Abstract

We investigate the superposition properties of the dipole and quadrupole plasmon modes in the near field both experimentally, by using photoemission electron microscopy (PEEM), and theoretically. In particular, the asymmetric near-field distributions on gold (Au) nanodisks and nanoblocks under oblique incidence with different polarizations are investigated in detail. The results of PEEM measurements show that the evolutions of the asymmetric near-field distributions are different between the excitation with s-polarized and p-polarized light. The experimental results can be reproduced very well by numerical simulations and interpreted as the superposition of the dipole and quadrupole modes with the help of analytic calculations. Moreover, we hypothesize that the electrons collected by PEEM are mainly from the plasmonic hot spots located at the plane in the interface between the Au particles and the substrate in the PEEM experiments.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Near-field spectral properties of coupled plasmonic nanoparticle arrays

Han Yu, Quan Sun, Jinghuan Yang, Kosei Ueno, Tomoya Oshikiri, Atsushi Kubo, Yasutaka Matsuo, Qihuang Gong, and Hiroaki Misawa
Opt. Express 25(6) 6883-6894 (2017)

Photoelectron imaging of modal interference in plasmonic whispering gallery cavities

Pascal Melchior, Deirdre Kilbane, Ernst Jan Vesseur, Albert Polman, and Martin Aeschlimann
Opt. Express 23(25) 31619-31626 (2015)

Mode structure of planar optical antennas on dielectric substrates

Robert C. Word and Rolf Könenkamp
Opt. Express 24(16) 18727-18738 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Lee, K. Kim, S. J. Kim, H. Park, K. Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2, 6–13 (2015).
    [Crossref]
  2. H. Linnenbank and S. Linden, “Second harmonic generation spectroscopy on second harmonic resonant plasmonic metamaterials,” Optica 2, 698–701 (2015).
    [Crossref]
  3. H. W. Jia, F. Yang, Y. Zhong, and H. T. Liu, “Understanding localized surface plasmon resonance with propagative surface plasmon polaritons in optical nanogap antennas,” Photon. Res. 4, 293–305 (2016).
    [Crossref]
  4. R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photon. Res. 2, 24–30 (2014).
    [Crossref]
  5. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
    [Crossref]
  6. G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
    [Crossref]
  7. A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10, 1501–1505 (2010).
    [Crossref]
  8. K. Nakamura, T. Oshikiri, K. Ueno, Y. M. Wang, Y. Kamata, Y. Kotake, and H. Misawa, “Properties of plasmon-induced photoelectric conversion on a TiO2/NiO p-n junction with Au nanoparticles,” J. Phys. Chem. Lett. 7, 1004–1009 (2016).
    [Crossref]
  9. X. Shi, K. Ueno, T. Oshikiri, and H. Misawa, “Improvement of plasmon-enhanced photocurrent generation by interference of TiO2 thin film,” J. Phys. Chem. C 117, 24733–24739 (2013).
    [Crossref]
  10. Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
    [Crossref]
  11. Z. H. Zhang, L. B. Zhang, M. N. Hedhili, H. N. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13, 14–20 (2013).
    [Crossref]
  12. T. Oshikiri, K. Ueno, and H. Misawa, “Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation,” Angew. Chem. Int. Ed. 53, 9802–9805 (2014).
    [Crossref]
  13. T. Oshikiri, K. Ueno, and H. Misawa, “Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation,” Angew. Chem. Int. Ed. 55, 3942–3946 (2016).
    [Crossref]
  14. Y. Q. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. 53, 10350–10354 (2014).
    [Crossref]
  15. R. Esteban, R. Vogelgesang, J. Dorfmuller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008).
    [Crossref]
  16. Y. Nishiyama, K. Imura, and H. Okamoto, “Observation of plasmon wave packet motions via femtosecond time-resolved near-field imaging techniques,” Nano Lett. 15, 7657–7665 (2015).
    [Crossref]
  17. D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7, 3168–3176 (2013).
    [Crossref]
  18. M. Frimmer, T. Coenen, and A. F. Koenderink, “Signature of a Fano resonance in a plasmonic metamolecule’s local density of optical states,” Phys. Rev. Lett. 108, 077404 (2012).
    [Crossref]
  19. T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15, 7666–7670 (2015).
    [Crossref]
  20. D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11, 1499–1504 (2011).
    [Crossref]
  21. V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
    [Crossref]
  22. J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gerard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14, 5517–5523 (2014).
    [Crossref]
  23. S. J. Barrow, D. Rossouw, A. M. Funston, G. A. Botton, and P. Mulvaney, “Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy,” Nano Lett. 14, 3799–3808 (2014).
    [Crossref]
  24. Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2, e118 (2013).
    [Crossref]
  25. Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10, 3835–3842 (2016).
    [Crossref]
  26. F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schonhense, “Near field of strongly coupled plasmons: uncovering dark modes,” Nano Lett. 12, 1885–1890 (2012).
    [Crossref]
  27. P. Melchior, D. Bayer, C. Schneider, A. Fischer, M. Rohmer, W. Pfeiffer, and M. Aeschlimann, “Optical near-field interference in the excitation of a bowtie nanoantenna,” Phys. Rev. B 83, 235407 (2011).
    [Crossref]
  28. P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, and M. Aeschlimann, “Photoelectron imaging of modal interference in plasmonic whispering gallery cavities,” Opt. Express 23, 31619–31626 (2015).
    [Crossref]
  29. M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schonhense, H. Rochholz, and M. Kreiter, “Photoemission electron microscopy as a tool for the investigation of optical near fields,” Phys. Rev. Lett. 95, 047601 (2005).
    [Crossref]
  30. B. Y. Ji, J. Qin, H. Y. Tao, Z. Q. Hao, and J. Q. Lin, “Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures,” New J. Phys. 18, 093046 (2016).
    [Crossref]
  31. H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10, 10373–10381 (2016).
    [Crossref]
  32. A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
    [Crossref]
  33. O. Nicoletti, F. de la Pena, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, “Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles,” Nature 502, 80–84 (2013).
    [Crossref]
  34. F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
    [Crossref]
  35. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [Crossref]
  36. J. Rodriguez-Fernandez, J. Perez-Juste, F. J. G. de Abajo, and L. M. Liz-Marzan, “Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes,” Langmuir 22, 7007–7010 (2006).
    [Crossref]
  37. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  38. H. Wang, Y. P. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
    [Crossref]
  39. Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, and S. H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano 6, 3390–3396 (2012).
    [Crossref]
  40. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
    [Crossref]
  41. O. Lecarme, Q. Sun, K. Ueno, and H. Misawa, “Robust and versatile light absorption at near-infrared wavelengths by plasmonic aluminum nanorods,” ACS Photon. 1, 538–546 (2014).
    [Crossref]
  42. R. C. Word, J. P. S. Fitzgerald, and R. Konenkamp, “Electron emission in the near-field of surface plasmons,” Surf. Sci. 607, 148–152 (2013).
    [Crossref]
  43. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]

2016 (6)

H. W. Jia, F. Yang, Y. Zhong, and H. T. Liu, “Understanding localized surface plasmon resonance with propagative surface plasmon polaritons in optical nanogap antennas,” Photon. Res. 4, 293–305 (2016).
[Crossref]

K. Nakamura, T. Oshikiri, K. Ueno, Y. M. Wang, Y. Kamata, Y. Kotake, and H. Misawa, “Properties of plasmon-induced photoelectric conversion on a TiO2/NiO p-n junction with Au nanoparticles,” J. Phys. Chem. Lett. 7, 1004–1009 (2016).
[Crossref]

T. Oshikiri, K. Ueno, and H. Misawa, “Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation,” Angew. Chem. Int. Ed. 55, 3942–3946 (2016).
[Crossref]

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10, 3835–3842 (2016).
[Crossref]

B. Y. Ji, J. Qin, H. Y. Tao, Z. Q. Hao, and J. Q. Lin, “Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures,” New J. Phys. 18, 093046 (2016).
[Crossref]

H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10, 10373–10381 (2016).
[Crossref]

2015 (5)

P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, and M. Aeschlimann, “Photoelectron imaging of modal interference in plasmonic whispering gallery cavities,” Opt. Express 23, 31619–31626 (2015).
[Crossref]

Y. Nishiyama, K. Imura, and H. Okamoto, “Observation of plasmon wave packet motions via femtosecond time-resolved near-field imaging techniques,” Nano Lett. 15, 7657–7665 (2015).
[Crossref]

T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15, 7666–7670 (2015).
[Crossref]

S. Y. Lee, K. Kim, S. J. Kim, H. Park, K. Y. Kim, and B. Lee, “Plasmonic meta-slit: shaping and controlling near-field focus,” Optica 2, 6–13 (2015).
[Crossref]

H. Linnenbank and S. Linden, “Second harmonic generation spectroscopy on second harmonic resonant plasmonic metamaterials,” Optica 2, 698–701 (2015).
[Crossref]

2014 (6)

R. Tellez-Limon, M. Fevrier, A. Apuzzo, R. Salas-Montiel, and S. Blaize, “Theoretical analysis of Bloch mode propagation in an integrated chain of gold nanowires,” Photon. Res. 2, 24–30 (2014).
[Crossref]

Y. Q. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. 53, 10350–10354 (2014).
[Crossref]

T. Oshikiri, K. Ueno, and H. Misawa, “Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation,” Angew. Chem. Int. Ed. 53, 9802–9805 (2014).
[Crossref]

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gerard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14, 5517–5523 (2014).
[Crossref]

S. J. Barrow, D. Rossouw, A. M. Funston, G. A. Botton, and P. Mulvaney, “Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy,” Nano Lett. 14, 3799–3808 (2014).
[Crossref]

O. Lecarme, Q. Sun, K. Ueno, and H. Misawa, “Robust and versatile light absorption at near-infrared wavelengths by plasmonic aluminum nanorods,” ACS Photon. 1, 538–546 (2014).
[Crossref]

2013 (6)

R. C. Word, J. P. S. Fitzgerald, and R. Konenkamp, “Electron emission in the near-field of surface plasmons,” Surf. Sci. 607, 148–152 (2013).
[Crossref]

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2, e118 (2013).
[Crossref]

O. Nicoletti, F. de la Pena, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, “Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles,” Nature 502, 80–84 (2013).
[Crossref]

Z. H. Zhang, L. B. Zhang, M. N. Hedhili, H. N. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13, 14–20 (2013).
[Crossref]

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7, 3168–3176 (2013).
[Crossref]

X. Shi, K. Ueno, T. Oshikiri, and H. Misawa, “Improvement of plasmon-enhanced photocurrent generation by interference of TiO2 thin film,” J. Phys. Chem. C 117, 24733–24739 (2013).
[Crossref]

2012 (5)

M. Frimmer, T. Coenen, and A. F. Koenderink, “Signature of a Fano resonance in a plasmonic metamolecule’s local density of optical states,” Phys. Rev. Lett. 108, 077404 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
[Crossref]

Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, and S. H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano 6, 3390–3396 (2012).
[Crossref]

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schonhense, “Near field of strongly coupled plasmons: uncovering dark modes,” Nano Lett. 12, 1885–1890 (2012).
[Crossref]

2011 (3)

P. Melchior, D. Bayer, C. Schneider, A. Fischer, M. Rohmer, W. Pfeiffer, and M. Aeschlimann, “Optical near-field interference in the excitation of a bowtie nanoantenna,” Phys. Rev. B 83, 235407 (2011).
[Crossref]

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11, 1499–1504 (2011).
[Crossref]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref]

2010 (1)

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10, 1501–1505 (2010).
[Crossref]

2009 (1)

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[Crossref]

2008 (2)

R. Esteban, R. Vogelgesang, J. Dorfmuller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008).
[Crossref]

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[Crossref]

2006 (3)

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[Crossref]

J. Rodriguez-Fernandez, J. Perez-Juste, F. J. G. de Abajo, and L. M. Liz-Marzan, “Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes,” Langmuir 22, 7007–7010 (2006).
[Crossref]

H. Wang, Y. P. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
[Crossref]

2005 (2)

M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schonhense, H. Rochholz, and M. Kreiter, “Photoemission electron microscopy as a tool for the investigation of optical near fields,” Phys. Rev. Lett. 95, 047601 (2005).
[Crossref]

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[Crossref]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Adamo, G.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Aeschlimann, M.

P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, and M. Aeschlimann, “Photoelectron imaging of modal interference in plasmonic whispering gallery cavities,” Opt. Express 23, 31619–31626 (2015).
[Crossref]

P. Melchior, D. Bayer, C. Schneider, A. Fischer, M. Rohmer, W. Pfeiffer, and M. Aeschlimann, “Optical near-field interference in the excitation of a bowtie nanoantenna,” Phys. Rev. B 83, 235407 (2011).
[Crossref]

Ali, T. A.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[Crossref]

Apuzzo, A.

Barrow, S. J.

S. J. Barrow, D. Rossouw, A. M. Funston, G. A. Botton, and P. Mulvaney, “Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy,” Nano Lett. 14, 3799–3808 (2014).
[Crossref]

Bayer, D.

P. Melchior, D. Bayer, C. Schneider, A. Fischer, M. Rohmer, W. Pfeiffer, and M. Aeschlimann, “Optical near-field interference in the excitation of a bowtie nanoantenna,” Phys. Rev. B 83, 235407 (2011).
[Crossref]

Blaize, S.

Botton, G. A.

S. J. Barrow, D. Rossouw, A. M. Funston, G. A. Botton, and P. Mulvaney, “Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy,” Nano Lett. 14, 3799–3808 (2014).
[Crossref]

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11, 1499–1504 (2011).
[Crossref]

Brenny, B. J. M.

T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15, 7666–7670 (2015).
[Crossref]

Brongersma, M. L.

T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15, 7666–7670 (2015).
[Crossref]

Chang, S. H.

Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, and S. H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano 6, 3390–3396 (2012).
[Crossref]

Chang, Y. C.

Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, and S. H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano 6, 3390–3396 (2012).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
[Crossref]

Chilkoti, A.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Chung, H. C.

Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, and S. H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano 6, 3390–3396 (2012).
[Crossref]

Cinchetti, M.

M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schonhense, H. Rochholz, and M. Kreiter, “Photoemission electron microscopy as a tool for the investigation of optical near fields,” Phys. Rev. Lett. 95, 047601 (2005).
[Crossref]

Coenen, T.

T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15, 7666–7670 (2015).
[Crossref]

M. Frimmer, T. Coenen, and A. F. Koenderink, “Signature of a Fano resonance in a plasmonic metamolecule’s local density of optical states,” Phys. Rev. Lett. 108, 077404 (2012).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Couillard, M.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11, 1499–1504 (2011).
[Crossref]

Curry, A. C.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[Crossref]

de Abajo, F. J. G.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

J. Rodriguez-Fernandez, J. Perez-Juste, F. J. G. de Abajo, and L. M. Liz-Marzan, “Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes,” Langmuir 22, 7007–7010 (2006).
[Crossref]

de la Pena, F.

O. Nicoletti, F. de la Pena, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, “Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles,” Nature 502, 80–84 (2013).
[Crossref]

Denkova, D.

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7, 3168–3176 (2013).
[Crossref]

Dmitriev, A.

R. Esteban, R. Vogelgesang, J. Dorfmuller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008).
[Crossref]

Dorfmuller, J.

R. Esteban, R. Vogelgesang, J. Dorfmuller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008).
[Crossref]

Ducati, C.

O. Nicoletti, F. de la Pena, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, “Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles,” Nature 502, 80–84 (2013).
[Crossref]

Elmers, H. J.

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schonhense, “Near field of strongly coupled plasmons: uncovering dark modes,” Nano Lett. 12, 1885–1890 (2012).
[Crossref]

Esteban, R.

R. Esteban, R. Vogelgesang, J. Dorfmuller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008).
[Crossref]

Etrich, C.

R. Esteban, R. Vogelgesang, J. Dorfmuller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008).
[Crossref]

Evlyukhin, A. B.

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
[Crossref]

Fevrier, M.

Fischer, A.

P. Melchior, D. Bayer, C. Schneider, A. Fischer, M. Rohmer, W. Pfeiffer, and M. Aeschlimann, “Optical near-field interference in the excitation of a bowtie nanoantenna,” Phys. Rev. B 83, 235407 (2011).
[Crossref]

Fitzgerald, J. P. S.

R. C. Word, J. P. S. Fitzgerald, and R. Konenkamp, “Electron emission in the near-field of surface plasmons,” Surf. Sci. 607, 148–152 (2013).
[Crossref]

Frimmer, M.

M. Frimmer, T. Coenen, and A. F. Koenderink, “Signature of a Fano resonance in a plasmonic metamolecule’s local density of optical states,” Phys. Rev. Lett. 108, 077404 (2012).
[Crossref]

Funston, A. M.

S. J. Barrow, D. Rossouw, A. M. Funston, G. A. Botton, and P. Mulvaney, “Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy,” Nano Lett. 14, 3799–3808 (2014).
[Crossref]

Gerard, D.

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gerard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14, 5517–5523 (2014).
[Crossref]

Geuquet, N.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Ginger, D. S.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10, 1501–1505 (2010).
[Crossref]

Gloskovskii, A.

M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schonhense, H. Rochholz, and M. Kreiter, “Photoemission electron microscopy as a tool for the investigation of optical near fields,” Phys. Rev. Lett. 95, 047601 (2005).
[Crossref]

Guyer, S. R.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10, 1501–1505 (2010).
[Crossref]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref]

H. Wang, Y. P. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
[Crossref]

Halas, N. J.

H. Wang, Y. P. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
[Crossref]

Hao, F.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[Crossref]

Hao, Z. Q.

B. Y. Ji, J. Qin, H. Y. Tao, Z. Q. Hao, and J. Q. Lin, “Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures,” New J. Phys. 18, 093046 (2016).
[Crossref]

Hedhili, M. N.

Z. H. Zhang, L. B. Zhang, M. N. Hedhili, H. N. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13, 14–20 (2013).
[Crossref]

Henrard, L.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Holland, D. J.

O. Nicoletti, F. de la Pena, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, “Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles,” Nature 502, 80–84 (2013).
[Crossref]

Imura, K.

Y. Nishiyama, K. Imura, and H. Okamoto, “Observation of plasmon wave packet motions via femtosecond time-resolved near-field imaging techniques,” Nano Lett. 15, 7657–7665 (2015).
[Crossref]

Inoue, H.

Y. Q. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. 53, 10350–10354 (2014).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Ji, B. Y.

B. Y. Ji, J. Qin, H. Y. Tao, Z. Q. Hao, and J. Q. Lin, “Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures,” New J. Phys. 18, 093046 (2016).
[Crossref]

Jia, H. W.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Juodkazis, S.

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[Crossref]

Kamata, Y.

K. Nakamura, T. Oshikiri, K. Ueno, Y. M. Wang, Y. Kamata, Y. Kotake, and H. Misawa, “Properties of plasmon-induced photoelectric conversion on a TiO2/NiO p-n junction with Au nanoparticles,” J. Phys. Chem. Lett. 7, 1004–1009 (2016).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Kern, K.

R. Esteban, R. Vogelgesang, J. Dorfmuller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008).
[Crossref]

Kilbane, D.

Kim, K.

Kim, K. Y.

Kim, S. J.

Kociak, M.

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gerard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14, 5517–5523 (2014).
[Crossref]

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Koenderink, A. F.

M. Frimmer, T. Coenen, and A. F. Koenderink, “Signature of a Fano resonance in a plasmonic metamolecule’s local density of optical states,” Phys. Rev. Lett. 108, 077404 (2012).
[Crossref]

Konenkamp, R.

R. C. Word, J. P. S. Fitzgerald, and R. Konenkamp, “Electron emission in the near-field of surface plasmons,” Surf. Sci. 607, 148–152 (2013).
[Crossref]

Kotake, Y.

K. Nakamura, T. Oshikiri, K. Ueno, Y. M. Wang, Y. Kamata, Y. Kotake, and H. Misawa, “Properties of plasmon-induced photoelectric conversion on a TiO2/NiO p-n junction with Au nanoparticles,” J. Phys. Chem. Lett. 7, 1004–1009 (2016).
[Crossref]

Kreiter, M.

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schonhense, “Near field of strongly coupled plasmons: uncovering dark modes,” Nano Lett. 12, 1885–1890 (2012).
[Crossref]

M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schonhense, H. Rochholz, and M. Kreiter, “Photoemission electron microscopy as a tool for the investigation of optical near fields,” Phys. Rev. Lett. 95, 047601 (2005).
[Crossref]

Kubo, A.

H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10, 10373–10381 (2016).
[Crossref]

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10, 3835–3842 (2016).
[Crossref]

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2, e118 (2013).
[Crossref]

Kulkarni, A. P.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10, 1501–1505 (2010).
[Crossref]

Kumacheva, E.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11, 1499–1504 (2011).
[Crossref]

Larsson, E. M.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[Crossref]

Lassiter, B.

H. Wang, Y. P. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
[Crossref]

Leary, R. K.

O. Nicoletti, F. de la Pena, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, “Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles,” Nature 502, 80–84 (2013).
[Crossref]

Lecarme, O.

O. Lecarme, Q. Sun, K. Ueno, and H. Misawa, “Robust and versatile light absorption at near-infrared wavelengths by plasmonic aluminum nanorods,” ACS Photon. 1, 538–546 (2014).
[Crossref]

Lee, B.

Lee, S. Y.

Lin, J. Q.

B. Y. Ji, J. Qin, H. Y. Tao, Z. Q. Hao, and J. Q. Lin, “Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures,” New J. Phys. 18, 093046 (2016).
[Crossref]

Linden, S.

Linnenbank, H.

Liu, H. T.

Liz-Marzan, L. M.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

J. Rodriguez-Fernandez, J. Perez-Juste, F. J. G. de Abajo, and L. M. Liz-Marzan, “Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes,” Langmuir 22, 7007–7010 (2006).
[Crossref]

MacDonald, K. F.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Mahfoud, Z.

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gerard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14, 5517–5523 (2014).
[Crossref]

Mann, S. A.

T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15, 7666–7670 (2015).
[Crossref]

Marinakos, S. M.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[Crossref]

Martin, J.

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gerard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14, 5517–5523 (2014).
[Crossref]

Matsuo, Y.

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10, 3835–3842 (2016).
[Crossref]

H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10, 10373–10381 (2016).
[Crossref]

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2, e118 (2013).
[Crossref]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref]

Melchior, P.

P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, and M. Aeschlimann, “Photoelectron imaging of modal interference in plasmonic whispering gallery cavities,” Opt. Express 23, 31619–31626 (2015).
[Crossref]

P. Melchior, D. Bayer, C. Schneider, A. Fischer, M. Rohmer, W. Pfeiffer, and M. Aeschlimann, “Optical near-field interference in the excitation of a bowtie nanoantenna,” Phys. Rev. B 83, 235407 (2011).
[Crossref]

Midgley, P. A.

O. Nicoletti, F. de la Pena, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, “Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles,” Nature 502, 80–84 (2013).
[Crossref]

Misawa, H.

H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10, 10373–10381 (2016).
[Crossref]

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10, 3835–3842 (2016).
[Crossref]

K. Nakamura, T. Oshikiri, K. Ueno, Y. M. Wang, Y. Kamata, Y. Kotake, and H. Misawa, “Properties of plasmon-induced photoelectric conversion on a TiO2/NiO p-n junction with Au nanoparticles,” J. Phys. Chem. Lett. 7, 1004–1009 (2016).
[Crossref]

T. Oshikiri, K. Ueno, and H. Misawa, “Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation,” Angew. Chem. Int. Ed. 55, 3942–3946 (2016).
[Crossref]

T. Oshikiri, K. Ueno, and H. Misawa, “Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation,” Angew. Chem. Int. Ed. 53, 9802–9805 (2014).
[Crossref]

Y. Q. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. 53, 10350–10354 (2014).
[Crossref]

O. Lecarme, Q. Sun, K. Ueno, and H. Misawa, “Robust and versatile light absorption at near-infrared wavelengths by plasmonic aluminum nanorods,” ACS Photon. 1, 538–546 (2014).
[Crossref]

X. Shi, K. Ueno, T. Oshikiri, and H. Misawa, “Improvement of plasmon-enhanced photocurrent generation by interference of TiO2 thin film,” J. Phys. Chem. C 117, 24733–24739 (2013).
[Crossref]

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2, e118 (2013).
[Crossref]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[Crossref]

Mizeikis, V.

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[Crossref]

Mohammadi, R.

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schonhense, “Near field of strongly coupled plasmons: uncovering dark modes,” Nano Lett. 12, 1885–1890 (2012).
[Crossref]

Mori, Y.

Y. Q. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. 53, 10350–10354 (2014).
[Crossref]

Moshchalkov, V. V.

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7, 3168–3176 (2013).
[Crossref]

Mulvaney, P.

S. J. Barrow, D. Rossouw, A. M. Funston, G. A. Botton, and P. Mulvaney, “Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy,” Nano Lett. 14, 3799–3808 (2014).
[Crossref]

Munechika, K.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10, 1501–1505 (2010).
[Crossref]

Murakoshi, K.

Y. Q. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. 53, 10350–10354 (2014).
[Crossref]

Myroshnychenko, V.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Nakamura, K.

K. Nakamura, T. Oshikiri, K. Ueno, Y. M. Wang, Y. Kamata, Y. Kotake, and H. Misawa, “Properties of plasmon-induced photoelectric conversion on a TiO2/NiO p-n junction with Au nanoparticles,” J. Phys. Chem. Lett. 7, 1004–1009 (2016).
[Crossref]

Nehl, C. L.

H. Wang, Y. P. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
[Crossref]

Nelayah, J.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Nepjiko, S. A.

M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schonhense, H. Rochholz, and M. Kreiter, “Photoemission electron microscopy as a tool for the investigation of optical near fields,” Phys. Rev. Lett. 95, 047601 (2005).
[Crossref]

Nicoletti, O.

O. Nicoletti, F. de la Pena, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, “Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles,” Nature 502, 80–84 (2013).
[Crossref]

Nishiyama, Y.

Y. Nishiyama, K. Imura, and H. Okamoto, “Observation of plasmon wave packet motions via femtosecond time-resolved near-field imaging techniques,” Nano Lett. 15, 7657–7665 (2015).
[Crossref]

Noone, K. M.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10, 1501–1505 (2010).
[Crossref]

Nordlander, P.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[Crossref]

H. Wang, Y. P. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
[Crossref]

Nusz, G. J.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[Crossref]

Okamoto, H.

Y. Nishiyama, K. Imura, and H. Okamoto, “Observation of plasmon wave packet motions via femtosecond time-resolved near-field imaging techniques,” Nano Lett. 15, 7657–7665 (2015).
[Crossref]

Oshikiri, T.

K. Nakamura, T. Oshikiri, K. Ueno, Y. M. Wang, Y. Kamata, Y. Kotake, and H. Misawa, “Properties of plasmon-induced photoelectric conversion on a TiO2/NiO p-n junction with Au nanoparticles,” J. Phys. Chem. Lett. 7, 1004–1009 (2016).
[Crossref]

T. Oshikiri, K. Ueno, and H. Misawa, “Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation,” Angew. Chem. Int. Ed. 55, 3942–3946 (2016).
[Crossref]

H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10, 10373–10381 (2016).
[Crossref]

T. Oshikiri, K. Ueno, and H. Misawa, “Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation,” Angew. Chem. Int. Ed. 53, 9802–9805 (2014).
[Crossref]

Y. Q. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. 53, 10350–10354 (2014).
[Crossref]

X. Shi, K. Ueno, T. Oshikiri, and H. Misawa, “Improvement of plasmon-enhanced photocurrent generation by interference of TiO2 thin film,” J. Phys. Chem. C 117, 24733–24739 (2013).
[Crossref]

Park, H.

Pastoriza-Santos, I.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Perez-Juste, J.

J. Rodriguez-Fernandez, J. Perez-Juste, F. J. G. de Abajo, and L. M. Liz-Marzan, “Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes,” Langmuir 22, 7007–7010 (2006).
[Crossref]

Pfeiffer, W.

P. Melchior, D. Bayer, C. Schneider, A. Fischer, M. Rohmer, W. Pfeiffer, and M. Aeschlimann, “Optical near-field interference in the excitation of a bowtie nanoantenna,” Phys. Rev. B 83, 235407 (2011).
[Crossref]

Plain, J.

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gerard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14, 5517–5523 (2014).
[Crossref]

Polman, A.

T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15, 7666–7670 (2015).
[Crossref]

P. Melchior, D. Kilbane, E. J. Vesseur, A. Polman, and M. Aeschlimann, “Photoelectron imaging of modal interference in plasmonic whispering gallery cavities,” Opt. Express 23, 31619–31626 (2015).
[Crossref]

Proust, J.

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gerard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14, 5517–5523 (2014).
[Crossref]

Qin, J.

B. Y. Ji, J. Qin, H. Y. Tao, Z. Q. Hao, and J. Q. Lin, “Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures,” New J. Phys. 18, 093046 (2016).
[Crossref]

Reinhardt, C.

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
[Crossref]

Rochholz, H.

M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schonhense, H. Rochholz, and M. Kreiter, “Photoemission electron microscopy as a tool for the investigation of optical near fields,” Phys. Rev. Lett. 95, 047601 (2005).
[Crossref]

Rockstuhl, C.

R. Esteban, R. Vogelgesang, J. Dorfmuller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008).
[Crossref]

Rodriguez, S. R. K.

T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15, 7666–7670 (2015).
[Crossref]

Rodriguez-Fernandez, J.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

J. Rodriguez-Fernandez, J. Perez-Juste, F. J. G. de Abajo, and L. M. Liz-Marzan, “Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes,” Langmuir 22, 7007–7010 (2006).
[Crossref]

Rohmer, M.

P. Melchior, D. Bayer, C. Schneider, A. Fischer, M. Rohmer, W. Pfeiffer, and M. Aeschlimann, “Optical near-field interference in the excitation of a bowtie nanoantenna,” Phys. Rev. B 83, 235407 (2011).
[Crossref]

Rossouw, D.

S. J. Barrow, D. Rossouw, A. M. Funston, G. A. Botton, and P. Mulvaney, “Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy,” Nano Lett. 14, 3799–3808 (2014).
[Crossref]

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11, 1499–1504 (2011).
[Crossref]

Salas-Montiel, R.

Sasaki, K.

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[Crossref]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Schertz, F.

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schonhense, “Near field of strongly coupled plasmons: uncovering dark modes,” Nano Lett. 12, 1885–1890 (2012).
[Crossref]

Schmelzeisen, M.

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schonhense, “Near field of strongly coupled plasmons: uncovering dark modes,” Nano Lett. 12, 1885–1890 (2012).
[Crossref]

Schneider, C.

P. Melchior, D. Bayer, C. Schneider, A. Fischer, M. Rohmer, W. Pfeiffer, and M. Aeschlimann, “Optical near-field interference in the excitation of a bowtie nanoantenna,” Phys. Rev. B 83, 235407 (2011).
[Crossref]

Schoen, D. T.

T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15, 7666–7670 (2015).
[Crossref]

Schonhense, G.

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schonhense, “Near field of strongly coupled plasmons: uncovering dark modes,” Nano Lett. 12, 1885–1890 (2012).
[Crossref]

M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schonhense, H. Rochholz, and M. Kreiter, “Photoemission electron microscopy as a tool for the investigation of optical near fields,” Phys. Rev. Lett. 95, 047601 (2005).
[Crossref]

Shi, X.

Y. Q. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. 53, 10350–10354 (2014).
[Crossref]

X. Shi, K. Ueno, T. Oshikiri, and H. Misawa, “Improvement of plasmon-enhanced photocurrent generation by interference of TiO2 thin film,” J. Phys. Chem. C 117, 24733–24739 (2013).
[Crossref]

Silhanek, A. V.

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7, 3168–3176 (2013).
[Crossref]

Sun, Q.

H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10, 10373–10381 (2016).
[Crossref]

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10, 3835–3842 (2016).
[Crossref]

O. Lecarme, Q. Sun, K. Ueno, and H. Misawa, “Robust and versatile light absorption at near-infrared wavelengths by plasmonic aluminum nanorods,” ACS Photon. 1, 538–546 (2014).
[Crossref]

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2, e118 (2013).
[Crossref]

Sutherland, D. S.

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[Crossref]

Tao, H. Y.

B. Y. Ji, J. Qin, H. Y. Tao, Z. Q. Hao, and J. Q. Lin, “Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures,” New J. Phys. 18, 093046 (2016).
[Crossref]

Tatsuma, T.

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[Crossref]

Tellez-Limon, R.

Tian, Y.

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[Crossref]

Tseng, C. B.

Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, and S. H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano 6, 3390–3396 (2012).
[Crossref]

Ueno, K.

T. Oshikiri, K. Ueno, and H. Misawa, “Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation,” Angew. Chem. Int. Ed. 55, 3942–3946 (2016).
[Crossref]

K. Nakamura, T. Oshikiri, K. Ueno, Y. M. Wang, Y. Kamata, Y. Kotake, and H. Misawa, “Properties of plasmon-induced photoelectric conversion on a TiO2/NiO p-n junction with Au nanoparticles,” J. Phys. Chem. Lett. 7, 1004–1009 (2016).
[Crossref]

H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10, 10373–10381 (2016).
[Crossref]

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10, 3835–3842 (2016).
[Crossref]

T. Oshikiri, K. Ueno, and H. Misawa, “Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation,” Angew. Chem. Int. Ed. 53, 9802–9805 (2014).
[Crossref]

Y. Q. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. 53, 10350–10354 (2014).
[Crossref]

O. Lecarme, Q. Sun, K. Ueno, and H. Misawa, “Robust and versatile light absorption at near-infrared wavelengths by plasmonic aluminum nanorods,” ACS Photon. 1, 538–546 (2014).
[Crossref]

X. Shi, K. Ueno, T. Oshikiri, and H. Misawa, “Improvement of plasmon-enhanced photocurrent generation by interference of TiO2 thin film,” J. Phys. Chem. C 117, 24733–24739 (2013).
[Crossref]

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2, e118 (2013).
[Crossref]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[Crossref]

Valev, V. K.

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7, 3168–3176 (2013).
[Crossref]

Van Dorpe, P.

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7, 3168–3176 (2013).
[Crossref]

Verellen, N.

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7, 3168–3176 (2013).
[Crossref]

Vesseur, E. J.

Vickery, J.

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11, 1499–1504 (2011).
[Crossref]

Vogelgesang, R.

R. Esteban, R. Vogelgesang, J. Dorfmuller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008).
[Crossref]

Wang, H.

H. Wang, Y. P. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
[Crossref]

Wang, P.

Z. H. Zhang, L. B. Zhang, M. N. Hedhili, H. N. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13, 14–20 (2013).
[Crossref]

Wang, S. M.

Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, and S. H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano 6, 3390–3396 (2012).
[Crossref]

Wang, Y. M.

K. Nakamura, T. Oshikiri, K. Ueno, Y. M. Wang, Y. Kamata, Y. Kotake, and H. Misawa, “Properties of plasmon-induced photoelectric conversion on a TiO2/NiO p-n junction with Au nanoparticles,” J. Phys. Chem. Lett. 7, 1004–1009 (2016).
[Crossref]

Wax, A.

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[Crossref]

Word, R. C.

R. C. Word, J. P. S. Fitzgerald, and R. Konenkamp, “Electron emission in the near-field of surface plasmons,” Surf. Sci. 607, 148–152 (2013).
[Crossref]

Wu, Y. P.

H. Wang, Y. P. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
[Crossref]

Yang, F.

Yu, H.

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10, 3835–3842 (2016).
[Crossref]

H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10, 10373–10381 (2016).
[Crossref]

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2, e118 (2013).
[Crossref]

Zhang, H. N.

Z. H. Zhang, L. B. Zhang, M. N. Hedhili, H. N. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13, 14–20 (2013).
[Crossref]

Zhang, L. B.

Z. H. Zhang, L. B. Zhang, M. N. Hedhili, H. N. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13, 14–20 (2013).
[Crossref]

Zhang, Z. H.

Z. H. Zhang, L. B. Zhang, M. N. Hedhili, H. N. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13, 14–20 (2013).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

Zheludev, N. I.

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

Zhong, Y.

Zhong, Y. Q.

Y. Q. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. 53, 10350–10354 (2014).
[Crossref]

Zywietz, U.

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
[Crossref]

ACS Nano (5)

G. J. Nusz, A. C. Curry, S. M. Marinakos, A. Wax, and A. Chilkoti, “Rational selection of gold nanorod geometry for label-free plasmonic biosensors,” ACS Nano 3, 795–806 (2009).
[Crossref]

D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. Van Dorpe, and V. V. Moshchalkov, “Mapping magnetic near-field distributions of plasmonic nanoantennas,” ACS Nano 7, 3168–3176 (2013).
[Crossref]

Q. Sun, H. Yu, K. Ueno, A. Kubo, Y. Matsuo, and H. Misawa, “Dissecting the few-femtosecond dephasing time of dipole and quadrupole modes in gold nanoparticles using polarized photoemission electron microscopy,” ACS Nano 10, 3835–3842 (2016).
[Crossref]

H. Yu, Q. Sun, K. Ueno, T. Oshikiri, A. Kubo, Y. Matsuo, and H. Misawa, “Exploring coupled plasmonic nanostructures in the near field by photoemission electron microscopy,” ACS Nano 10, 10373–10381 (2016).
[Crossref]

Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, and S. H. Chang, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” ACS Nano 6, 3390–3396 (2012).
[Crossref]

ACS Photon. (1)

O. Lecarme, Q. Sun, K. Ueno, and H. Misawa, “Robust and versatile light absorption at near-infrared wavelengths by plasmonic aluminum nanorods,” ACS Photon. 1, 538–546 (2014).
[Crossref]

Angew. Chem. Int. Ed. (3)

T. Oshikiri, K. Ueno, and H. Misawa, “Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation,” Angew. Chem. Int. Ed. 53, 9802–9805 (2014).
[Crossref]

T. Oshikiri, K. Ueno, and H. Misawa, “Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation,” Angew. Chem. Int. Ed. 55, 3942–3946 (2016).
[Crossref]

Y. Q. Zhong, K. Ueno, Y. Mori, X. Shi, T. Oshikiri, K. Murakoshi, H. Inoue, and H. Misawa, “Plasmon-assisted water splitting using two sides of the same SrTiO3 single-crystal substrate: conversion of visible light to chemical energy,” Angew. Chem. Int. Ed. 53, 10350–10354 (2014).
[Crossref]

Chem. Phys. Lett. (1)

F. Hao, E. M. Larsson, T. A. Ali, D. S. Sutherland, and P. Nordlander, “Shedding light on dark plasmons in gold nanorings,” Chem. Phys. Lett. 458, 262–266 (2008).
[Crossref]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011).
[Crossref]

J. Am. Chem. Soc. (2)

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127, 7632–7637 (2005).
[Crossref]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Spectrally-resolved atomic-scale length variations of gold nanorods,” J. Am. Chem. Soc. 128, 14226–14227 (2006).
[Crossref]

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[Crossref]

J. Phys. Chem. C (1)

X. Shi, K. Ueno, T. Oshikiri, and H. Misawa, “Improvement of plasmon-enhanced photocurrent generation by interference of TiO2 thin film,” J. Phys. Chem. C 117, 24733–24739 (2013).
[Crossref]

J. Phys. Chem. Lett. (1)

K. Nakamura, T. Oshikiri, K. Ueno, Y. M. Wang, Y. Kamata, Y. Kotake, and H. Misawa, “Properties of plasmon-induced photoelectric conversion on a TiO2/NiO p-n junction with Au nanoparticles,” J. Phys. Chem. Lett. 7, 1004–1009 (2016).
[Crossref]

Langmuir (1)

J. Rodriguez-Fernandez, J. Perez-Juste, F. J. G. de Abajo, and L. M. Liz-Marzan, “Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes,” Langmuir 22, 7007–7010 (2006).
[Crossref]

Light Sci. Appl. (1)

Q. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, “Direct imaging of the near field and dynamics of surface plasmon resonance on gold nanostructures using photoemission electron microscopy,” Light Sci. Appl. 2, e118 (2013).
[Crossref]

Nano Lett. (10)

F. Schertz, M. Schmelzeisen, R. Mohammadi, M. Kreiter, H. J. Elmers, and G. Schonhense, “Near field of strongly coupled plasmons: uncovering dark modes,” Nano Lett. 12, 1885–1890 (2012).
[Crossref]

T. Coenen, D. T. Schoen, S. A. Mann, S. R. K. Rodriguez, B. J. M. Brenny, A. Polman, and M. L. Brongersma, “Nanoscale spatial coherent control over the modal excitation of a coupled plasmonic resonator system,” Nano Lett. 15, 7666–7670 (2015).
[Crossref]

D. Rossouw, M. Couillard, J. Vickery, E. Kumacheva, and G. A. Botton, “Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanometer electron probe,” Nano Lett. 11, 1499–1504 (2011).
[Crossref]

V. Myroshnychenko, J. Nelayah, G. Adamo, N. Geuquet, J. Rodriguez-Fernandez, I. Pastoriza-Santos, K. F. MacDonald, L. Henrard, L. M. Liz-Marzan, N. I. Zheludev, M. Kociak, and F. J. G. de Abajo, “Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study,” Nano Lett. 12, 4172–4180 (2012).
[Crossref]

J. Martin, M. Kociak, Z. Mahfoud, J. Proust, D. Gerard, and J. Plain, “High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas,” Nano Lett. 14, 5517–5523 (2014).
[Crossref]

S. J. Barrow, D. Rossouw, A. M. Funston, G. A. Botton, and P. Mulvaney, “Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy,” Nano Lett. 14, 3799–3808 (2014).
[Crossref]

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10, 1501–1505 (2010).
[Crossref]

Z. H. Zhang, L. B. Zhang, M. N. Hedhili, H. N. Zhang, and P. Wang, “Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting,” Nano Lett. 13, 14–20 (2013).
[Crossref]

R. Esteban, R. Vogelgesang, J. Dorfmuller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8, 3155–3159 (2008).
[Crossref]

Y. Nishiyama, K. Imura, and H. Okamoto, “Observation of plasmon wave packet motions via femtosecond time-resolved near-field imaging techniques,” Nano Lett. 15, 7657–7665 (2015).
[Crossref]

Nature (1)

O. Nicoletti, F. de la Pena, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, “Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles,” Nature 502, 80–84 (2013).
[Crossref]

New J. Phys. (1)

B. Y. Ji, J. Qin, H. Y. Tao, Z. Q. Hao, and J. Q. Lin, “Subwavelength imaging and control of ultrafast optical near-field under resonant- and off-resonant excitation of bowtie nanostructures,” New J. Phys. 18, 093046 (2016).
[Crossref]

Opt. Express (1)

Optica (2)

Photon. Res. (2)

Phys. Rev. B (3)

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
[Crossref]

P. Melchior, D. Bayer, C. Schneider, A. Fischer, M. Rohmer, W. Pfeiffer, and M. Aeschlimann, “Optical near-field interference in the excitation of a bowtie nanoantenna,” Phys. Rev. B 83, 235407 (2011).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

M. Cinchetti, A. Gloskovskii, S. A. Nepjiko, G. Schonhense, H. Rochholz, and M. Kreiter, “Photoemission electron microscopy as a tool for the investigation of optical near fields,” Phys. Rev. Lett. 95, 047601 (2005).
[Crossref]

M. Frimmer, T. Coenen, and A. F. Koenderink, “Signature of a Fano resonance in a plasmonic metamolecule’s local density of optical states,” Phys. Rev. Lett. 108, 077404 (2012).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

H. Wang, Y. P. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. USA 103, 10856–10860 (2006).
[Crossref]

Surf. Sci. (1)

R. C. Word, J. P. S. Fitzgerald, and R. Konenkamp, “Electron emission in the near-field of surface plasmons,” Surf. Sci. 607, 148–152 (2013).
[Crossref]

Other (1)

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Superposition manners of the dipole and quadrupole modes. (a) The dipole mode couples with the odd symmetric quadrupole mode. (b) The dipole mode couples with the even symmetric quadrupole mode. The “dipole” in the pictures indicates that the dipole mode is dominant. The “quadrupole” in the pictures indicates that the quadrupole mode is dominant. For simple calculations, all distributions are calculated at the plane of y=0.E// and K// denote the component of the polarization and wave vector parallel to the graph, respectively.
Fig. 2.
Fig. 2. Far-field and near-field intensity spectra of the nanodisk samples with diameters of (a) 280 and (b) 220 nm. Black lines are the far-field spectra measured by FT-IR; the two red lines are the near-field intensity spectra measured by PEEM at oblique incidence with s-polarization and p-polarization. The curves with s-polarization are normalized to that with p-polarization. Insets are SEM images; the scale bar is 200 nm.
Fig. 3.
Fig. 3. PEEM images with different light sources. (a) Topography of 280 nm nanodisks imaged with UV light. (b) Field distributions of 280 nm nanodisks exited at the dipole LSPR wavelength (920 nm) with horizontal polarized (Hp) laser. (c) Field distributions of 280 nm nanodisks excited at the quadrupole LSPR wavelength (780 nm) with different polarizations. Left: s-polarization (s-p). Right: p-polarization (pp). (d) Field distributions of 220 nm nanodisks excited at the dipole LSPR wavelength (820 nm) with different polarizations. Left: s-polarization (sp). Right: p-polarization (pp). Dash circles outline the geometry of the Au nanodisks. All the intensity contrasts in PEEM images have been adjusted to clearly show the distributions.
Fig. 4.
Fig. 4. Field distributions simulated by FDTD and measured by PEEM. (a–c, g–i) Field distributions with s-polarization. (d–f, j–l) Field distributions with p-polarization. In (a–f), the diameter of the nanodisk is 280 nm; in (g–l), the diameter of the nanodisk is 220 nm. (a, d, g, j) Field distributions on the upper plane of the structures simulated by FDTD. (b, e, h, k) Field distributions on the lower plane of the structures simulated by FDTD. (c, f, i, l) Field distributions measured by PEEM. “Quadrupole” indicates that the distributions are excited with the excitation wavelength near the quadrupole resonance wavelength. “Dipole” indicates that the distributions are excited with the excitation wavelength near the dipole resonance wavelength. All the intensity contrasts in PEEM and simulated images have been adjusted to clearly show the distributions.
Fig. 5.
Fig. 5. Spectra of the nanoblock samples with side lengths of (a) 230 and (b) 200 nm. Black lines are the far-field spectra measured by FT-IR; the two red lines are the near-field intensity spectra measured by PEEM at oblique incidence with s-polarization and p-polarization. The two curves are normalized to the curve with s-polarization. (c) and (d) Field distributions under different wavelengths. First row: Field distributions on the upper plane of the structures simulated by FDTD. Second row: Field distributions on the lower plane of the structures simulated by FDTD. Third row: Field distributions measured by PEEM. “Quadrupole” indicates that the distributions are excited with the laser near the quadrupole resonance wavelength. “Dipole” indicates that the distributions are excited with the laser near the dipole resonance wavelength. Insets are SEM images; the scale bar is 200 nm. All the intensity contrasts in PEEM and simulated images have been adjusted to show the distributions clearly.
Fig. 6.
Fig. 6. Diagram of electron emission and electric field distribution. (a) Possible channels in which electrons are ejected. (b) Simulated cross section of the electric field distribution of the 230 nm nanoblock excited by p-polarized laser with the excitation wavelength at 840 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Eout=E0x^αE0[x^r33xr5(xx^+yy^+zz^)],
α=a3ϵϵmϵ+2ϵm,
Eout=E0x^+ikE0(xx^+zz^)αE0[x^r33xr5(xx^+yy^+zz^)]βE0[xx^+zz^r55zr7(x2x^+y2y^+xzz^)],
β=a5ϵϵmϵ+3/2ϵm,

Metrics