Abstract

The dynamics of plasma and shockwave expansion during two femtosecond laser pulse ablation of fused silica are studied using a time-resolved shadowgraph imaging technique. The experimental results reveal that during the second pulse irradiation on the crater induced by the first pulse, the expansion of the plasma and shockwave is enhanced in the longitudinal direction. The plasma model and Fresnel diffraction theory are combined to calculate the laser intensity distribution by considering the change in surface morphology and transient material properties. The theoretical results show that after the free electron density induced by the rising edge of the pulse reaches the critical density, the originally transparent surface is transformed into a transient high-reflectivity surface (metallic state). Thus, the crater with a concave-lens-like morphology can tremendously reflect and refocus the latter part of the laser pulse, leading to a strong laser field with an intensity even higher than the incident intensity. This strong refocused laser pulse results in a stronger laser-induced air breakdown and enhances the subsequent expansion of the plasma and shockwave. In addition, similar shadowgraphs are also recorded in the single-pulse ablation of a concave microlens, providing experimental evidence for the enhancement mechanism.

© 2017 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics

D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, and J. Solis
J. Opt. Soc. Am. B 27(5) 1065-1076 (2010)

Polarization-dependent elliptical crater morphologies formed on a silicon surface by single-shot femtosecond laser ablation

Xu Ji, Lan Jiang, Xiaowei Li, Weina Han, Yang Liu, Qiang Huang, and Yongfeng Lu
Appl. Opt. 53(29) 6742-6748 (2014)

Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy

Yangting Fu, Zongyu Hou, and Zhe Wang
Opt. Express 24(3) 3055-3066 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2013).
    [Crossref]
  2. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Cetin, D. K. Kesim, Ö. Akcaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
    [Crossref]
  3. B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7, 897–901 (2013).
    [Crossref]
  4. A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. USA 101, 5856–5861 (2004).
    [Crossref]
  5. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [Crossref]
  6. P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013).
    [Crossref]
  7. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
    [Crossref]
  8. R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
    [Crossref]
  9. X. Zhao and Y. C. Shin, “Coulomb explosion and early plasma generation during femtosecond laser ablation of silicon at high laser fluence,” J. Phys. D 46, 335501 (2013).
    [Crossref]
  10. C. Kalupka, J. Finger, and M. Reininghaus, “Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses,” J. Appl. Phys. 119, 153105 (2016).
    [Crossref]
  11. S. Noël and J. Hermann, “Reducing nanoparticles in metal ablation plumes produced by two delayed short laser pulses,” Appl. Phys. Lett. 94, 053120 (2009).
    [Crossref]
  12. A. Heins and C. L. Guo, “Shock-induced concentric rings in femtosecond laser ablation of glass,” J. Appl. Phys. 113, 223506 (2013).
    [Crossref]
  13. B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23, 27853–27864 (2015).
    [Crossref]
  14. M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
    [Crossref]
  15. X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237–241 (2005).
    [Crossref]
  16. T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” Appl. Surf. Sci. 197–198, 720–725 (2002).
    [Crossref]
  17. Y. Yu, L. Jiang, Q. Cao, B. Xia, Q. Wang, and Y. Lu, “Pump-probe imaging of the fs-ps-ns dynamics during femtosecond laser Bessel beam drilling in PMMA,” Opt. Express 23, 32728–32735 (2015).
    [Crossref]
  18. N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
    [Crossref]
  19. H. Hu, X. Wang, H. Zhai, N. Zhang, and P. Wang, “Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation,” Appl. Phys. Lett. 97, 061117 (2010).
    [Crossref]
  20. B. D. Strycker, M. M. Springer, A. J. Traverso, A. A. Kolomenskii, G. W. Kattawar, and A. V. Sokolov, “Femtosecond-laser-induced shockwaves in water generated at an air-water interface,” Opt. Express 21, 23772–23784 (2013).
    [Crossref]
  21. H. Hu, T. Liu, and H. Zhai, “Comparison of femtosecond laser ablation of aluminum in water and in air by time-resolved optical diagnosis,” Opt. Express 23, 628–635 (2015).
    [Crossref]
  22. Z. Wu, X. Zhu, and N. Zhang, “Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressures,” J. Appl. Phys. 109, 053113 (2011).
    [Crossref]
  23. B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao, and Y. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys. A 119, 61–68 (2015).
    [Crossref]
  24. J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
    [Crossref]
  25. R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88, 097603 (2002).
    [Crossref]
  26. H. Varel, M. Wähmer, A. Rosenfeld, D. Ashkenasi, and E. E. B. Campbell, “Femtosecond laser ablation of sapphire: time-of-flight analysis of ablation plume,” Appl. Surf. Sci. 127–129, 128–133 (1998).
    [Crossref]
  27. J. R. V. de Aldana, C. Méndez, and L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express 14, 1329–1338 (2006).
    [Crossref]
  28. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
    [Crossref]
  29. L. S. Jiao, E. Y. K. Ng, H. Y. Zheng, and Y. L. Zhang, “Theoretical study of pre-formed hole geometries on femtosecond pulse energy distribution in laser drilling,” Opt. Express 23, 4927–4934 (2015).
    [Crossref]
  30. J. Zhang, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Polarization sensitive anisotropic structuring of silicon by ultrashort light pulses,” Appl. Phys. Lett. 107, 041114 (2015).
    [Crossref]
  31. H. Zhang, F. Zhang, X. Du, G. Dong, and J. Qiu, “Influence of laser-induced air breakdown on femtosecond laser ablation of aluminum,” Opt. Express 23, 1370–1376 (2015).
    [Crossref]
  32. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
    [Crossref]
  33. K. Zhang, L. Jiang, X. Li, X. Shi, D. Yu, L. Qu, and Y. Lu, “Femtosecond laser pulse-train induced breakdown in fused silica: the role of seed electrons,” J. Phys. D 47, 435105 (2014).
    [Crossref]
  34. L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87, 151104 (2005).
    [Crossref]
  35. L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys. 100, 023116 (2006).
    [Crossref]
  36. F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35, 1106–1108 (2010).
    [Crossref]
  37. T. Wang, L. Jiang, X. Li, J. Hu, Q. Wang, S. Ye, H. Zhang, and Y. Lu, “Controllable anisotropic wetting characteristics on silicon patterned by slit-based spatial focusing of femtosecond laser,” Opt. Express 24, 25732–25741 (2016).
    [Crossref]
  38. F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18, 20334–20343 (2010).
    [Crossref]

2016 (3)

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Cetin, D. K. Kesim, Ö. Akcaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

C. Kalupka, J. Finger, and M. Reininghaus, “Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses,” J. Appl. Phys. 119, 153105 (2016).
[Crossref]

T. Wang, L. Jiang, X. Li, J. Hu, Q. Wang, S. Ye, H. Zhang, and Y. Lu, “Controllable anisotropic wetting characteristics on silicon patterned by slit-based spatial focusing of femtosecond laser,” Opt. Express 24, 25732–25741 (2016).
[Crossref]

2015 (7)

2014 (1)

K. Zhang, L. Jiang, X. Li, X. Shi, D. Yu, L. Qu, and Y. Lu, “Femtosecond laser pulse-train induced breakdown in fused silica: the role of seed electrons,” J. Phys. D 47, 435105 (2014).
[Crossref]

2013 (6)

A. Heins and C. L. Guo, “Shock-induced concentric rings in femtosecond laser ablation of glass,” J. Appl. Phys. 113, 223506 (2013).
[Crossref]

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7, 897–901 (2013).
[Crossref]

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2013).
[Crossref]

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013).
[Crossref]

X. Zhao and Y. C. Shin, “Coulomb explosion and early plasma generation during femtosecond laser ablation of silicon at high laser fluence,” J. Phys. D 46, 335501 (2013).
[Crossref]

B. D. Strycker, M. M. Springer, A. J. Traverso, A. A. Kolomenskii, G. W. Kattawar, and A. V. Sokolov, “Femtosecond-laser-induced shockwaves in water generated at an air-water interface,” Opt. Express 21, 23772–23784 (2013).
[Crossref]

2011 (1)

Z. Wu, X. Zhu, and N. Zhang, “Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressures,” J. Appl. Phys. 109, 053113 (2011).
[Crossref]

2010 (4)

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
[Crossref]

H. Hu, X. Wang, H. Zhai, N. Zhang, and P. Wang, “Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation,” Appl. Phys. Lett. 97, 061117 (2010).
[Crossref]

F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35, 1106–1108 (2010).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18, 20334–20343 (2010).
[Crossref]

2009 (3)

S. Noël and J. Hermann, “Reducing nanoparticles in metal ablation plumes produced by two delayed short laser pulses,” Appl. Phys. Lett. 94, 053120 (2009).
[Crossref]

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

2007 (1)

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[Crossref]

2006 (2)

2005 (2)

L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87, 151104 (2005).
[Crossref]

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237–241 (2005).
[Crossref]

2004 (1)

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. USA 101, 5856–5861 (2004).
[Crossref]

2002 (2)

T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” Appl. Surf. Sci. 197–198, 720–725 (2002).
[Crossref]

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88, 097603 (2002).
[Crossref]

2000 (1)

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[Crossref]

1998 (1)

H. Varel, M. Wähmer, A. Rosenfeld, D. Ashkenasi, and E. E. B. Campbell, “Femtosecond laser ablation of sapphire: time-of-flight analysis of ablation plume,” Appl. Surf. Sci. 127–129, 128–133 (1998).
[Crossref]

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

1995 (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Akcaalan, Ö.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Cetin, D. K. Kesim, Ö. Akcaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Apalkov, V.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2013).
[Crossref]

Ashkenasi, D.

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88, 097603 (2002).
[Crossref]

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[Crossref]

H. Varel, M. Wähmer, A. Rosenfeld, D. Ashkenasi, and E. E. B. Campbell, “Femtosecond laser ablation of sapphire: time-of-flight analysis of ablation plume,” Appl. Surf. Sci. 127–129, 128–133 (1998).
[Crossref]

Asik, M. D.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Cetin, D. K. Kesim, Ö. Akcaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Balling, P.

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013).
[Crossref]

Baudelet, M.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[Crossref]

Beresna, M.

J. Zhang, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Polarization sensitive anisotropic structuring of silicon by ultrashort light pulses,” Appl. Phys. Lett. 107, 041114 (2015).
[Crossref]

Bian, H.

Bonse, J.

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
[Crossref]

Bothschafter, E. M.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2013).
[Crossref]

Boueri, M.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[Crossref]

Bulgakova, N. M.

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88, 097603 (2002).
[Crossref]

Campbell, E. E. B.

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88, 097603 (2002).
[Crossref]

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[Crossref]

H. Varel, M. Wähmer, A. Rosenfeld, D. Ashkenasi, and E. E. B. Campbell, “Femtosecond laser ablation of sapphire: time-of-flight analysis of ablation plume,” Appl. Surf. Sci. 127–129, 128–133 (1998).
[Crossref]

Cao, Q.

Cetin, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Cetin, D. K. Kesim, Ö. Akcaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Chen, F.

Cheng, Y.

F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35, 1106–1108 (2010).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

Choi, T. Y.

T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” Appl. Surf. Sci. 197–198, 720–725 (2002).
[Crossref]

de Aldana, J. R. V.

Dong, G.

Drevinskas, R.

J. Zhang, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Polarization sensitive anisotropic structuring of silicon by ultrashort light pulses,” Appl. Phys. Lett. 107, 041114 (2015).
[Crossref]

Du, X.

Elahi, P.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Cetin, D. K. Kesim, Ö. Akcaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Erdogan, M.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7, 897–901 (2013).
[Crossref]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Fiess, M.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2013).
[Crossref]

Finger, J.

C. Kalupka, J. Finger, and M. Reininghaus, “Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses,” J. Appl. Phys. 119, 153105 (2016).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Greif, R.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237–241 (2005).
[Crossref]

Grigoropoulos, C. P.

T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” Appl. Surf. Sci. 197–198, 720–725 (2002).
[Crossref]

Guo, C. L.

A. Heins and C. L. Guo, “Shock-induced concentric rings in femtosecond laser ablation of glass,” J. Appl. Phys. 113, 223506 (2013).
[Crossref]

He, F.

Heins, A.

A. Heins and C. L. Guo, “Shock-induced concentric rings in femtosecond laser ablation of glass,” J. Appl. Phys. 113, 223506 (2013).
[Crossref]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Hermann, J.

S. Noël and J. Hermann, “Reducing nanoparticles in metal ablation plumes produced by two delayed short laser pulses,” Appl. Phys. Lett. 94, 053120 (2009).
[Crossref]

Hertel, I. V.

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88, 097603 (2002).
[Crossref]

Hofstetter, M.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2013).
[Crossref]

Holzner, S.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2013).
[Crossref]

Holzwarth, R.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Cetin, D. K. Kesim, Ö. Akcaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Hoogland, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Cetin, D. K. Kesim, Ö. Akcaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Hou, C.

Hou, X.

Hu, H.

H. Hu, T. Liu, and H. Zhai, “Comparison of femtosecond laser ablation of aluminum in water and in air by time-resolved optical diagnosis,” Opt. Express 23, 628–635 (2015).
[Crossref]

H. Hu, X. Wang, H. Zhai, N. Zhang, and P. Wang, “Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation,” Appl. Phys. Lett. 97, 061117 (2010).
[Crossref]

Hu, J.

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

Hunt, A. J.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. USA 101, 5856–5861 (2004).
[Crossref]

Hwang, D. J.

T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” Appl. Surf. Sci. 197–198, 720–725 (2002).
[Crossref]

Ilday, F. Ö.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Cetin, D. K. Kesim, Ö. Akcaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7, 897–901 (2013).
[Crossref]

Ilday, S.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7, 897–901 (2013).
[Crossref]

Jiang, L.

T. Wang, L. Jiang, X. Li, J. Hu, Q. Wang, S. Ye, H. Zhang, and Y. Lu, “Controllable anisotropic wetting characteristics on silicon patterned by slit-based spatial focusing of femtosecond laser,” Opt. Express 24, 25732–25741 (2016).
[Crossref]

B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23, 27853–27864 (2015).
[Crossref]

Y. Yu, L. Jiang, Q. Cao, B. Xia, Q. Wang, and Y. Lu, “Pump-probe imaging of the fs-ps-ns dynamics during femtosecond laser Bessel beam drilling in PMMA,” Opt. Express 23, 32728–32735 (2015).
[Crossref]

B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao, and Y. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys. A 119, 61–68 (2015).
[Crossref]

K. Zhang, L. Jiang, X. Li, X. Shi, D. Yu, L. Qu, and Y. Lu, “Femtosecond laser pulse-train induced breakdown in fused silica: the role of seed electrons,” J. Phys. D 47, 435105 (2014).
[Crossref]

L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys. 100, 023116 (2006).
[Crossref]

L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87, 151104 (2005).
[Crossref]

Jiao, L. S.

Joglekar, A. P.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. USA 101, 5856–5861 (2004).
[Crossref]

Kalaycioglu, H.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Cetin, D. K. Kesim, Ö. Akcaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7, 897–901 (2013).
[Crossref]

Kalupka, C.

C. Kalupka, J. Finger, and M. Reininghaus, “Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses,” J. Appl. Phys. 119, 153105 (2016).
[Crossref]

Kattawar, G. W.

Kazansky, P. G.

J. Zhang, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Polarization sensitive anisotropic structuring of silicon by ultrashort light pulses,” Appl. Phys. Lett. 107, 041114 (2015).
[Crossref]

Kerse, C.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Cetin, D. K. Kesim, Ö. Akcaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Kesim, D. K.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Cetin, D. K. Kesim, Ö. Akcaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Kienberger, R.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2013).
[Crossref]

Kolomenskii, A. A.

Krausz, F.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2013).
[Crossref]

Krüger, J.

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
[Crossref]

Li, X.

T. Wang, L. Jiang, X. Li, J. Hu, Q. Wang, S. Ye, H. Zhang, and Y. Lu, “Controllable anisotropic wetting characteristics on silicon patterned by slit-based spatial focusing of femtosecond laser,” Opt. Express 24, 25732–25741 (2016).
[Crossref]

B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23, 27853–27864 (2015).
[Crossref]

B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao, and Y. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys. A 119, 61–68 (2015).
[Crossref]

K. Zhang, L. Jiang, X. Li, X. Shi, D. Yu, L. Qu, and Y. Lu, “Femtosecond laser pulse-train induced breakdown in fused silica: the role of seed electrons,” J. Phys. D 47, 435105 (2014).
[Crossref]

Liang, W.

Liu, H.

Liu, H. H.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. USA 101, 5856–5861 (2004).
[Crossref]

Liu, T.

Lu, Y.

Mao, S. S.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[Crossref]

Mao, X.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[Crossref]

Mao, X. L.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237–241 (2005).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Méndez, C.

Meyhöfer, E.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. USA 101, 5856–5861 (2004).
[Crossref]

Midorikawa, K.

Mourou, G.

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. USA 101, 5856–5861 (2004).
[Crossref]

Ng, E. Y. K.

Ni, J.

Noël, S.

S. Noël and J. Hermann, “Reducing nanoparticles in metal ablation plumes produced by two delayed short laser pulses,” Appl. Phys. Lett. 94, 053120 (2009).
[Crossref]

Öktem, B.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Cetin, D. K. Kesim, Ö. Akcaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7, 897–901 (2013).
[Crossref]

Pavlov, I.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7, 897–901 (2013).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Qiu, J.

Qu, L.

K. Zhang, L. Jiang, X. Li, X. Shi, D. Yu, L. Qu, and Y. Lu, “Femtosecond laser pulse-train induced breakdown in fused silica: the role of seed electrons,” J. Phys. D 47, 435105 (2014).
[Crossref]

Reininghaus, M.

C. Kalupka, J. Finger, and M. Reininghaus, “Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses,” J. Appl. Phys. 119, 153105 (2016).
[Crossref]

Rosenfeld, A.

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88, 097603 (2002).
[Crossref]

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[Crossref]

H. Varel, M. Wähmer, A. Rosenfeld, D. Ashkenasi, and E. E. B. Campbell, “Femtosecond laser ablation of sapphire: time-of-flight analysis of ablation plume,” Appl. Surf. Sci. 127–129, 128–133 (1998).
[Crossref]

Roso, L.

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Russo, R.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[Crossref]

Russo, R. E.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237–241 (2005).
[Crossref]

Rybak, A.

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7, 897–901 (2013).
[Crossref]

Schou, J.

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013).
[Crossref]

Schultze, M.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2013).
[Crossref]

Schweinberger, W.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2013).
[Crossref]

Shi, X.

K. Zhang, L. Jiang, X. Li, X. Shi, D. Yu, L. Qu, and Y. Lu, “Femtosecond laser pulse-train induced breakdown in fused silica: the role of seed electrons,” J. Phys. D 47, 435105 (2014).
[Crossref]

Shin, Y. C.

X. Zhao and Y. C. Shin, “Coulomb explosion and early plasma generation during femtosecond laser ablation of silicon at high laser fluence,” J. Phys. D 46, 335501 (2013).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Si, J.

Sokolov, A. V.

Sommer, A.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2013).
[Crossref]

Springer, M. M.

Stockman, M. I.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2013).
[Crossref]

Stoian, R.

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88, 097603 (2002).
[Crossref]

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[Crossref]

Strycker, B. D.

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

Sugioka, K.

Traverso, A. J.

Tsai, H. L.

L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys. 100, 023116 (2006).
[Crossref]

L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87, 151104 (2005).
[Crossref]

Varel, H.

H. Varel, M. Wähmer, A. Rosenfeld, D. Ashkenasi, and E. E. B. Campbell, “Femtosecond laser ablation of sapphire: time-of-flight analysis of ablation plume,” Appl. Surf. Sci. 127–129, 128–133 (1998).
[Crossref]

Wähmer, M.

H. Varel, M. Wähmer, A. Rosenfeld, D. Ashkenasi, and E. E. B. Campbell, “Femtosecond laser ablation of sapphire: time-of-flight analysis of ablation plume,” Appl. Surf. Sci. 127–129, 128–133 (1998).
[Crossref]

Wang, M.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[Crossref]

Wang, P.

H. Hu, X. Wang, H. Zhai, N. Zhang, and P. Wang, “Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation,” Appl. Phys. Lett. 97, 061117 (2010).
[Crossref]

Wang, Q.

Wang, T.

Wang, X.

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18, 20334–20343 (2010).
[Crossref]

H. Hu, X. Wang, H. Zhai, N. Zhang, and P. Wang, “Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation,” Appl. Phys. Lett. 97, 061117 (2010).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[Crossref]

Wu, Z.

Z. Wu, X. Zhu, and N. Zhang, “Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressures,” J. Appl. Phys. 109, 053113 (2011).
[Crossref]

Xia, B.

Xiong, H.

Xu, H.

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

Xu, Z.

F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett. 35, 1106–1108 (2010).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

Yakovlev, V. S.

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2013).
[Crossref]

Yan, X.

B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao, and Y. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys. A 119, 61–68 (2015).
[Crossref]

B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23, 27853–27864 (2015).
[Crossref]

Yang, J.

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[Crossref]

Yang, Q.

Yavas, S.

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Cetin, D. K. Kesim, Ö. Akcaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7, 897–901 (2013).
[Crossref]

Ye, S.

Yu, D.

K. Zhang, L. Jiang, X. Li, X. Shi, D. Yu, L. Qu, and Y. Lu, “Femtosecond laser pulse-train induced breakdown in fused silica: the role of seed electrons,” J. Phys. D 47, 435105 (2014).
[Crossref]

Yu, J.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[Crossref]

Yu, Y.

Zeng, X.

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237–241 (2005).
[Crossref]

Zhai, H.

H. Hu, T. Liu, and H. Zhai, “Comparison of femtosecond laser ablation of aluminum in water and in air by time-resolved optical diagnosis,” Opt. Express 23, 628–635 (2015).
[Crossref]

H. Hu, X. Wang, H. Zhai, N. Zhang, and P. Wang, “Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation,” Appl. Phys. Lett. 97, 061117 (2010).
[Crossref]

Zhang, F.

Zhang, H.

Zhang, J.

J. Zhang, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Polarization sensitive anisotropic structuring of silicon by ultrashort light pulses,” Appl. Phys. Lett. 107, 041114 (2015).
[Crossref]

Zhang, K.

K. Zhang, L. Jiang, X. Li, X. Shi, D. Yu, L. Qu, and Y. Lu, “Femtosecond laser pulse-train induced breakdown in fused silica: the role of seed electrons,” J. Phys. D 47, 435105 (2014).
[Crossref]

Zhang, N.

Z. Wu, X. Zhu, and N. Zhang, “Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressures,” J. Appl. Phys. 109, 053113 (2011).
[Crossref]

H. Hu, X. Wang, H. Zhai, N. Zhang, and P. Wang, “Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation,” Appl. Phys. Lett. 97, 061117 (2010).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[Crossref]

Zhang, Y. L.

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

Zhao, W.

B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao, and Y. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys. A 119, 61–68 (2015).
[Crossref]

Zhao, X.

X. Zhao and Y. C. Shin, “Coulomb explosion and early plasma generation during femtosecond laser ablation of silicon at high laser fluence,” J. Phys. D 46, 335501 (2013).
[Crossref]

Zheng, H. Y.

Zhu, X.

Z. Wu, X. Zhu, and N. Zhang, “Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressures,” J. Appl. Phys. 109, 053113 (2011).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[Crossref]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

Appl. Phys. A (2)

B. Xia, L. Jiang, X. Li, X. Yan, W. Zhao, and Y. Lu, “High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum,” Appl. Phys. A 119, 61–68 (2015).
[Crossref]

X. Zeng, X. L. Mao, R. Greif, and R. E. Russo, “Experimental investigation of ablation efficiency and plasma expansion during femtosecond and nanosecond laser ablation of silicon,” Appl. Phys. A 80, 237–241 (2005).
[Crossref]

Appl. Phys. Lett. (4)

S. Noël and J. Hermann, “Reducing nanoparticles in metal ablation plumes produced by two delayed short laser pulses,” Appl. Phys. Lett. 94, 053120 (2009).
[Crossref]

H. Hu, X. Wang, H. Zhai, N. Zhang, and P. Wang, “Generation of multiple stress waves in silica glass in high fluence femtosecond laser ablation,” Appl. Phys. Lett. 97, 061117 (2010).
[Crossref]

J. Zhang, R. Drevinskas, M. Beresna, and P. G. Kazansky, “Polarization sensitive anisotropic structuring of silicon by ultrashort light pulses,” Appl. Phys. Lett. 107, 041114 (2015).
[Crossref]

L. Jiang and H. L. Tsai, “Repeatable nanostructures in dielectrics by femtosecond laser pulse trains,” Appl. Phys. Lett. 87, 151104 (2005).
[Crossref]

Appl. Surf. Sci. (3)

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[Crossref]

H. Varel, M. Wähmer, A. Rosenfeld, D. Ashkenasi, and E. E. B. Campbell, “Femtosecond laser ablation of sapphire: time-of-flight analysis of ablation plume,” Appl. Surf. Sci. 127–129, 128–133 (1998).
[Crossref]

T. Y. Choi, D. J. Hwang, and C. P. Grigoropoulos, “Femtosecond laser induced ablation of crystalline silicon upon double beam irradiation,” Appl. Surf. Sci. 197–198, 720–725 (2002).
[Crossref]

J. Appl. Phys. (5)

A. Heins and C. L. Guo, “Shock-induced concentric rings in femtosecond laser ablation of glass,” J. Appl. Phys. 113, 223506 (2013).
[Crossref]

C. Kalupka, J. Finger, and M. Reininghaus, “Time-resolved investigations of the non-thermal ablation process of graphite induced by femtosecond laser pulses,” J. Appl. Phys. 119, 153105 (2016).
[Crossref]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
[Crossref]

Z. Wu, X. Zhu, and N. Zhang, “Time-resolved shadowgraphic study of femtosecond laser ablation of aluminum under different ambient air pressures,” J. Appl. Phys. 109, 053113 (2011).
[Crossref]

L. Jiang and H. L. Tsai, “Plasma modeling for ultrashort pulse laser ablation of dielectrics,” J. Appl. Phys. 100, 023116 (2006).
[Crossref]

J. Phys. D (2)

X. Zhao and Y. C. Shin, “Coulomb explosion and early plasma generation during femtosecond laser ablation of silicon at high laser fluence,” J. Phys. D 46, 335501 (2013).
[Crossref]

K. Zhang, L. Jiang, X. Li, X. Shi, D. Yu, L. Qu, and Y. Lu, “Femtosecond laser pulse-train induced breakdown in fused silica: the role of seed electrons,” J. Phys. D 47, 435105 (2014).
[Crossref]

Nat. Photonics (2)

B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak, S. Yavaş, M. Erdoğan, and F. Ö. Ilday, “Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses,” Nat. Photonics 7, 897–901 (2013).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Nature (2)

M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75–78 (2013).
[Crossref]

C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Cetin, D. K. Kesim, Ö. Akcaalan, S. Yavas, M. D. Asik, B. Öktem, H. Hoogland, R. Holzwarth, and F. Ö. Ilday, “Ablation-cooled material removal with ultrafast bursts of pulses,” Nature 537, 84–88 (2016).
[Crossref]

Opt. Express (9)

B. Xia, L. Jiang, X. Li, X. Yan, and Y. Lu, “Mechanism and elimination of bending effect in femtosecond laser deep-hole drilling,” Opt. Express 23, 27853–27864 (2015).
[Crossref]

Y. Yu, L. Jiang, Q. Cao, B. Xia, Q. Wang, and Y. Lu, “Pump-probe imaging of the fs-ps-ns dynamics during femtosecond laser Bessel beam drilling in PMMA,” Opt. Express 23, 32728–32735 (2015).
[Crossref]

T. Wang, L. Jiang, X. Li, J. Hu, Q. Wang, S. Ye, H. Zhang, and Y. Lu, “Controllable anisotropic wetting characteristics on silicon patterned by slit-based spatial focusing of femtosecond laser,” Opt. Express 24, 25732–25741 (2016).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18, 20334–20343 (2010).
[Crossref]

H. Zhang, F. Zhang, X. Du, G. Dong, and J. Qiu, “Influence of laser-induced air breakdown on femtosecond laser ablation of aluminum,” Opt. Express 23, 1370–1376 (2015).
[Crossref]

L. S. Jiao, E. Y. K. Ng, H. Y. Zheng, and Y. L. Zhang, “Theoretical study of pre-formed hole geometries on femtosecond pulse energy distribution in laser drilling,” Opt. Express 23, 4927–4934 (2015).
[Crossref]

B. D. Strycker, M. M. Springer, A. J. Traverso, A. A. Kolomenskii, G. W. Kattawar, and A. V. Sokolov, “Femtosecond-laser-induced shockwaves in water generated at an air-water interface,” Opt. Express 21, 23772–23784 (2013).
[Crossref]

H. Hu, T. Liu, and H. Zhai, “Comparison of femtosecond laser ablation of aluminum in water and in air by time-resolved optical diagnosis,” Opt. Express 23, 628–635 (2015).
[Crossref]

J. R. V. de Aldana, C. Méndez, and L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express 14, 1329–1338 (2006).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (2)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[Crossref]

Phys. Rev. Lett. (3)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995).
[Crossref]

N. Zhang, X. Zhu, J. Yang, X. Wang, and M. Wang, “Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum,” Phys. Rev. Lett. 99, 167602 (2007).
[Crossref]

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88, 097603 (2002).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

A. P. Joglekar, H. H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. USA 101, 5856–5861 (2004).
[Crossref]

Rep. Prog. Phys. (1)

P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic of the pump–probe experimental setup. BS, beam splitter; M, mirror; ND, variable neutral density filter.
Fig. 2.
Fig. 2. Time-resolved shadowgraphs of the plasma and shockwave generated by femtosecond laser irradiation on fused silica with a laser fluence of 13.75  J/cm2. (a), (b) Images recorded after the first pulse (N=1); (d), (e) images recorded after the second pulse (N=2). P indicates the protuberance on the top of the plasma and shockwave front. (c), (f) AFM morphologies of the crater cross section after the first and second pulse ablation. The red line in (c) is the parabolic curve fitting for the cross section with a radius of curvature of 44 μm.
Fig. 3.
Fig. 3. Shadowgraphs of the plasma and shockwave generated by femtosecond laser irradiation on fused silica with laser fluences of 10.8, 19.2, and 40.1  J/cm2. (a)–(c) Images recorded after the first pulse (N=1), (d)–(f) images recorded after the second pulse (N=2). P indicates the protuberance on the top of the plasma and shockwave front. The probe delay is 16 ns.
Fig. 4.
Fig. 4. Calculation of the refocused laser intensity. (a) Time dependence of surface reflectivity, and incident and reflected laser intensity at the beam center (x=0) during the first pulse irradiation, (b) spatial distributions of the incident and reflected laser intensity at time zero, at which the peak intensity arrives during the first pulse irradiation, (c) refocused laser intensity distribution at the refocused focal plane at time zero during the second pulse irradiation, (d) cross section of the refocused laser intensity distribution at time zero. The incident laser fluence is 13.75  J/cm2.
Fig. 5.
Fig. 5. (a), (b) AFM morphology of the microlens fabricated by single femtosecond laser irradiation with a fluence of 4.5  J/cm2, followed by 5% HF etching for 90 min, (c) shadowgraph of the shockwave induced by single-pulse ablation of a concave microlens (N=1), (d) shadowgraph of the shockwave induced by the second pulse ablation of flat fused silica (N=2). The fluence is 13.75 J/cm2.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ne(t,r,z)t=αiI(t,r,z)ne(t,r,z)+δN[I(t,r,z)]Nne(t,r,z)τ,
ϵ(t,r,z)=ϵsωp2ω[ω+i/τe(t,r,z)],
ωp=nee2/(m*ϵ0),
Ir(t,r)=I(t,r)R(t,r),
R(t,r)=[f1(t,r,0)1]2+f22(t,r,0)[f1(t,r,0)+1]2+f22(t,r,0),
f1(t,r,0)+if2(t,r,0)=[ϵ(t,r,0)]1/2,
If(t,xr,yr,zr)=|exp(ikzr)iλzrAr(t,x,y)×exp[ikx2+y22f+ik(xrx)2+(yry)22zr]dxdy|2,

Metrics