Abstract

Transverse mode instability (TMI) has become the major limitation for power scaling of fiber lasers with nearly diffraction-limited beam quality. Compared with a co-pumped fiber laser, a counter-pumped fiber laser reveals TMI threshold enhancement through a semi-analytical model calculation. We demonstrated a 2 kW high-power counter-pumped all-fiberized laser without observation of TMI. Compared with the co-pumped scheme, the TMI threshold is enhanced at least 50% in counter-pumped scheme, moreover, stimulated Raman scattering and four-wave mixing are suppressed simultaneously.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme

Baolai Yang, Hanwei Zhang, Chen Shi, Xiaolin Wang, Pu Zhou, Xiaojun Xu, Jinbao Chen, Zejin Liu, and Qisheng Lu
Opt. Express 24(24) 27828-27835 (2016)

Transverse mode instability threshold enhancement in Yb-doped fiber lasers by cavity modification

Kamran Hejaz, Mahdi Shayganmanesh, Ali Roohforouz, Reza Rezaei-Nasirabad, Ali Abedinajafi, Saeed Azizi, and Vahid Vatani
Appl. Opt. 57(21) 5992-5997 (2018)

Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann
Opt. Express 25(13) 14892-14899 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tunnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19, 13218–13224 (2011).
    [Crossref]
  2. C. Jauregui, T. Eidam, J. Limpert, and A. Tunnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19, 3258–3271 (2011).
    [Crossref]
  3. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19, 10180–10192 (2011).
    [Crossref]
  4. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Laegsgaard, “Thermally induced mode coupling in rare-Earth doped fiber amplifiers,” Opt. Lett. 37, 2382–2384 (2012).
    [Crossref]
  5. L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21, 2642–2656 (2013).
    [Crossref]
  6. C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
    [Crossref]
  7. C. Jauregui, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tunnermann, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21, 19375–19386 (2013).
    [Crossref]
  8. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3  kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photon. Res. 3, 86–93 (2015).
  9. A. V. Smith and J. J. Smith, “Increasing mode instability thresholds of fiber amplifiers by gain saturation,” Opt. Express 21, 15168–15182 (2013).
    [Crossref]
  10. K. R. Hansen and J. Laegsgaard, “Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers,” Opt. Express 22, 11267–11278 (2014).
    [Crossref]
  11. C. Jauregui, H.-J. Otto, S. Breitkopf, J. Limpert, and A. Tunnermann, “Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities,” Opt. Express 24, 7879–7892 (2016).
    [Crossref]
  12. C. X. Yu, O. Shatrovoy, and T. Y. Fan, “All-glass fiber amplifier pumped by ultrahigh brightness pump,” Proc. SPIE 9728, 972806 (2016).
    [Crossref]
  13. S. Naderi, I. Dajani, J. Grosek, and T. Madden, “Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers,” Opt. Express 24, 16550–16565 (2016).
    [Crossref]

2016 (3)

2015 (1)

2014 (1)

2013 (4)

2012 (1)

2011 (3)

Alkeskjold, T. T.

Breitkopf, S.

Broeng, J.

Dajani, I.

Dong, L.

Eidam, T.

Fan, T. Y.

C. X. Yu, O. Shatrovoy, and T. Y. Fan, “All-glass fiber amplifier pumped by ultrahigh brightness pump,” Proc. SPIE 9728, 972806 (2016).
[Crossref]

Grosek, J.

Hansen, K. R.

Jansen, F.

Jauregui, C.

Laegsgaard, J.

Limpert, J.

Liu, Z.

Ma, P.

Madden, T.

Naderi, S.

Otto, H. J.

Otto, H.-J.

Schmidt, O.

Schreiber, T.

Shatrovoy, O.

C. X. Yu, O. Shatrovoy, and T. Y. Fan, “All-glass fiber amplifier pumped by ultrahigh brightness pump,” Proc. SPIE 9728, 972806 (2016).
[Crossref]

Smith, A. V.

Smith, J. J.

Stutzki, F.

Tao, R.

Tunnermann, A.

Wang, X.

Wirth, C.

Yu, C. X.

C. X. Yu, O. Shatrovoy, and T. Y. Fan, “All-glass fiber amplifier pumped by ultrahigh brightness pump,” Proc. SPIE 9728, 972806 (2016).
[Crossref]

Zhou, P.

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tunnermann, “High-power fibre lasers,” Nat. Photonics 7, 861–867 (2013).
[Crossref]

Opt. Express (9)

C. Jauregui, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tunnermann, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21, 19375–19386 (2013).
[Crossref]

L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21, 2642–2656 (2013).
[Crossref]

S. Naderi, I. Dajani, J. Grosek, and T. Madden, “Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers,” Opt. Express 24, 16550–16565 (2016).
[Crossref]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tunnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19, 13218–13224 (2011).
[Crossref]

C. Jauregui, T. Eidam, J. Limpert, and A. Tunnermann, “The impact of modal interference on the beam quality of high-power fiber amplifiers,” Opt. Express 19, 3258–3271 (2011).
[Crossref]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19, 10180–10192 (2011).
[Crossref]

A. V. Smith and J. J. Smith, “Increasing mode instability thresholds of fiber amplifiers by gain saturation,” Opt. Express 21, 15168–15182 (2013).
[Crossref]

K. R. Hansen and J. Laegsgaard, “Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers,” Opt. Express 22, 11267–11278 (2014).
[Crossref]

C. Jauregui, H.-J. Otto, S. Breitkopf, J. Limpert, and A. Tunnermann, “Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities,” Opt. Express 24, 7879–7892 (2016).
[Crossref]

Opt. Lett. (1)

Photon. Res. (1)

Proc. SPIE (1)

C. X. Yu, O. Shatrovoy, and T. Y. Fan, “All-glass fiber amplifier pumped by ultrahigh brightness pump,” Proc. SPIE 9728, 972806 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental setup.
Fig. 2.
Fig. 2. M 2 factor variation of the co-pumped and counter-pumped schemes as a function of the output power.
Fig. 3.
Fig. 3. Spectra of the co-pumped and counter-pumped schemes with output power of nearly 2 kW.
Fig. 4.
Fig. 4. Coupling coefficients of the co-pumped and counter-pumped schemes along the 50/400 fiber. The reader can refer to Smith and Smith’s model for the fiber amplifier parameters [9].
Fig. 5.
Fig. 5. Coupling coefficients of the co-pumped and counter-pumped schemes along the 20/400 fiber.
Fig. 6.
Fig. 6. TMI threshold of the co-pumped amplifier as a function of initial HOM content.
Fig. 7.
Fig. 7. Output power of the co-pumped amplifier as a function of seed power.

Tables (3)

Tables Icon

Table 1. Parameters of Test Amplifier

Tables Icon

Table 2. TMI Threshold Comparison I: with Identical Cladding Diameter

Tables Icon

Table 3. TMI Threshold Comparison II: with Identical Core Diameter

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P 1 z = χ ( Ω ) g P 1 P 2 + Γ 1 g P 1 ,
P 2 z = χ ( Ω ) g P 1 P 2 + Γ 2 g P 2 ,
χ ( Ω ) = χ ( Ω ) 1 + I p / Γ p I p sat 1 + I p / Γ p I p sat + I s / I s sat ,
χ ( Ω ) = 2 k 0 Im ( 4 n 0 2 ϵ 0 2 c 2 v m = 1 α n 2 π ( α β m 2 j Ω ) R v ( β m , r ) N ( β m ) × r = 0 r b φ = 0 2 π r = 0 r Y b φ = 0 2 π R v ( β m , r ) Φ ( φ φ ) × ψ 1 ψ 2 ψ 1 ψ 2 r r d r d φ d r d φ ) .

Metrics