Abstract

Reduction of modulator energy consumption to 10  fJ/bit is essential for the sustainable development of communication systems. Lumped modulators might be a viable solution if instructed by a complete theory system. Here, we present a complete analytical electro-optic response theory, energy consumption analysis, and eye diagrams on absolute scales for lumped modulators. Consequently the speed limitation is understood and alleviated by single-drive configuration, and comprehensive knowledge into the energy dependence on structural parameters significantly reduces energy consumption. The results show that silicon modulation energy as low as 80.8 and 21.5  fJ/bit can be achieved at 28 Gbd under 50 and 10 Ω impedance drivers, respectively. A 50 Gbd modulation is also shown to be possible. The analytical models can be extended to lumped modulators on other material platforms and offer a promising solution to the current challenges of modulation energy reduction.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Low-power silicon-organic hybrid (SOH) modulators for advanced modulation formats

M. Lauermann, R. Palmer, S. Koeber, P. C. Schindler, D. Korn, T. Wahlbrink, J. Bolten, M. Waldow, D. L. Elder, L. R. Dalton, J. Leuthold, W. Freude, and C. Koos
Opt. Express 22(24) 29927-29936 (2014)

High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators

Po Dong, Long Chen, and Young-kai Chen
Opt. Express 20(6) 6163-6169 (2012)

Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators

Hui Yu, Marianna Pantouvaki, Joris Van Campenhout, Dietmar Korn, Katarzyna Komorowska, Pieter Dumon, Yanlu Li, Peter Verheyen, Philippe Absil, Luca Alloatti, David Hillerkuss, Juerg Leuthold, Roel Baets, and Wim Bogaerts
Opt. Express 20(12) 12926-12938 (2012)

References

  • View by:
  • |
  • |
  • |

  1. D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [Crossref]
  2. X. Li, Q. Deng, and Z. Zhou, “Low loss, high-speed single-mode half-disk resonator,” Opt. Lett. 39, 3810–3813 (2014).
    [Crossref]
  3. J. C. Rosenberg, W. M. Green, S. Assefa, D. M. Gill, and T. Barwicz, “A 25  Gbps silicon microring modulator based on an interleaved junction,” Opt. Express 20, 26411–26423 (2012).
  4. S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18, 18235–18242 (2010).
    [Crossref]
  5. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
    [Crossref]
  6. H. Xu, X. Li, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators,” IEEE J. Sel. Top. Quantum Electron. 20, 23–32 (2014).
    [Crossref]
  7. Y. Yang, Q. Fang, M. Yu, X. Tu, R. Rusli, and G. Lo, “High-efficiency Si optical modulator using Cu travelling-wave electrode,” Opt. Express 22, 29978–29985 (2014).
    [Crossref]
  8. H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high-speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
    [Crossref]
  9. A. Brimont, D. J. Thomson, F. Y. Gardes, J. M. Fedeli, G. T. Reed, J. Martí, and P. Sanchis, “High-contrast 40  Gb/s operation of a 500  μm long silicon carrier-depletion slow wave modulator,” Opt. Lett. 37, 3504–3506 (2012).
    [Crossref]
  10. H. Yu and W. Bogaerts, “An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators,” J. Lightwave Technol. 30, 1602–1609 (2012).
    [Crossref]
  11. R. Becker, “Broad-band guided-wave electrooptic modulators,” IEEE J. Quantum Electron. 20, 723–727 (1984).
    [Crossref]
  12. J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, and M. Yu, “Ultra-low-power carrier-depletion Mach–Zehnder silicon optical modulator,” Opt. Express 20, 7081–7087 (2012).
    [Crossref]
  13. T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. Lim, T. Liow, S. Teo, G. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
    [Crossref]
  14. J. Ding, R. Ji, L. Zhang, and L. Yang, “Electro-optical response analysis of a 40  Gb/s silicon Mach–Zehnder optical modulator,” J. Lightwave Technol. 31, 2434–2440 (2013).
    [Crossref]
  15. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16, 159–164 (2010).
    [Crossref]
  16. M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2015), paper W4H.3.
  17. D. Patel, V. Veerasubramanian, S. Ghosh, A. Samani, Q. Zhong, and D. V. Plant, “High-speed compact silicon photonic Michelson interferometric modulator,” Opt. Express 22, 26788–26802 (2014).
    [Crossref]
  18. S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).
    [Crossref]
  19. L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
    [Crossref]
  20. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4, 438–446 (2010).
    [Crossref]
  21. C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
    [Crossref]
  22. A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
    [Crossref]
  23. B. Pile and G. Taylor, “Small-signal analysis of microring resonator modulators,” Opt. Express 22, 14913–14928 (2014).
    [Crossref]
  24. H. Yu, D. Ying, M. Pantouvaki, J. Van Campenhout, P. Absil, Y. Hao, J. Yang, and X. Jiang, “Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators,” Opt. Express 22, 15178–15189 (2014).
    [Crossref]
  25. T. Li, J. Zhang, H. Yi, W. Tan, Q. Long, Z. Zhou, X. Wang, and H. Wu, “Low-voltage, high speed, compact silicon modulator for BPSK modulation,” Opt. Express 21, 23410–23415 (2013).
    [Crossref]
  26. J. Wang, L. Zhou, H. Zhu, R. Yang, Y. Zhou, L. Liu, T. Wang, and J. Chen, “Silicon high-speed binary phase-shift keying modulator with a single-drive push-pull high-speed traveling wave electrode,” Photon. Res. 3, 58–62 (2015).
    [Crossref]
  27. L. Chen, P. Dong, and Y.-K. Chen, “Chirp and dispersion tolerance of a single-drive push-pull silicon modulator at 28  Gb/s,” IEEE Photon. Technol. Lett. 24, 936–938 (2012).
    [Crossref]
  28. X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient silicon Michelson interferometer modulators,” IEEE Photon. Technol. Lett. 25, 407–409 (2013).
    [Crossref]
  29. D. Samara-Rubio, U. D. Keil, L. Liao, T. Franck, A. Liu, D. W. Hodge, D. Rubin, and R. Cohen, “Customized drive electronics to extend silicon optical modulators to 4  GB/s,” J. Lightwave Technol. 23, 4305–4314 (2005).
    [Crossref]
  30. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
    [Crossref]
  31. G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
    [Crossref]
  32. T. Usuki, “Robust optical data transfer on silicon photonic chip,” J. Lightwave Technol. 30, 2933–2940 (2012).
  33. Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems [invited],” Photon. Res. 3, B28–B46 (2015).
    [Crossref]
  34. M. Webster, P. Gothoskar, V. Patel, D. Piede, S. Anderson, R. Tummidi, D. Adams, C. Appel, P. Metz, S. Sunder, B. Dama, and K. Shastri, “An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters,” in IEEE 11th International Conference on Group IV Photonics (GFP), August 27–29 (2014), pp. 1–2.

2015 (4)

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

J. Wang, L. Zhou, H. Zhu, R. Yang, Y. Zhou, L. Liu, T. Wang, and J. Chen, “Silicon high-speed binary phase-shift keying modulator with a single-drive push-pull high-speed traveling wave electrode,” Photon. Res. 3, 58–62 (2015).
[Crossref]

Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems [invited],” Photon. Res. 3, B28–B46 (2015).
[Crossref]

2014 (10)

B. Pile and G. Taylor, “Small-signal analysis of microring resonator modulators,” Opt. Express 22, 14913–14928 (2014).
[Crossref]

H. Yu, D. Ying, M. Pantouvaki, J. Van Campenhout, P. Absil, Y. Hao, J. Yang, and X. Jiang, “Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators,” Opt. Express 22, 15178–15189 (2014).
[Crossref]

X. Li, Q. Deng, and Z. Zhou, “Low loss, high-speed single-mode half-disk resonator,” Opt. Lett. 39, 3810–3813 (2014).
[Crossref]

D. Patel, V. Veerasubramanian, S. Ghosh, A. Samani, Q. Zhong, and D. V. Plant, “High-speed compact silicon photonic Michelson interferometric modulator,” Opt. Express 22, 26788–26802 (2014).
[Crossref]

Y. Yang, Q. Fang, M. Yu, X. Tu, R. Rusli, and G. Lo, “High-efficiency Si optical modulator using Cu travelling-wave electrode,” Opt. Express 22, 29978–29985 (2014).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

H. Xu, X. Li, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators,” IEEE J. Sel. Top. Quantum Electron. 20, 23–32 (2014).
[Crossref]

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

2013 (3)

2012 (8)

L. Chen, P. Dong, and Y.-K. Chen, “Chirp and dispersion tolerance of a single-drive push-pull silicon modulator at 28  Gb/s,” IEEE Photon. Technol. Lett. 24, 936–938 (2012).
[Crossref]

J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, and M. Yu, “Ultra-low-power carrier-depletion Mach–Zehnder silicon optical modulator,” Opt. Express 20, 7081–7087 (2012).
[Crossref]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. Lim, T. Liow, S. Teo, G. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[Crossref]

H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high-speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref]

H. Yu and W. Bogaerts, “An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators,” J. Lightwave Technol. 30, 1602–1609 (2012).
[Crossref]

A. Brimont, D. J. Thomson, F. Y. Gardes, J. M. Fedeli, G. T. Reed, J. Martí, and P. Sanchis, “High-contrast 40  Gb/s operation of a 500  μm long silicon carrier-depletion slow wave modulator,” Opt. Lett. 37, 3504–3506 (2012).
[Crossref]

T. Usuki, “Robust optical data transfer on silicon photonic chip,” J. Lightwave Technol. 30, 2933–2940 (2012).

J. C. Rosenberg, W. M. Green, S. Assefa, D. M. Gill, and T. Barwicz, “A 25  Gbps silicon microring modulator based on an interleaved junction,” Opt. Express 20, 26411–26423 (2012).

2010 (4)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4, 438–446 (2010).
[Crossref]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16, 159–164 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18, 18235–18242 (2010).
[Crossref]

2009 (1)

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

2005 (1)

1984 (1)

R. Becker, “Broad-band guided-wave electrooptic modulators,” IEEE J. Quantum Electron. 20, 723–727 (1984).
[Crossref]

Absil, P.

Adams, D.

M. Webster, P. Gothoskar, V. Patel, D. Piede, S. Anderson, R. Tummidi, D. Adams, C. Appel, P. Metz, S. Sunder, B. Dama, and K. Shastri, “An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters,” in IEEE 11th International Conference on Group IV Photonics (GFP), August 27–29 (2014), pp. 1–2.

Alloatti, L.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high-speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref]

Anderson, S.

M. Webster, P. Gothoskar, V. Patel, D. Piede, S. Anderson, R. Tummidi, D. Adams, C. Appel, P. Metz, S. Sunder, B. Dama, and K. Shastri, “An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters,” in IEEE 11th International Conference on Group IV Photonics (GFP), August 27–29 (2014), pp. 1–2.

Appel, C.

M. Webster, P. Gothoskar, V. Patel, D. Piede, S. Anderson, R. Tummidi, D. Adams, C. Appel, P. Metz, S. Sunder, B. Dama, and K. Shastri, “An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters,” in IEEE 11th International Conference on Group IV Photonics (GFP), August 27–29 (2014), pp. 1–2.

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2015), paper W4H.3.

Assefa, S.

Ayazi, A.

Baehr-Jones, T.

Baets, R.

Baeuerle, B.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Barwicz, T.

Becker, R.

R. Becker, “Broad-band guided-wave electrooptic modulators,” IEEE J. Quantum Electron. 20, 723–727 (1984).
[Crossref]

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Bogaerts, W.

Brimont, A.

Chen, B.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Chen, H.

Chen, J.

Chen, L.

L. Chen, P. Dong, and Y.-K. Chen, “Chirp and dispersion tolerance of a single-drive push-pull silicon modulator at 28  Gb/s,” IEEE Photon. Technol. Lett. 24, 936–938 (2012).
[Crossref]

S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18, 18235–18242 (2010).
[Crossref]

Chen, S.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Chen, Y.-K.

L. Chen, P. Dong, and Y.-K. Chen, “Chirp and dispersion tolerance of a single-drive push-pull silicon modulator at 28  Gb/s,” IEEE Photon. Technol. Lett. 24, 936–938 (2012).
[Crossref]

Chu, T.

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient silicon Michelson interferometer modulators,” IEEE Photon. Technol. Lett. 25, 407–409 (2013).
[Crossref]

Clark, J.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4, 438–446 (2010).
[Crossref]

Cohen, R.

Cui, J.

Dalton, L. R.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).
[Crossref]

Dama, B.

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2015), paper W4H.3.

M. Webster, P. Gothoskar, V. Patel, D. Piede, S. Anderson, R. Tummidi, D. Adams, C. Appel, P. Metz, S. Sunder, B. Dama, and K. Shastri, “An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters,” in IEEE 11th International Conference on Group IV Photonics (GFP), August 27–29 (2014), pp. 1–2.

Deng, Q.

Diebold, S.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Ding, J.

Ding, R.

Dinu, R.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Dong, P.

L. Chen, P. Dong, and Y.-K. Chen, “Chirp and dispersion tolerance of a single-drive push-pull silicon modulator at 28  Gb/s,” IEEE Photon. Technol. Lett. 24, 936–938 (2012).
[Crossref]

Ducry, F.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Dumon, P.

Elder, D. L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).
[Crossref]

Emboras, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Fang, Q.

Fedeli, J.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Fedeli, J. M.

Fedoryshyn, Y.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Fournier, M.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Franck, T.

Freude, W.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Gardes, F. Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

A. Brimont, D. J. Thomson, F. Y. Gardes, J. M. Fedeli, G. T. Reed, J. Martí, and P. Sanchis, “High-contrast 40  Gb/s operation of a 500  μm long silicon carrier-depletion slow wave modulator,” Opt. Lett. 37, 3504–3506 (2012).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Ghosh, S.

Gill, D. M.

Gothoskar, P.

M. Webster, P. Gothoskar, V. Patel, D. Piede, S. Anderson, R. Tummidi, D. Adams, C. Appel, P. Metz, S. Sunder, B. Dama, and K. Shastri, “An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters,” in IEEE 11th International Conference on Group IV Photonics (GFP), August 27–29 (2014), pp. 1–2.

Green, W. M.

Haffner, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Hafner, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Hao, Y.

Harris, N.

Heni, W.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).
[Crossref]

Hillerkuss, D.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high-speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref]

Hochberg, M.

Hodge, D. W.

Hoessbacher, C.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Hsu, S. S.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Hu, Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Ji, R.

Jiang, X.

Josten, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Juchli, L.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Keil, U. D.

Koch, U.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Koeber, S.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).
[Crossref]

Koenig, S.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).
[Crossref]

Kohl, M.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Komorowska, K.

Koos, C.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Korn, D.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high-speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref]

Lakshmikumar, K.

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2015), paper W4H.3.

Lanzani, G.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4, 438–446 (2010).
[Crossref]

Lauermann, M.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).
[Crossref]

Lee, P.

Lentine, A. L.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16, 159–164 (2010).
[Crossref]

Leuthold, J.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high-speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref]

Li, J.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Li, K.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Li, T.

Li, X.

Z. Zhou, B. Yin, Q. Deng, X. Li, and J. Cui, “Lowering the energy consumption in silicon photonic devices and systems [invited],” Photon. Res. 3, B28–B46 (2015).
[Crossref]

H. Xu, X. Li, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators,” IEEE J. Sel. Top. Quantum Electron. 20, 23–32 (2014).
[Crossref]

X. Li, Q. Deng, and Z. Zhou, “Low loss, high-speed single-mode half-disk resonator,” Opt. Lett. 39, 3810–3813 (2014).
[Crossref]

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient silicon Michelson interferometer modulators,” IEEE Photon. Technol. Lett. 25, 407–409 (2013).
[Crossref]

Li, Y.

Li, Z.

H. Xu, X. Li, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators,” IEEE J. Sel. Top. Quantum Electron. 20, 23–32 (2014).
[Crossref]

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient silicon Michelson interferometer modulators,” IEEE Photon. Technol. Lett. 25, 407–409 (2013).
[Crossref]

Liao, L.

Lim, A.

Liow, T.

Lipson, M.

Liu, A.

Liu, L.

Liu, Y.

Lo, G.

Long, Q.

Lu, Y.

Manipatruni, S.

Martí, J.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Mashanovich, G. Z.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Melikyan, A.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Metz, P.

M. Webster, P. Gothoskar, V. Patel, D. Piede, S. Anderson, R. Tummidi, D. Adams, C. Appel, P. Metz, S. Sunder, B. Dama, and K. Shastri, “An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters,” in IEEE 11th International Conference on Group IV Photonics (GFP), August 27–29 (2014), pp. 1–2.

Miller, D.

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Min, R.

Muehlbrandt, S.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Muslija, A.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Muzio, C.

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2015), paper W4H.3.

Nedeljkovic, M.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Niegemann, J.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Pahl, K. P.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Palmer, R.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Pantouvaki, M.

Patel, D.

Patel, V.

M. Webster, P. Gothoskar, V. Patel, D. Piede, S. Anderson, R. Tummidi, D. Adams, C. Appel, P. Metz, S. Sunder, B. Dama, and K. Shastri, “An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters,” in IEEE 11th International Conference on Group IV Photonics (GFP), August 27–29 (2014), pp. 1–2.

Piede, D.

M. Webster, P. Gothoskar, V. Patel, D. Piede, S. Anderson, R. Tummidi, D. Adams, C. Appel, P. Metz, S. Sunder, B. Dama, and K. Shastri, “An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters,” in IEEE 11th International Conference on Group IV Photonics (GFP), August 27–29 (2014), pp. 1–2.

Pile, B.

Pinguet, T.

Plant, D. V.

Preston, K.

Reed, G. T.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

A. Brimont, D. J. Thomson, F. Y. Gardes, J. M. Fedeli, G. T. Reed, J. Martí, and P. Sanchis, “High-contrast 40  Gb/s operation of a 500  μm long silicon carrier-depletion slow wave modulator,” Opt. Lett. 37, 3504–3506 (2012).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Rosenberg, J. C.

Rubin, D.

Rusli, R.

Salamin, Y.

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

Samani, A.

Samara-Rubio, D.

Sanchis, P.

Schindler, P. C.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Shah Hosseini, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Shastri, K.

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2015), paper W4H.3.

M. Webster, P. Gothoskar, V. Patel, D. Piede, S. Anderson, R. Tummidi, D. Adams, C. Appel, P. Metz, S. Sunder, B. Dama, and K. Shastri, “An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters,” in IEEE 11th International Conference on Group IV Photonics (GFP), August 27–29 (2014), pp. 1–2.

Sommer, M.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Streshinsky, M.

Sun, J.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Sunder, S.

M. Webster, P. Gothoskar, V. Patel, D. Piede, S. Anderson, R. Tummidi, D. Adams, C. Appel, P. Metz, S. Sunder, B. Dama, and K. Shastri, “An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters,” in IEEE 11th International Conference on Group IV Photonics (GFP), August 27–29 (2014), pp. 1–2.

Tan, W.

Taylor, G.

Teo, S.

Thomson, D. J.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

A. Brimont, D. J. Thomson, F. Y. Gardes, J. M. Fedeli, G. T. Reed, J. Martí, and P. Sanchis, “High-contrast 40  Gb/s operation of a 500  μm long silicon carrier-depletion slow wave modulator,” Opt. Lett. 37, 3504–3506 (2012).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Tian, Y.

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Trotter, D. C.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16, 159–164 (2010).
[Crossref]

Tu, X.

Tummidi, R.

M. Webster, P. Gothoskar, V. Patel, D. Piede, S. Anderson, R. Tummidi, D. Adams, C. Appel, P. Metz, S. Sunder, B. Dama, and K. Shastri, “An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters,” in IEEE 11th International Conference on Group IV Photonics (GFP), August 27–29 (2014), pp. 1–2.

Usuki, T.

Van Campenhout, J.

Van Thourhout, D.

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

Veerasubramanian, V.

Verheyen, P.

Wang, J.

Wang, T.

Wang, X.

Watts, M. R.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16, 159–164 (2010).
[Crossref]

Webster, M.

M. Webster, P. Gothoskar, V. Patel, D. Piede, S. Anderson, R. Tummidi, D. Adams, C. Appel, P. Metz, S. Sunder, B. Dama, and K. Shastri, “An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters,” in IEEE 11th International Conference on Group IV Photonics (GFP), August 27–29 (2014), pp. 1–2.

Webster, M. A.

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2015), paper W4H.3.

Wilson, P. R.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Woessner, M.

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).
[Crossref]

Wu, H.

Xiao, X.

H. Xu, X. Li, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators,” IEEE J. Sel. Top. Quantum Electron. 20, 23–32 (2014).
[Crossref]

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient silicon Michelson interferometer modulators,” IEEE Photon. Technol. Lett. 25, 407–409 (2013).
[Crossref]

Xu, H.

H. Xu, X. Li, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators,” IEEE J. Sel. Top. Quantum Electron. 20, 23–32 (2014).
[Crossref]

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient silicon Michelson interferometer modulators,” IEEE Photon. Technol. Lett. 25, 407–409 (2013).
[Crossref]

Yang, J.

Yang, L.

Yang, R.

Yang, Y.

Yi, H.

Yin, B.

Ying, D.

Young, R. W.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16, 159–164 (2010).
[Crossref]

Yu, H.

Yu, J.

H. Xu, X. Li, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators,” IEEE J. Sel. Top. Quantum Electron. 20, 23–32 (2014).
[Crossref]

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient silicon Michelson interferometer modulators,” IEEE Photon. Technol. Lett. 25, 407–409 (2013).
[Crossref]

Yu, M.

Yu, Y.

H. Xu, X. Li, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators,” IEEE J. Sel. Top. Quantum Electron. 20, 23–32 (2014).
[Crossref]

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient silicon Michelson interferometer modulators,” IEEE Photon. Technol. Lett. 25, 407–409 (2013).
[Crossref]

Zhang, J.

Zhang, L.

Zhang, Y.

Zhong, Q.

Zhou, L.

Zhou, P.

Zhou, Y.

Zhou, Z.

Zhu, H.

Zhu, W.

Zortman, W. A.

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16, 159–164 (2010).
[Crossref]

Zwick, T.

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Becker, “Broad-band guided-wave electrooptic modulators,” IEEE J. Quantum Electron. 20, 723–727 (1984).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator,” IEEE J. Sel. Top. Quantum Electron. 16, 159–164 (2010).
[Crossref]

H. Xu, X. Li, X. Xiao, Z. Li, Y. Yu, and J. Yu, “Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators,” IEEE J. Sel. Top. Quantum Electron. 20, 23–32 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (2)

L. Chen, P. Dong, and Y.-K. Chen, “Chirp and dispersion tolerance of a single-drive push-pull silicon modulator at 28  Gb/s,” IEEE Photon. Technol. Lett. 24, 936–938 (2012).
[Crossref]

X. Li, X. Xiao, H. Xu, Z. Li, T. Chu, J. Yu, and Y. Yu, “Highly efficient silicon Michelson interferometer modulators,” IEEE Photon. Technol. Lett. 25, 407–409 (2013).
[Crossref]

J. Lightwave Technol. (4)

Light Sci. Appl. (2)

S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, “Femtojoule electro-optic modulation using a silicon-organic hybrid device,” Light Sci. Appl. 4, e255 (2015).
[Crossref]

L. Alloatti, R. Palmer, S. Diebold, K. P. Pahl, B. Chen, R. Dinu, M. Fournier, J. Fedeli, T. Zwick, W. Freude, C. Koos, and J. Leuthold, “100  GHz silicon-organic hybrid modulator,” Light Sci. Appl. 3, e173 (2014).
[Crossref]

Nanophotonics (1)

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3, 229–245 (2014).
[Crossref]

Nat. Commun. (1)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref]

Nat. Photonics (4)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4, 438–446 (2010).
[Crossref]

C. Haffner, W. Heni, Y. Fedoryshyn, J. Niegemann, A. Melikyan, D. L. Elder, B. Baeuerle, Y. Salamin, A. Josten, U. Koch, C. Hoessbacher, F. Ducry, L. Juchli, A. Emboras, D. Hillerkuss, M. Kohl, L. R. Dalton, C. Hafner, and J. Leuthold, “All-plasmonic Mach–Zehnder modulator enabling optical high-speed communication at the microscale,” Nat. Photonics 9, 525–528 (2015).
[Crossref]

A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. C. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. Van Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, “High-speed plasmonic phase modulators,” Nat. Photonics 8, 229–233 (2014).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4, 518–526 (2010).
[Crossref]

Opt. Express (10)

S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18, 18235–18242 (2010).
[Crossref]

J. Ding, H. Chen, L. Yang, L. Zhang, R. Ji, Y. Tian, W. Zhu, Y. Lu, P. Zhou, R. Min, and M. Yu, “Ultra-low-power carrier-depletion Mach–Zehnder silicon optical modulator,” Opt. Express 20, 7081–7087 (2012).
[Crossref]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. Lim, T. Liow, S. Teo, G. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express 20, 12014–12020 (2012).
[Crossref]

H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high-speed carrier-depletion based silicon modulators,” Opt. Express 20, 12926–12938 (2012).
[Crossref]

D. Patel, V. Veerasubramanian, S. Ghosh, A. Samani, Q. Zhong, and D. V. Plant, “High-speed compact silicon photonic Michelson interferometric modulator,” Opt. Express 22, 26788–26802 (2014).
[Crossref]

Y. Yang, Q. Fang, M. Yu, X. Tu, R. Rusli, and G. Lo, “High-efficiency Si optical modulator using Cu travelling-wave electrode,” Opt. Express 22, 29978–29985 (2014).
[Crossref]

T. Li, J. Zhang, H. Yi, W. Tan, Q. Long, Z. Zhou, X. Wang, and H. Wu, “Low-voltage, high speed, compact silicon modulator for BPSK modulation,” Opt. Express 21, 23410–23415 (2013).
[Crossref]

B. Pile and G. Taylor, “Small-signal analysis of microring resonator modulators,” Opt. Express 22, 14913–14928 (2014).
[Crossref]

H. Yu, D. Ying, M. Pantouvaki, J. Van Campenhout, P. Absil, Y. Hao, J. Yang, and X. Jiang, “Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators,” Opt. Express 22, 15178–15189 (2014).
[Crossref]

J. C. Rosenberg, W. M. Green, S. Assefa, D. M. Gill, and T. Barwicz, “A 25  Gbps silicon microring modulator based on an interleaved junction,” Opt. Express 20, 26411–26423 (2012).

Opt. Lett. (2)

Photon. Res. (2)

Proc. IEEE (1)

D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Other (2)

M. A. Webster, K. Lakshmikumar, C. Appel, C. Muzio, B. Dama, and K. Shastri, “Low-power MOS-capacitor based silicon photonic modulators and CMOS drivers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2015), paper W4H.3.

M. Webster, P. Gothoskar, V. Patel, D. Piede, S. Anderson, R. Tummidi, D. Adams, C. Appel, P. Metz, S. Sunder, B. Dama, and K. Shastri, “An efficient MOS-capacitor based silicon modulator and CMOS drivers for optical transmitters,” in IEEE 11th International Conference on Group IV Photonics (GFP), August 27–29 (2014), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic and the basic properties of single-drive lumped silicon modulator. (a) Schematic of single-drive configuration. Inset: equivalent circuit model of single-drive and double-drive configurations. (b) Small-signal EO response of double-drive configuration in literature and single-drive configuration in this paper. Equivalent circuit parameters are from Ref. [8]. “L” stands for lateral junction and “I” stands for interleaved junction. For example, I0.5 and L0.5 represent interleaved junction and lateral junction of 0.5 mm length. (c) Effective voltage on each junction (Veff) and phase change in time domain, calculated at 28 GHz, MZM type. (d) Comparison between small-signal and large-signal models. Time-domain large-signal analysis and frequency-domain approximation for (e) MZM and (f) MIM. Calculation uses VπLπ=1  V·cm (at 1  V). SD: single drive; DD: double-drive.
Fig. 2.
Fig. 2. Frequency response of lumped modulators of (a) double-drive and (b) single-drive. Red, blue, and black lines represent the modulus of system transfer function H(jω), voltage transmission due to RF reflection Γt, and their product. Calculation uses VπLπ=1  V·cm.
Fig. 3.
Fig. 3. Large-signal characterization under 50 Ω standard characteristic impedance driver. Energy consumption relation with phase shifter length and doping concentration of (a) MZM and (b) MIM. The shown energy is obtained when Δϕ=0.1π. Bias voltages are chosen for each structural parameter so that the actual voltage on each PN junction is 0Vpp,eff. The lowest energy point (marked by “+”) in (a) is [L,N,E,Vin]=[0.350  mm,4.6×1017  cm3,303.8  fJ/bit,6.12  V]; [L,N,E,Vin]=[0.375  mm,9.4×1017  cm3,80.8  fJ/bit,1.95  V] in (b). Color represents log10(E) for better visual contrast. Eye diagrams of single-drive lumped modulators of (c)–(e) MZM and (f)–(h) MIM. The vertical axis is absolute value scale (not normalized). Doping concentration and phase shifter length for MZM and MIM are the optimal values in (a) and (b), respectively. Static working point: ϕ0=0.5π (biased at quadrature point). The driving “Vpp” specified in the figure is peak-to-peak voltage on each junction. Total input voltage is twice the value.
Fig. 4.
Fig. 4. Static IL under zero bias in the parameter space of interest. Modulation length is equal to the physical length of MZM and twice the physical length of MIM. The data used to obtain the coefficient is 1.12  dB/mm (N=1×1018  cm3), not including propagation loss of the passive waveguide (typical value 0.2  dB/mm).
Fig. 5.
Fig. 5. Large-signal characterization under 10 Ω low-characteristic impedance driver. Energy consumption relation with phase shifter length and doping concentration of (a) MZM and (b) MIM. The shown energy is obtained when Δϕ=0.1π. Bias voltages are chosen for each structural parameter so that the effective voltage on each PN junction is 0Vpp,eff. The lowest energy point (marked by “+”) in (a) is [L,N,E,Vin]=[0.675  mm,6.4×1017  cm3,66.9  fJ/bit,1.44  V]; [L,N,E,Vin]=[0.4625  mm,1.80×1018  cm3,21.5  fJ/bit,0.774  V] in (b). (c)–(e) Eye diagrams of MIM modulators of the optimal parameters. Color represents log10(E) for better visual contrast. Static working point: ϕ0=0.5π (biased at quadrature point). The driving “Vpp” specified in the figure is peak-to-peak voltage on each junction. Total input voltage is twice the value.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

Γt(ω)=2ZlZl+Z01Zl=1jωL1+1jωC1+R1+11jωC0,
H(jω)=1jωC1jωL1+R1+1jωC1.
Veff(ω)=12VinΓt(ω)H(jω),
Δneff(V)=K(AN+BN0.8)[wD(V)wD(0)+sin(kxwD(V))sin(kxwD(0))kx],wD(V)=2ϵq1N(VBV),
Δϕ(t)=k0vgtt0tΔneff(Veff(t))dt,
Δϕ(t)=K[t0tt0t1Veff(t)VBdt]K2VB[tt0tVeff(t)dt],
K=4KVBk0vgϵqN(AN+BN0.8).
Veff(t)=ReF1{F[Vinexp(jωst)]H(jω)Γt(ω)}=ReVinH(jωs)Γt(ωs)exp(jωst),
S21(ωs)=F[Eout(t)]12·F[Δϕ(t)].
S21(ω)=KπVin4VB1exp(jωt0)jωH(jω)Γt(ω).
Δϕ(ω)=k00LΔneff(Veff(ω))dl=k0LΔneff(Veff(ω)).
E=14C1Vin,pp2=C1Vin2.
neff=n(x,y)|E(x,y)|2dS|E(x,y)|2dS=WGn(x,y)|E(x,y)|2dSE02+C,
E(x,y)=cos(kxx)cos(kyy),
neff=1E02h/2h/2[wD/2wD/2nSicos2(kxx)dx+2wD/2w/2nPNcos2(kxx)dx]cos2(kyy)dy+C,
neffΔn[wD+sin(kxwD)kx]+2[C+nPNw+nPNsin(kxw)kx],
Δn=nSinPN=AND+BNA0.82.
Δneff(V)=K(AN+BN0.8)×[wD(V)wD(0)+sin(kxwD(V))sin(kxwD(0))kx]wD(V)=2ϵq1N(VBV),
Δϕ(t)=ReKVeff2VBexp(jωt)[1exp(jωt0)]jω.
Δϕ(ω)=KVeffVBωsin(ωt02).
Δϕ(t)=ReK1VbVB{(1(1VbVB)1/2)t012Veff,ac(t)VBVbexp(jωst)jωs[1exp(jωst0)]},
Δϕ(ω)=KVeff,acωVB(VBVb)sin(ωt02).

Metrics