrated PCF for directional bend sensing with large bending range,” IEEE Photon. Technol. Lett. 27, 502–505 (2015).
[Crossref]

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultrahigh temperature,” IEEE Photon. Technol. Lett. 27, 58–61 (2015).
[Crossref]

H. F. Chen, D. N. Wang, and Y. Wang, “Simultaneous strain and temperature sensing using a slightly tapered optical fiber with an inner cavity,” Analyst 140, 1859–1862 (2015).
[Crossref]

2014 (3)

2013 (2)

2012 (1)

2011 (2)

M. Yang, D. N. Wang, Y. Wang, and C. R. Liao, “Fiber in-line Mach–Zehnder interferometer constructed by selective infiltration of two air holes in photonic crystal fiber,” Opt. Lett. 36, 636–638 (2011).
[Crossref]

Y. Wang, M. Yang, D. N. Wang, and C. R. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photon. Technol. Lett. 23, 1520–1522 (2011).
[Crossref]

2010 (1)

2009 (1)

2007 (1)

1983 (1)

1965 (1)

Ahmad, H.

H. Liu, H. Z. Yang, X. Qiao, M. Hu, Z. Feng, R. Wang, Q. Rong, D. S. Gunawardena, K.-S. Lim, and H. Ahmad, “Strain measurement at high temperature environment based on Fabry–Perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultrahigh temperature,” IEEE Photon. Technol. Lett. 27, 58–61 (2015).
[Crossref]

Ali, M. M.

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultrahigh temperature,” IEEE Photon. Technol. Lett. 27, 58–61 (2015).
[Crossref]

Argyros, A.

Chen, C.

Chen, H. F.

H. F. Chen, Y. Wang, and D. N. Wang, “Selectively infiltrated PCF for directional bend sensing with large bending range,” IEEE Photon. Technol. Lett. 27, 502–505 (2015).
[Crossref]

H. F. Chen, D. N. Wang, and Y. Wang, “Simultaneous strain and temperature sensing using a slightly tapered optical fiber with an inner cavity,” Analyst 140, 1859–1862 (2015).
[Crossref]

Chen, Q. D.

Cooper, P. R.

Deng, H.-Y.

Eggleton, B. J.

Feng, Z.

H. Liu, H. Z. Yang, X. Qiao, M. Hu, Z. Feng, R. Wang, Q. Rong, D. S. Gunawardena, K.-S. Lim, and H. Ahmad, “Strain measurement at high temperature environment based on Fabry–Perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

Frazao, O.

Gunawardena, D. S.

H. Liu, H. Z. Yang, X. Qiao, M. Hu, Z. Feng, R. Wang, Q. Rong, D. S. Gunawardena, K.-S. Lim, and H. Ahmad, “Strain measurement at high temperature environment based on Fabry–Perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

Guo, J.

Han, T.

Hu, D. J.

Hu, M.

H. Liu, H. Z. Yang, X. Qiao, M. Hu, Z. Feng, R. Wang, Q. Rong, D. S. Gunawardena, K.-S. Lim, and H. Ahmad, “Strain measurement at high temperature environment based on Fabry–Perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

Huang, W.

Huang, Y.

Q. Liu, Z. L. Ran, Y. J. Rao, S. C. Luo, H. Q. Yang, and Y. Huang, “Highly integrated FP/FBG sensor for simultaneous measurement of high temperature and strain,” IEEE Photon. Technol. Lett. 26, 1715–1717 (2014).
[Crossref]

Jiang, M.

Jiang, Y.

Kobelke, J.

Kuhlmey, B. T.

Lai, M. H.

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultrahigh temperature,” IEEE Photon. Technol. Lett. 27, 58–61 (2015).
[Crossref]

Lee, K. J.

Leon-Saval, S. G.

Li, D.

Li, K.

Liao, C.

B. Sun, Z. Zhang, W. Wei, C. Wang, C. Liao, L. Zhang, and Y. Wang, “Unique temperature dependence of selectively liquid-crystal-filled photonic crystal fibers,” IEEE Photon. Technol. Lett. 28, 1282–1285 (2016).
[Crossref]

Liao, C. R.

Liao, X.

Lim, J.

Lim, K. S.

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultrahigh temperature,” IEEE Photon. Technol. Lett. 27, 58–61 (2015).
[Crossref]

Lim, K.-S.

H. Liu, H. Z. Yang, X. Qiao, M. Hu, Z. Feng, R. Wang, Q. Rong, D. S. Gunawardena, K.-S. Lim, and H. Ahmad, “Strain measurement at high temperature environment based on Fabry–Perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

Liu, H.

H. Liu, H. Z. Yang, X. Qiao, M. Hu, Z. Feng, R. Wang, Q. Rong, D. S. Gunawardena, K.-S. Lim, and H. Ahmad, “Strain measurement at high temperature environment based on Fabry–Perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

Liu, Q.

Q. Liu, Z. L. Ran, Y. J. Rao, S. C. Luo, H. Q. Yang, and Y. Huang, “Highly integrated FP/FBG sensor for simultaneous measurement of high temperature and strain,” IEEE Photon. Technol. Lett. 26, 1715–1717 (2014).
[Crossref]

Liu, X.

Liu, Y. G.

Liu, Y.-G.

Lopez-Amo, M.

Luo, M.

Luo, S. C.

Q. Liu, Z. L. Ran, Y. J. Rao, S. C. Luo, H. Q. Yang, and Y. Huang, “Highly integrated FP/FBG sensor for simultaneous measurement of high temperature and strain,” IEEE Photon. Technol. Lett. 26, 1715–1717 (2014).
[Crossref]

Lwin, R.

Malitson, I. H.

Qiao, X.

H. Liu, H. Z. Yang, X. Qiao, M. Hu, Z. Feng, R. Wang, Q. Rong, D. S. Gunawardena, K.-S. Lim, and H. Ahmad, “Strain measurement at high temperature environment based on Fabry–Perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

Qiao, X. G.

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultrahigh temperature,” IEEE Photon. Technol. Lett. 27, 58–61 (2015).
[Crossref]

Ran, Z. L.

Q. Liu, Z. L. Ran, Y. J. Rao, S. C. Luo, H. Q. Yang, and Y. Huang, “Highly integrated FP/FBG sensor for simultaneous measurement of high temperature and strain,” IEEE Photon. Technol. Lett. 26, 1715–1717 (2014).
[Crossref]

Ran, Z.-l.

Rao, Y. J.

Q. Liu, Z. L. Ran, Y. J. Rao, S. C. Luo, H. Q. Yang, and Y. Huang, “Highly integrated FP/FBG sensor for simultaneous measurement of high temperature and strain,” IEEE Photon. Technol. Lett. 26, 1715–1717 (2014).
[Crossref]

Rao, Y.-J.

Rong, Q.

H. Liu, H. Z. Yang, X. Qiao, M. Hu, Z. Feng, R. Wang, Q. Rong, D. S. Gunawardena, K.-S. Lim, and H. Ahmad, “Strain measurement at high temperature environment based on Fabry–Perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

Rota-Rodrigo, S.

Santos, J. L.

Schuster, K.

Shum, P. P.

Sun, B.

B. Sun, Z. Zhang, W. Wei, C. Wang, C. Liao, L. Zhang, and Y. Wang, “Unique temperature dependence of selectively liquid-crystal-filled photonic crystal fibers,” IEEE Photon. Technol. Lett. 28, 1282–1285 (2016).
[Crossref]

Sun, H. B.

Sun, Q.

Vuillemin, N.

Wang, C.

B. Sun, Z. Zhang, W. Wei, C. Wang, C. Liao, L. Zhang, and Y. Wang, “Unique temperature dependence of selectively liquid-crystal-filled photonic crystal fibers,” IEEE Photon. Technol. Lett. 28, 1282–1285 (2016).
[Crossref]

C. Chen, Y. S. Yu, X. Y. Zhang, R. Yang, C. C. Zhu, C. Wang, Y. Xue, F. Zhu, Q. D. Chen, and H. B. Sun, “Compact fiber tip modal interferometer for high-temperature and transverse load measurements,” Opt. Lett. 38, 3202–3204 (2013).
[Crossref]

Wang, D. N.

H. F. Chen, Y. Wang, and D. N. Wang, “Selectively infiltrated PCF for directional bend sensing with large bending range,” IEEE Photon. Technol. Lett. 27, 502–505 (2015).
[Crossref]

H. F. Chen, D. N. Wang, and Y. Wang, “Simultaneous strain and temperature sensing using a slightly tapered optical fiber with an inner cavity,” Analyst 140, 1859–1862 (2015).
[Crossref]

Y. Wang, C. R. Liao, and D. N. Wang, “Embedded coupler based on selectively infiltrated photonic crystal fiber for strain measurement,” Opt. Lett. 37, 4747–4749 (2012).
[Crossref]

M. Yang, D. N. Wang, Y. Wang, and C. R. Liao, “Fiber in-line Mach–Zehnder interferometer constructed by selective infiltration of two air holes in photonic crystal fiber,” Opt. Lett. 36, 636–638 (2011).
[Crossref]

Y. Wang, M. Yang, D. N. Wang, and C. R. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photon. Technol. Lett. 23, 1520–1522 (2011).
[Crossref]

Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express 18, 18056–18060 (2010).
[Crossref]

Wang, R.

H. Liu, H. Z. Yang, X. Qiao, M. Hu, Z. Feng, R. Wang, Q. Rong, D. S. Gunawardena, K.-S. Lim, and H. Ahmad, “Strain measurement at high temperature environment based on Fabry–Perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

Wang, Y.

B. Sun, Z. Zhang, W. Wei, C. Wang, C. Liao, L. Zhang, and Y. Wang, “Unique temperature dependence of selectively liquid-crystal-filled photonic crystal fibers,” IEEE Photon. Technol. Lett. 28, 1282–1285 (2016).
[Crossref]

H. F. Chen, D. N. Wang, and Y. Wang, “Simultaneous strain and temperature sensing using a slightly tapered optical fiber with an inner cavity,” Analyst 140, 1859–1862 (2015).
[Crossref]

H. F. Chen, Y. Wang, and D. N. Wang, “Selectively infiltrated PCF for directional bend sensing with large bending range,” IEEE Photon. Technol. Lett. 27, 502–505 (2015).
[Crossref]

Y. Wang, C. R. Liao, and D. N. Wang, “Embedded coupler based on selectively infiltrated photonic crystal fiber for strain measurement,” Opt. Lett. 37, 4747–4749 (2012).
[Crossref]

M. Yang, D. N. Wang, Y. Wang, and C. R. Liao, “Fiber in-line Mach–Zehnder interferometer constructed by selective infiltration of two air holes in photonic crystal fiber,” Opt. Lett. 36, 636–638 (2011).
[Crossref]

Y. Wang, M. Yang, D. N. Wang, and C. R. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photon. Technol. Lett. 23, 1520–1522 (2011).
[Crossref]

Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express 18, 18056–18060 (2010).
[Crossref]

Wang, Y. P.

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultrahigh temperature,” IEEE Photon. Technol. Lett. 27, 58–61 (2015).
[Crossref]

Wang, Z.

Wei, W.

B. Sun, Z. Zhang, W. Wei, C. Wang, C. Liao, L. Zhang, and Y. Wang, “Unique temperature dependence of selectively liquid-crystal-filled photonic crystal fibers,” IEEE Photon. Technol. Lett. 28, 1282–1285 (2016).
[Crossref]

Wong, R. Y.

Wu, D. K. C.

Wu, Z.

Xu, J.

Xu, Z.

Xue, Y.

Yang, D.

Yang, H. Q.

Q. Liu, Z. L. Ran, Y. J. Rao, S. C. Luo, H. Q. Yang, and Y. Huang, “Highly integrated FP/FBG sensor for simultaneous measurement of high temperature and strain,” IEEE Photon. Technol. Lett. 26, 1715–1717 (2014).
[Crossref]

Yang, H. Z.

H. Liu, H. Z. Yang, X. Qiao, M. Hu, Z. Feng, R. Wang, Q. Rong, D. S. Gunawardena, K.-S. Lim, and H. Ahmad, “Strain measurement at high temperature environment based on Fabry–Perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultrahigh temperature,” IEEE Photon. Technol. Lett. 27, 58–61 (2015).
[Crossref]

Yang, M.

Y. Wang, M. Yang, D. N. Wang, and C. R. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photon. Technol. Lett. 23, 1520–1522 (2011).
[Crossref]

M. Yang, D. N. Wang, Y. Wang, and C. R. Liao, “Fiber in-line Mach–Zehnder interferometer constructed by selective infiltration of two air holes in photonic crystal fiber,” Opt. Lett. 36, 636–638 (2011).
[Crossref]

Yang, R.

Yu, Y. S.

Yuan, Y.

Zhang, L.

B. Sun, Z. Zhang, W. Wei, C. Wang, C. Liao, L. Zhang, and Y. Wang, “Unique temperature dependence of selectively liquid-crystal-filled photonic crystal fibers,” IEEE Photon. Technol. Lett. 28, 1282–1285 (2016).
[Crossref]

Zhang, X. Y.

Zhang, Z.

B. Sun, Z. Zhang, W. Wei, C. Wang, C. Liao, L. Zhang, and Y. Wang, “Unique temperature dependence of selectively liquid-crystal-filled photonic crystal fibers,” IEEE Photon. Technol. Lett. 28, 1282–1285 (2016).
[Crossref]

Zhao, J.

Zhu, C. C.

Zhu, F.

Analyst (1)

H. F. Chen, D. N. Wang, and Y. Wang, “Simultaneous strain and temperature sensing using a slightly tapered optical fiber with an inner cavity,” Analyst 140, 1859–1862 (2015).
[Crossref]

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (5)

Q. Liu, Z. L. Ran, Y. J. Rao, S. C. Luo, H. Q. Yang, and Y. Huang, “Highly integrated FP/FBG sensor for simultaneous measurement of high temperature and strain,” IEEE Photon. Technol. Lett. 26, 1715–1717 (2014).
[Crossref]

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-fiber gratings for simultaneous monitoring temperature and strain in ultrahigh temperature,” IEEE Photon. Technol. Lett. 27, 58–61 (2015).
[Crossref]

B. Sun, Z. Zhang, W. Wei, C. Wang, C. Liao, L. Zhang, and Y. Wang, “Unique temperature dependence of selectively liquid-crystal-filled photonic crystal fibers,” IEEE Photon. Technol. Lett. 28, 1282–1285 (2016).
[Crossref]

H. F. Chen, Y. Wang, and D. N. Wang, “Selectively infiltrated PCF for directional bend sensing with large bending range,” IEEE Photon. Technol. Lett. 27, 502–505 (2015).
[Crossref]

Y. Wang, M. Yang, D. N. Wang, and C. R. Liao, “Selectively infiltrated photonic crystal fiber with ultrahigh temperature sensitivity,” IEEE Photon. Technol. Lett. 23, 1520–1522 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Opt. Express (6)

Opt. Lett. (4)

Sens. Actuators A (1)

H. Liu, H. Z. Yang, X. Qiao, M. Hu, Z. Feng, R. Wang, Q. Rong, D. S. Gunawardena, K.-S. Lim, and H. Ahmad, “Strain measurement at high temperature environment based on Fabry–Perot interferometer cascaded fiber regeneration grating,” Sens. Actuators A 248, 199–205 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic diagram of the femtosecond laser-assisted selective infiltration setup; inset, optical microscope image of a PCF with all holes sealed by a section of SMF. (b) Cross-sectional view of the PCF with three holes selectively infiltrated (white spot indicates the hole filled with standard 1.48-RI liquid).
Fig. 2.
Fig. 2. (a) Transmission spectra of filled PCF with different length and (b) transmission spectrum of the proposed device.
Fig. 3.
Fig. 3. Working principle of the proposed sensor. The liquid rods are highlighted in dark red.
Fig. 4.
Fig. 4. (a) Calculated profiles and dispersion curves of the guided modes in the proposed device. (b) Phase-matching relationship of the coupling between the core and rod modes at 17°C and 22°C, respectively.
Fig. 5.
Fig. 5. (a) Transmission spectra evolution of the proposed device as temperature increases from 18°C to 21°C and (b) relationship between the temperature and wavelength shift of Dips A and B.
Fig. 6.
Fig. 6. Relationship between strain and shift of the wavelengths of the characteristic peaks. Insets (a) and (b) represent the variations of Dips A and B as the strain increases, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 + I 2 + 2 I 1 I 2 cos φ ,
FSR = λ 2 Δ n L ,
n = a + b λ 2 + c λ 4 ,
[ Δ T Δ ϵ ] = [ 14.73 6.58 12.57 13.01 ] 1 [ Δ λ A Δ λ B ] .

Metrics